Go to the documentation of this file.
39 { 36, 68, 60, 92, 34, 66, 58, 90, },
40 { 100, 4, 124, 28, 98, 2, 122, 26, },
41 { 52, 84, 44, 76, 50, 82, 42, 74, },
42 { 116, 20, 108, 12, 114, 18, 106, 10, },
43 { 32, 64, 56, 88, 38, 70, 62, 94, },
44 { 96, 0, 120, 24, 102, 6, 126, 30, },
45 { 48, 80, 40, 72, 54, 86, 46, 78, },
46 { 112, 16, 104, 8, 118, 22, 110, 14, },
47 { 36, 68, 60, 92, 34, 66, 58, 90, },
51 64, 64, 64, 64, 64, 64, 64, 64
58 uint8_t *ptr = plane +
stride * y;
67 const int32_t *filterPos,
int filterSize)
72 const uint16_t *
src = (
const uint16_t *)
_src;
82 for (
i = 0;
i < dstW;
i++) {
84 int srcPos = filterPos[
i];
87 for (j = 0; j < filterSize; j++) {
97 const int32_t *filterPos,
int filterSize)
101 const uint16_t *
src = (
const uint16_t *)
_src;
102 int sh =
desc->comp[0].depth - 1;
110 for (
i = 0;
i < dstW;
i++) {
112 int srcPos = filterPos[
i];
115 for (j = 0; j < filterSize; j++) {
125 const uint8_t *
src,
const int16_t *
filter,
126 const int32_t *filterPos,
int filterSize)
129 for (
i = 0;
i < dstW;
i++) {
131 int srcPos = filterPos[
i];
133 for (j = 0; j < filterSize; j++) {
141 const uint8_t *
src,
const int16_t *
filter,
142 const int32_t *filterPos,
int filterSize)
146 for (
i = 0;
i < dstW;
i++) {
148 int srcPos = filterPos[
i];
150 for (j = 0; j < filterSize; j++) {
163 dstU[
i] = (
FFMIN(dstU[
i], 30775) * 4663 - 9289992) >> 12;
164 dstV[
i] = (
FFMIN(dstV[
i], 30775) * 4663 - 9289992) >> 12;
172 dstU[
i] = (dstU[
i] * 1799 + 4081085) >> 11;
173 dstV[
i] = (dstV[
i] * 1799 + 4081085) >> 11;
188 dst[
i] = (
dst[
i] * 14071 + 33561947) >> 14;
197 dstU[
i] = (
FFMIN(dstU[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
198 dstV[
i] = (
FFMIN(dstV[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
208 dstU[
i] = (dstU[
i] * 1799 + (4081085 << 4)) >> 11;
209 dstV[
i] = (dstV[
i] * 1799 + (4081085 << 4)) >> 11;
218 dst[
i] = ((int)(
FFMIN(
dst[
i], 30189 << 4) * 4769
U - (39057361 << 2))) >> 12;
227 dst[
i] = ((
int)(
dst[
i]*(14071
U/4) + (33561947<<4)/4)) >> 12;
231 #define DEBUG_SWSCALE_BUFFERS 0
232 #define DEBUG_BUFFERS(...) \
233 if (DEBUG_SWSCALE_BUFFERS) \
234 av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
237 int srcSliceY,
int srcSliceH, uint8_t *
const dst[],
238 const int dstStride[],
int dstSliceY,
int dstSliceH)
240 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->dstH;
244 const int dstW =
c->dstW;
248 const int flags =
c->flags;
249 int32_t *vLumFilterPos =
c->vLumFilterPos;
250 int32_t *vChrFilterPos =
c->vChrFilterPos;
252 const int vLumFilterSize =
c->vLumFilterSize;
253 const int vChrFilterSize =
c->vChrFilterSize;
262 const int chrSrcSliceY = srcSliceY >>
c->chrSrcVSubSample;
263 const int chrSrcSliceH =
AV_CEIL_RSHIFT(srcSliceH,
c->chrSrcVSubSample);
264 int should_dither =
isNBPS(
c->srcFormat) ||
270 int lastInLumBuf =
c->lastInLumBuf;
271 int lastInChrBuf =
c->lastInChrBuf;
274 int lumEnd =
c->descIndex[0];
275 int chrStart = lumEnd;
276 int chrEnd =
c->descIndex[1];
278 int vEnd =
c->numDesc;
279 SwsSlice *src_slice = &
c->slice[lumStart];
280 SwsSlice *hout_slice = &
c->slice[
c->numSlice-2];
281 SwsSlice *vout_slice = &
c->slice[
c->numSlice-1];
284 int needAlpha =
c->needAlpha;
289 const uint8_t *
src2[4];
300 srcStride2[3] = srcStride[0];
303 memcpy(srcStride2, srcStride,
sizeof(srcStride2));
306 srcStride2[1] *= 1 <<
c->vChrDrop;
307 srcStride2[2] *= 1 <<
c->vChrDrop;
309 DEBUG_BUFFERS(
"swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
310 src2[0], srcStride2[0],
src2[1], srcStride2[1],
311 src2[2], srcStride2[2],
src2[3], srcStride2[3],
312 dst[0], dstStride[0],
dst[1], dstStride[1],
313 dst[2], dstStride[2],
dst[3], dstStride[3]);
