Go to the documentation of this file.
27 for (
i = 0;
i < 2; ++
i) {
28 int n =
s->plane[
i].available_lines;
30 for (j = 0; j < n; ++j) {
33 s->plane[
i].line[j+n] =
NULL;
37 for (
i = 0;
i < 4; ++
i)
38 memset(
s->plane[
i].line, 0,
sizeof(uint8_t*) *
s->plane[
i].available_lines * (
s->is_ring ? 3 : 1));
39 s->should_free_lines = 0;
51 s->should_free_lines = 1;
54 for (
i = 0;
i < 2; ++
i) {
55 int n =
s->plane[
i].available_lines;
60 for (j = 0; j < n; ++j) {
64 if (!
s->plane[
i].line[j]) {
68 s->plane[ii].line[j] =
s->plane[
i].line[j] +
size + 16;
70 s->plane[
i].line[j+n] =
s->plane[
i].line[j];
71 s->plane[ii].line[j+n] =
s->plane[ii].line[j];
82 int size[4] = { lumLines,
87 s->h_chr_sub_sample = h_sub_sample;
88 s->v_chr_sub_sample = v_sub_sample;
91 s->should_free_lines = 0;
93 for (
i = 0;
i < 4; ++
i) {
94 int n =
size[
i] * ( ring == 0 ? 1 : 3);
96 if (!
s->plane[
i].line)
99 s->plane[
i].tmp = ring ?
s->plane[
i].line +
size[
i] * 2 :
NULL;
100 s->plane[
i].available_lines =
size[
i];
101 s->plane[
i].sliceY = 0;
102 s->plane[
i].sliceH = 0;
111 if (
s->should_free_lines)
113 for (
i = 0;
i < 4; ++
i) {
124 for (
i = 0;
i < 4;
i+=3) {
125 int n =
s->plane[
i].available_lines;
126 int l =
lum -
s->plane[
i].sliceY;
129 s->plane[
i].sliceY += n;
130 s->plane[
i].sliceH -= n;
135 for (
i = 1;
i < 3; ++
i) {
136 int n =
s->plane[
i].available_lines;
137 int l = chr -
s->plane[
i].sliceY;
140 s->plane[
i].sliceY += n;
141 s->plane[
i].sliceH -= n;
152 const int start[4] = {lumY,
157 const int end[4] = {lumY +lumH,
165 uint8_t *
const src_i =
src[
i] + (relative ? 0 : start[
i]) *
stride[
i];
167 int first =
s->plane[
i].sliceY;
168 int n =
s->plane[
i].available_lines;
169 int lines = end[
i] - start[
i];
170 int tot_lines = end[
i] -
first;
172 if (start[
i] >=
first && n >= tot_lines) {
173 s->plane[
i].sliceH =
FFMAX(tot_lines,
s->plane[
i].sliceH);
174 for (j = 0; j < lines; j+= 1)
177 s->plane[
i].sliceY = start[
i];
178 lines = lines > n ? n : lines;
179 s->plane[
i].sliceH = lines;
180 for (j = 0; j < lines; j+= 1)
181 s->plane[
i].line[j] = src_i + j *
stride[
i];
191 int i, j, k,
size, end;
193 for (
i = 0;
i < 4; ++
i) {
194 size =
s->plane[
i].available_lines;
195 for (j = 0; j <
size; ++j) {
198 for (k = 0; k < end; ++k)
199 ((
int32_t*)(
s->plane[
i].line[j]))[k] = 1<<18;
200 }
else if (bpc == 32) {
202 for (k = 0; k < end; ++k)
203 ((
int64_t*)(
s->plane[
i].line[j]))[k] = 1LL<<34;
206 for (k = 0; k < end; ++k)
207 ((int16_t*)(
s->plane[
i].line[j]))[k] = 1<<14;
224 int chrDstH =
c->chrDstH;
225 int *lumFilterPos =
c->vLumFilterPos;
226 int *chrFilterPos =
c->vChrFilterPos;
227 int lumFilterSize =
c->vLumFilterSize;
228 int chrFilterSize =
c->vChrFilterSize;
229 int chrSubSample =
c->chrSrcVSubSample;
231 *out_lum_size = lumFilterSize;
232 *out_chr_size = chrFilterSize;
234 for (lumY = 0; lumY < dstH; lumY++) {
235 int chrY = (
int64_t)lumY * chrDstH / dstH;
236 int nextSlice =
FFMAX(lumFilterPos[lumY] + lumFilterSize - 1,
237 ((chrFilterPos[chrY] + chrFilterSize - 1)
240 nextSlice >>= chrSubSample;
241 nextSlice <<= chrSubSample;
242 (*out_lum_size) =
FFMAX((*out_lum_size), nextSlice - lumFilterPos[lumY]);
243 (*out_chr_size) =
FFMAX((*out_chr_size), (nextSlice >> chrSubSample) - chrFilterPos[chrY]);
256 int need_lum_conv =
c->lumToYV12 ||
c->readLumPlanar ||
c->alpToYV12 ||
c->readAlpPlanar;
257 int need_chr_conv =
c->chrToYV12 ||
c->readChrPlanar;
258 int need_gamma =
c->is_internal_gamma;
260 int dst_stride =
FFALIGN(
c->dstW *
sizeof(int16_t) + 66, 16);
262 uint32_t * pal =
usePal(
c->srcFormat) ?