314 DEBUG_BUFFERS(
"srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
315 srcSliceY, srcSliceH, dstY, dstH);
317 vLumFilterSize, vChrFilterSize);
319 if (dstStride[0]&15 || dstStride[1]&15 ||
320 dstStride[2]&15 || dstStride[3]&15) {
325 "Warning: dstStride is not aligned!\n"
326 " ->cannot do aligned memory accesses anymore\n");
331 if ( (uintptr_t)
dst[0]&15 || (uintptr_t)
dst[1]&15 || (uintptr_t)
dst[2]&15
332 || (uintptr_t)
src2[0]&15 || (uintptr_t)
src2[1]&15 || (uintptr_t)
src2[2]&15
333 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
334 || srcStride2[0]&15 || srcStride2[1]&15 || srcStride2[2]&15 || srcStride2[3]&15
347 dstH = dstY + dstSliceH;
350 }
else if (srcSliceY == 0) {
359 if (!should_dither) {
365 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX,
c->use_mmx_vfilter);
368 srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
371 dstY, dstSliceH, dstY >>
c->chrDstVSubSample,
373 if (srcSliceY == 0) {
383 hout_slice->
width = dstW;
386 for (; dstY < dstH; dstY++) {
387 const int chrDstY = dstY >>
c->chrDstVSubSample;
388 int use_mmx_vfilter=
c->use_mmx_vfilter;
391 const int firstLumSrcY =
FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
392 const int firstLumSrcY2 =
FFMAX(1 - vLumFilterSize, vLumFilterPos[
FFMIN(dstY | ((1 <<
c->chrDstVSubSample) - 1),
c->dstH - 1)]);
394 const int firstChrSrcY =
FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
397 int lastLumSrcY =
FFMIN(
c->srcH, firstLumSrcY + vLumFilterSize) - 1;
398 int lastLumSrcY2 =
FFMIN(
c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
399 int lastChrSrcY =
FFMIN(
c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
403 int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
406 if (firstLumSrcY > lastInLumBuf) {
408 hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
416 lastInLumBuf = firstLumSrcY - 1;
418 if (firstChrSrcY > lastInChrBuf) {
420 hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
428 lastInChrBuf = firstChrSrcY - 1;
432 DEBUG_BUFFERS(
"\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
433 firstLumSrcY, lastLumSrcY, lastInLumBuf);
434 DEBUG_BUFFERS(
"\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
435 firstChrSrcY, lastChrSrcY, lastInChrBuf);
438 enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
439 lastChrSrcY <
AV_CEIL_RSHIFT(srcSliceY + srcSliceH,
c->chrSrcVSubSample);
442 lastLumSrcY = srcSliceY + srcSliceH - 1;
443 lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
444 DEBUG_BUFFERS(
"buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
445 lastLumSrcY, lastChrSrcY);
453 if (posY <= lastLumSrcY && !hasLumHoles) {
454 firstPosY =
FFMAX(firstLumSrcY, posY);
458 lastPosY = lastLumSrcY;
462 if (cPosY <= lastChrSrcY && !hasChrHoles) {
463 firstCPosY =
FFMAX(firstChrSrcY, cPosY);
467 lastCPosY = lastChrSrcY;
472 if (posY < lastLumSrcY + 1) {
473 for (
i = lumStart;
i < lumEnd; ++
i)
477 lastInLumBuf = lastLumSrcY;
479 if (cPosY < lastChrSrcY + 1) {
480 for (
i = chrStart;
i < chrEnd; ++
i)
484 lastInChrBuf = lastChrSrcY;
496 if (dstY >=
c->dstH - 2) {
500 &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
503 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
506 for (
i = vStart;
i < vEnd; ++
i)
510 int offset = lastDstY - dstSliceY;
512 int height = dstY - lastDstY;
517 1,
desc->comp[3].depth,
519 }
else if (
is32BPS(dstFormat)) {
522 1,
desc->comp[3].depth,
528 #if HAVE_MMXEXT_INLINE
530 __asm__ volatile (
"sfence" :::
"memory");
536 c->lastInLumBuf = lastInLumBuf;
537 c->lastInChrBuf = lastInChrBuf;
539 return dstY - lastDstY;
544 c->lumConvertRange =
NULL;
545 c->chrConvertRange =
NULL;
546 if (
c->srcRange !=
c->dstRange && !
isAnyRGB(
c->dstFormat)) {
547 if (
c->dstBpc <= 14) {
572 &
c->yuv2nv12cX, &
c->yuv2packed1,
573 &
c->yuv2packed2, &
c->yuv2packedX, &
c->yuv2anyX);
576 &
c->readLumPlanar, &
c->readAlpPlanar, &
c->readChrPlanar);
578 if (
c->srcBpc == 8) {
579 if (
c->dstBpc <= 14) {
597 c->needs_hcscale = 1;
612 #elif ARCH_LOONGARCH64
632 const int linesizes[4])
639 for (
i = 0;
i < 4;
i++) {
640 int plane =
desc->comp[
i].plane;
641 if (!
data[plane] || !linesizes[plane])
649 const uint8_t *
src,
int src_stride,
int w,
int h)
653 for (
int yp = 0; yp <
h; yp++) {
654 const uint16_t *src16 = (
const uint16_t *)
src;
655 uint16_t *dst16 = (uint16_t *)
dst;
657 for (
int xp = 0; xp < 3 *
w; xp += 3) {
658 int x, y, z,
r,
g,
b;
670 x =
c->xyzgamma[x >> 4];
671 y =
c->xyzgamma[y >> 4];
672 z =
c->xyzgamma[z >> 4];
675 r =
c->xyz2rgb_matrix[0][0] * x +
676 c->xyz2rgb_matrix[0][1] * y +
677 c->xyz2rgb_matrix[0][2] * z >> 12;
678 g =
c->xyz2rgb_matrix[1][0] * x +
679 c->xyz2rgb_matrix[1][1] * y +
680 c->xyz2rgb_matrix[1][2] * z >> 12;
681 b =
c->xyz2rgb_matrix[2][0] * x +
682 c->xyz2rgb_matrix[2][1] * y +
683 c->xyz2rgb_matrix[2][2] * z >> 12;
692 AV_WB16(dst16 + xp + 0,
c->rgbgamma[
r] << 4);
693 AV_WB16(dst16 + xp + 1,
c->rgbgamma[
g] << 4);
694 AV_WB16(dst16 + xp + 2,
c->rgbgamma[
b] << 4);
696 AV_WL16(dst16 + xp + 0,
c->rgbgamma[
r] << 4);
697 AV_WL16(dst16 + xp + 1,
c->rgbgamma[
g] << 4);
698 AV_WL16(dst16 + xp + 2,
c->rgbgamma[
b] << 4);
708 const uint8_t *
src,
int src_stride,
int w,
int h)
712 for (
int yp = 0; yp <
h; yp++) {
713 uint16_t *src16 = (uint16_t *)
src;
714 uint16_t *dst16 = (uint16_t *)
dst;
716 for (
int xp = 0; xp < 3 *
w; xp += 3) {
717 int x, y, z,
r,
g,
b;
729 r =
c->rgbgammainv[
r>>4];
730 g =
c->rgbgammainv[
g>>4];
731 b =
c->rgbgammainv[
b>>4];
734 x =
c->rgb2xyz_matrix[0][0] *
r +
735 c->rgb2xyz_matrix[0][1] *
g +
736 c->rgb2xyz_matrix[0][2] *
b >> 12;
737 y =
c->rgb2xyz_matrix[1][0] *
r +
738 c->rgb2xyz_matrix[1][1] *
g +
739 c->rgb2xyz_matrix[1][2] *
b >> 12;
740 z =
c->rgb2xyz_matrix[2][0] *
r +
741 c->rgb2xyz_matrix[2][1] *
g +
742 c->rgb2xyz_matrix[2][2] *
b >> 12;
751 AV_WB16(dst16 + xp + 0,
c->xyzgammainv[x] << 4);
752 AV_WB16(dst16 + xp + 1,
c->xyzgammainv[y] << 4);
753 AV_WB16(dst16 + xp + 2,
c->xyzgammainv[z] << 4);
755 AV_WL16(dst16 + xp + 0,
c->xyzgammainv[x] << 4);
756 AV_WL16(dst16 + xp + 1,
c->xyzgammainv[y] << 4);
757 AV_WL16(dst16 + xp + 2,
c->xyzgammainv[z] << 4);
768 for (
int i = 0;
i < 256;
i++) {
769 int r,