c->pal_yuv : (uint32_t*)
c->input_rgb2yuv_table;
278 num_ydesc = need_lum_conv ? 2 : 1;
279 num_cdesc = need_chr_conv ? 2 : 1;
281 c->numSlice =
FFMAX(num_ydesc, num_cdesc) + 2;
282 c->numDesc = num_ydesc + num_cdesc + num_vdesc + (need_gamma ? 2 : 0);
283 c->descIndex[0] = num_ydesc + (need_gamma ? 1 : 0);
284 c->descIndex[1] = num_ydesc + num_cdesc + (need_gamma ? 1 : 0);
291 c->input_opaque =
c->h2f_tables;
303 res =
alloc_slice(&
c->slice[0],
c->srcFormat,
c->srcH,
c->chrSrcH,
c->chrSrcHSubSample,
c->chrSrcVSubSample, 0);
305 for (
i = 1;
i <
c->numSlice-2; ++
i) {
306 res =
alloc_slice(&
c->slice[
i],
c->srcFormat, lumBufSize, chrBufSize,
c->chrSrcHSubSample,
c->chrSrcVSubSample, 0);
312 res =
alloc_slice(&
c->slice[
i],
c->srcFormat, lumBufSize, chrBufSize,
c->chrDstHSubSample,
c->chrDstVSubSample, 1);
321 res =
alloc_slice(&
c->slice[
i],
c->dstFormat,
c->dstH,
c->chrDstH,
c->chrDstHSubSample,
c->chrDstVSubSample, 0);
337 c->desc[
index].alpha =
c->needAlpha;
343 dstIdx =
FFMAX(num_ydesc, num_cdesc);
346 c->desc[
index].alpha =
c->needAlpha;
360 dstIdx =
FFMAX(num_ydesc, num_cdesc);
361 if (
c->needs_hcscale)
370 srcIdx =
c->numSlice - 2;
371 dstIdx =
c->numSlice - 1;
393 for (
i = 0;
i <
c->numDesc; ++
i)
399 for (
i = 0;
i <
c->numSlice; ++
i)
int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint32_t *pal)
initializes chr pixel format conversion descriptor
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void fill_ones(SwsSlice *s, int n, int bpc)
static void get_min_buffer_size(SwsContext *c, int *out_lum_size, int *out_chr_size)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
static av_cold void cleanup(FlashSV2Context *s)
int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int *filter_pos, int filter_size, int xInc)
initializes lum horizontal scaling descriptor
int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
int ff_init_filters(SwsContext *c)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But first
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static av_always_inline int isFloat16(enum AVPixelFormat pix_fmt)
int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int *filter_pos, int filter_size, int xInc)
initializes chr horizontal scaling descriptor
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void free_lines(SwsSlice *s)
static int alloc_lines(SwsSlice *s, int size, int width)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
static void free_slice(SwsSlice *s)
static int alloc_slice(SwsSlice *s, enum AVPixelFormat fmt, int lumLines, int chrLines, int h_sub_sample, int v_sub_sample, int ring)
#define i(width, name, range_min, range_max)
int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice *src, uint16_t *table)
initializes gamma conversion descriptor
int ff_free_filters(SwsContext *c)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
void * av_calloc(size_t nmemb, size_t size)
int ff_init_slice_from_src(SwsSlice *s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
void ff_init_half2float_tables(Half2FloatTables *t)
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
initializes vertical scaling descriptors
static double lum(void *priv, double x, double y, int plane)
int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint32_t *pal)
initializes lum pixel format conversion descriptor