g,
b, y,
u, v,
a = 0xff;
772 a = (p >> 24) & 0xFF;
773 r = (p >> 16) & 0xFF;
778 g = ((
i >> 2) & 7) * 36;
782 g = ((
i >> 3) & 7) * 36;
785 r = (
i >> 3 ) * 255;
786 g = ((
i >> 1) & 3) * 85;
792 b = (
i >> 3 ) * 255;
793 g = ((
i >> 1) & 3) * 85;
796 #define RGB2YUV_SHIFT 15
797 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
798 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
799 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
800 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
801 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
802 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
803 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
804 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
805 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
810 c->pal_yuv[
i]= y + (
u<<8) + (v<<16) + ((unsigned)
a<<24);
812 switch (
c->dstFormat) {
817 c->pal_rgb[
i]=
r + (
g<<8) + (
b<<16) + ((unsigned)
a<<24);
823 c->pal_rgb[
i]=
a + (
r<<8) + (
g<<16) + ((unsigned)
b<<24);
829 c->pal_rgb[
i]=
a + (
b<<8) + (
g<<16) + ((unsigned)
r<<24);
836 c->pal_rgb[
i]=
b + (
g<<8) + (
r<<16) + ((unsigned)
a<<24);
842 const uint8_t *
const srcSlice[],
const int srcStride[],
843 int srcSliceY,
int srcSliceH,
844 uint8_t *
const dstSlice[],
const int dstStride[],
845 int dstSliceY,
int dstSliceH);
848 const uint8_t *
const srcSlice[],
const int srcStride[],
849 int srcSliceY,
int srcSliceH,
850 uint8_t *
const dstSlice[],
const int dstStride[],
851 int dstSliceY,
int dstSliceH)
854 srcSlice, srcStride, srcSliceY, srcSliceH,
855 c->cascaded_tmp[0],
c->cascaded_tmpStride[0], 0,
c->srcH);
860 if (
c->cascaded_context[2])
862 c->cascaded_tmpStride[0], srcSliceY, srcSliceH,
863 c->cascaded_tmp[1],
c->cascaded_tmpStride[1], 0,
c->dstH);
866 c->cascaded_tmpStride[0], srcSliceY, srcSliceH,
867 dstSlice, dstStride, dstSliceY, dstSliceH);
872 if (
c->cascaded_context[2]) {
874 c->cascaded_tmpStride[1],
c->cascaded_context[1]->dstY -
ret,
875 c->cascaded_context[1]->dstY,
876 dstSlice, dstStride, dstSliceY, dstSliceH);
882 const uint8_t *
const srcSlice[],
const int srcStride[],
883 int srcSliceY,
int srcSliceH,
884 uint8_t *
const dstSlice[],
const int dstStride[],
885 int dstSliceY,
int dstSliceH)
888 srcSlice, srcStride, srcSliceY, srcSliceH,
889 c->cascaded_tmp[0],
c->cascaded_tmpStride[0],
890 0,
c->cascaded_context[0]->dstH);
894 (
const uint8_t *
const * )
c->cascaded_tmp[0],
c->cascaded_tmpStride[0],
895 0,
c->cascaded_context[0]->dstH,
896 dstSlice, dstStride, dstSliceY, dstSliceH);
901 const uint8_t *
const srcSlice[],
const int srcStride[],
902 int srcSliceY,
int srcSliceH,
903 uint8_t *
const dstSlice[],
const int dstStride[],
904 int dstSliceY,
int dstSliceH)
906 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->dstH;
909 const uint8_t *
src2[4];
911 int macro_height_src =
isBayer(
c->srcFormat) ? 2 : (1 <<
c->chrSrcVSubSample);
912 int macro_height_dst =
isBayer(
c->dstFormat) ? 2 : (1 <<
c->chrDstVSubSample);
916 int srcSliceY_internal = srcSliceY;
918 if (!srcStride || !dstStride || !dstSlice || !srcSlice) {
919 av_log(
c,
AV_LOG_ERROR,
"One of the input parameters to sws_scale() is NULL, please check the calling code\n");
923 if ((srcSliceY & (macro_height_src - 1)) ||
924 ((srcSliceH & (macro_height_src - 1)) && srcSliceY + srcSliceH !=
c->srcH) ||
925 srcSliceY + srcSliceH >
c->srcH ||
926 (
isBayer(
c->srcFormat) && srcSliceH <= 1)) {
931 if ((dstSliceY & (macro_height_dst - 1)) ||
932 ((dstSliceH & (macro_height_dst - 1)) && dstSliceY + dstSliceH !=
c->dstH) ||
933 dstSliceY + dstSliceH >
c->dstH) {
951 if (
c->gamma_flag &&
c->cascaded_context[0])
952 return scale_gamma(
c, srcSlice, srcStride, srcSliceY, srcSliceH,
953 dstSlice, dstStride, dstSliceY, dstSliceH);
955 if (
c->cascaded_context[0] && srcSliceY == 0 && srcSliceH ==
c->cascaded_context[0]->srcH)
957 dstSlice, dstStride, dstSliceY, dstSliceH);
960 for (
i = 0;
i < 4;
i++)
961 memset(
c->dither_error[
i], 0,
sizeof(
c->dither_error[0][0]) * (
c->dstW+2));
966 memcpy(
src2, srcSlice,
sizeof(
src2));
967 memcpy(dst2, dstSlice,
sizeof(dst2));
968 memcpy(srcStride2, srcStride,
sizeof(srcStride2));
969 memcpy(dstStride2, dstStride,
sizeof(dstStride2));
972 if (srcSliceY != 0 && srcSliceY + srcSliceH !=
c->srcH) {
977 c->sliceDir = (srcSliceY == 0) ? 1 : -1;
978 }
else if (scale_dst)
981 if (
c->src0Alpha && !
c->dst0Alpha &&
isALPHA(
c->dstFormat)) {
986 FFABS(srcStride[0]) * srcSliceH + 32);
987 if (!
c->rgb0_scratch)
990 base = srcStride[0] < 0 ?
c->rgb0_scratch - srcStride[0] * (srcSliceH-1) :
992 for (y=0; y<srcSliceH; y++){
993 memcpy(
base + srcStride[0]*y,
src2[0] + srcStride[0]*y, 4*
c->srcW);
994 for (x=
c->src0Alpha-1; x<4*c->srcW; x+=4) {
995 base[ srcStride[0]*y + x] = 0xFF;
1001 if (
c->srcXYZ && !(
c->dstXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
1005 FFABS(srcStride[0]) * srcSliceH + 32);
1006 if (!
c->xyz_scratch)
1009 base = srcStride[0] < 0 ?
c->xyz_scratch - srcStride[0] * (srcSliceH-1) :
1016 if (
c->sliceDir != 1) {
1018 for (
i=0;
i<4;
i++) {
1019 srcStride2[
i] *= -1;
1020 dstStride2[
i] *= -1;
1023 src2[0] += (srcSliceH - 1) * srcStride[0];
1025 src2[1] += ((srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[1];
1026 src2[2] += ((srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[2];
1027 src2[3] += (srcSliceH - 1) * srcStride[3];
1028 dst2[0] += (
c->dstH - 1) * dstStride[0];
1029 dst2[1] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[1];
1030 dst2[2] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[2];
1031 dst2[3] += (
c->dstH - 1) * dstStride[3];
1033 srcSliceY_internal =
c->srcH-srcSliceY-srcSliceH;
1038 if (
c->convert_unscaled) {
1039 int offset = srcSliceY_internal;
1040 int slice_h = srcSliceH;
1045 for (
i = 0;
i < 4 &&
src2[
i];
i++) {
1048 src2[
i] += (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrSrcVSubSample : 0)) * srcStride2[
i];
1051 for (
i = 0;
i < 4 && dst2[
i];
i++) {
1052 if (!dst2[
i] || (
i > 0 &&
usePal(
c->dstFormat)))
1054 dst2[
i] -= (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0)) * dstStride2[
i];
1057 slice_h = dstSliceH;
1063 dst2[0] += dstSliceY * dstStride2[0];
1066 dst2, dstStride2, dstSliceY, dstSliceH);
1069 if (
c->dstXYZ && !(
c->srcXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
1075 int dstY =
c->dstY ?
c->dstY : srcSliceY + srcSliceH;
1080 dst = dst2[0] + (dstY -
ret) * dstStride2[0];
1088 if ((srcSliceY_internal + srcSliceH ==
c->srcH) || scale_dst)
1098 c->src_ranges.nb_ranges = 0;
1103 int ret, allocated = 0;
1110 dst->width =
c->dstW;
1111 dst->height =
c->dstH;
1112 dst->format =
c->dstFormat;
1132 unsigned int slice_height)
1146 return c->slice_ctx[0]->dst_slice_align;
1148 return c->dst_slice_align;
1152 unsigned int slice_height)
1158 if (!(
c->src_ranges.nb_ranges == 1 &&
1159 c->src_ranges.ranges[0].start == 0 &&
1160 c->src_ranges.ranges[0].len ==
c->srcH))
1163 if ((
slice_start > 0 || slice_height < c->dstH) &&
1166 "Incorrectly aligned output: %u/%u not multiples of %u\n",
1171 if (
c->slicethread) {
1172 int nb_jobs =
c->slice_ctx[0]->dither ==
SWS_DITHER_ED ? 1 :
c->nb_slice_ctx;
1176 c->dst_slice_height = slice_height;
1180 for (
int i = 0;
i <
c->nb_slice_ctx;
i++) {
1181 if (
c->slice_err[
i] < 0) {
1182 ret =
c->slice_err[
i];
1187 memset(
c->slice_err, 0,
c->nb_slice_ctx *
sizeof(*
c->slice_err));
1193 ptrdiff_t
offset =
c->frame_dst->linesize[
i] * (ptrdiff_t)(
slice_start >>
c->chrDstVSubSample);
1198 c->frame_src->linesize, 0,
c->srcH,
1224 const uint8_t *
const srcSlice[],
1225 const int srcStride[],
int srcSliceY,
1226 int srcSliceH, uint8_t *
const dst[],
1227 const int dstStride[])
1229 if (
c->nb_slice_ctx)
1230 c =
c->slice_ctx[0];
1233 dst, dstStride, 0,
c->dstH);
1237 int nb_jobs,
int nb_threads)
1243 c->dst_slice_align);
1252 const int vshift = (
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0;
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
void(* yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
#define AV_LOG_WARNING
Something somehow does not look correct.
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
void(* yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
AVPixelFormat
Pixel format.
int sliceH
number of lines
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
#define u(width, name, range_min, range_max)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
SwsPlane plane[MAX_SLICE_PLANES]
color planes
void avpriv_slicethread_execute(AVSliceThread *ctx, int nb_jobs, int execute_main)
Execute slice threading.
This structure describes decoded (raw) audio or video data.
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
Struct which holds all necessary data for processing a slice.
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
void ff_update_palette(SwsContext *c, const uint32_t *pal)
#define AV_PIX_FMT_RGB32_1
void(* filter)(uint8_t *src, int stride, int qscale)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
int attribute_align_arg sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[])
swscale wrapper, so we don't need to export the SwsContext.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
#define DEBUG_BUFFERS(...)
static int scale_internal(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static atomic_int cpu_flags
int sws_send_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height)
Indicate that a horizontal slice of input data is available in the source frame previously provided t...
static int scale_cascaded(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
uint8_t ptrdiff_t const uint8_t * _src
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int sws_receive_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height)
Request a horizontal slice of the output data to be written into the frame previously provided to sws...
#define SWS_FAST_BILINEAR
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_init_swscale_aarch64(SwsContext *c)
static int slice_end(AVCodecContext *avctx, AVFrame *pict, int *got_output)
Handle slice ends.
void(* yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
static void frame_start(MpegEncContext *s)
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static double val(void *priv, double ch)
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
av_cold void ff_sws_init_swscale_loongarch(SwsContext *c)
static av_cold void sws_init_swscale(SwsContext *c)
int sws_frame_start(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
Initialize the scaling process for a given pair of source/destination frames.
#define AV_CEIL_RSHIFT(a, b)
av_cold void ff_sws_init_swscale_arm(SwsContext *c)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
static enum AVPixelFormat pix_fmt
int width
Slice line width.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static int scale_gamma(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static void lumRangeFromJpeg_c(int16_t *dst, int width)
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
#define AV_PIX_FMT_BGR32_1
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
av_cold void ff_sws_init_range_convert(SwsContext *c)
@ AV_PIX_FMT_GRAY8A
alias for AV_PIX_FMT_YA8
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val)
int available_lines
max number of lines that can be hold by this plane
av_cold void ff_sws_init_swscale_x86(SwsContext *c)
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
#define FF_PTR_ADD(ptr, off)
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)3R 3G 2B(lsb)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
int ff_range_add(RangeList *r, unsigned int start, unsigned int len)
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
#define attribute_align_arg
#define AV_CPU_FLAG_SSE2
PIV SSE2 functions.
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads)
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
void ff_sws_init_scale(SwsContext *c)
int ff_swscale(SwsContext *c, const uint8_t *const src[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[], int dstSliceY, int dstSliceH)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
struct SwsContext ** slice_ctx
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
static const uint8_t *BS_FUNC() align(BSCTX *bc)
Skip bits to a byte boundary.
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc)
static void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float)
int sws_scale_frame(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
Scale source data from src and write the output to dst.
av_cold void ff_sws_init_swscale_riscv(SwsContext *c)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
void ff_sws_init_input_funcs(SwsContext *c, planar1_YV12_fn *lumToYV12, planar1_YV12_fn *alpToYV12, planar2_YV12_fn *chrToYV12, planarX_YV12_fn *readLumPlanar, planarX_YV12_fn *readAlpPlanar, planarX2_YV12_fn *readChrPlanar)
#define i(width, name, range_min, range_max)
unsigned int sws_receive_slice_alignment(const struct SwsContext *c)
Get the alignment required for slices.
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static int check_image_pointers(const uint8_t *const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4])
void(* yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, const uint8_t *chrDither, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
#define AV_PIX_FMT_FLAG_BE
Pixel format is big-endian.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
static int slice_start(SliceContext *sc, VVCContext *s, VVCFrameContext *fc, const CodedBitstreamUnit *unit, const int is_first_slice)
int ff_init_slice_from_src(SwsSlice *s, uint8_t *const src[4], const int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
__asm__(".macro parse_r var r\n\t" "\\var = -1\n\t" _IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31) ".iflt \\var\n\t" ".error \"Unable to parse register name \\r\"\n\t" ".endif\n\t" ".endm")
static const uint8_t sws_pb_64[8]
void sws_frame_end(struct SwsContext *c)
Finish the scaling process for a pair of source/destination frames previously submitted with sws_fram...
av_cold void ff_sws_init_swscale_ppc(SwsContext *c)
void ff_rgb48Toxyz12(const SwsContext *c, uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
void ff_sws_init_output_funcs(SwsContext *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX)
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
void(* yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
void ff_xyz12Torgb48(const SwsContext *c, uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
#define atomic_exchange_explicit(object, desired, order)
const uint8_t ff_dither_8x8_128[9][8]
#define AV_CPU_FLAG_MMXEXT
SSE integer functions or AMD MMX ext.
static void lumRangeToJpeg_c(int16_t *dst, int width)
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
int sliceY
index of first line
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
void ff_updateMMXDitherTables(SwsContext *c, int dstY)
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16