FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "snow_dwt.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #include "mpegvideo.h"
33 #include "h263.h"
34 
36 {
37  SnowContext *s = avctx->priv_data;
38  int plane_index, ret;
39  int i;
40 
41  if(avctx->prediction_method == DWT_97
42  && (avctx->flags & CODEC_FLAG_QSCALE)
43  && avctx->global_quality == 0){
44  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
45  return -1;
46  }
47 
48  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
49 
50  s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
51  s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
52 
53  for(plane_index=0; plane_index<3; plane_index++){
54  s->plane[plane_index].diag_mc= 1;
55  s->plane[plane_index].htaps= 6;
56  s->plane[plane_index].hcoeff[0]= 40;
57  s->plane[plane_index].hcoeff[1]= -10;
58  s->plane[plane_index].hcoeff[2]= 2;
59  s->plane[plane_index].fast_mc= 1;
60  }
61 
62  if ((ret = ff_snow_common_init(avctx)) < 0) {
63  return ret;
64  }
66 
68 
69  s->version=0;
70 
71  s->m.avctx = avctx;
72  s->m.bit_rate= avctx->bit_rate;
73 
74  s->m.me.temp =
75  s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
76  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
77  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
78  s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
79  if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
80  return AVERROR(ENOMEM);
81 
82  ff_h263_encode_init(&s->m); //mv_penalty
83 
84  s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
85 
86  if(avctx->flags&CODEC_FLAG_PASS1){
87  if(!avctx->stats_out)
88  avctx->stats_out = av_mallocz(256);
89 
90  if (!avctx->stats_out)
91  return AVERROR(ENOMEM);
92  }
93  if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
94  if(ff_rate_control_init(&s->m) < 0)
95  return -1;
96  }
98 
99  switch(avctx->pix_fmt){
100  case AV_PIX_FMT_YUV444P:
101 // case AV_PIX_FMT_YUV422P:
102  case AV_PIX_FMT_YUV420P:
103 // case AV_PIX_FMT_YUV411P:
104  case AV_PIX_FMT_YUV410P:
105  s->nb_planes = 3;
106  s->colorspace_type= 0;
107  break;
108  case AV_PIX_FMT_GRAY8:
109  s->nb_planes = 1;
110  s->colorspace_type = 1;
111  break;
112 /* case AV_PIX_FMT_RGB32:
113  s->colorspace= 1;
114  break;*/
115  default:
116  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
117  return -1;
118  }
120 
121  ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
123 
125  avctx->coded_frame = av_frame_alloc();
126  if (!s->input_picture || !avctx->coded_frame)
127  return AVERROR(ENOMEM);
128 
129  if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
130  return ret;
131 
132  if(s->avctx->me_method == ME_ITER){
133  int size= s->b_width * s->b_height << 2*s->block_max_depth;
134  for(i=0; i<s->max_ref_frames; i++){
135  s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
136  s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
137  if (!s->ref_mvs[i] || !s->ref_scores[i])
138  return AVERROR(ENOMEM);
139  }
140  }
141 
142  return 0;
143 }
144 
145 //near copy & paste from dsputil, FIXME
146 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
147 {
148  int s, i, j;
149 
150  s = 0;
151  for (i = 0; i < h; i++) {
152  for (j = 0; j < w; j++) {
153  s += pix[0];
154  pix ++;
155  }
156  pix += line_size - w;
157  }
158  return s;
159 }
160 
161 //near copy & paste from dsputil, FIXME
162 static int pix_norm1(uint8_t * pix, int line_size, int w)
163 {
164  int s, i, j;
165  uint32_t *sq = ff_square_tab + 256;
166 
167  s = 0;
168  for (i = 0; i < w; i++) {
169  for (j = 0; j < w; j ++) {
170  s += sq[pix[0]];
171  pix ++;
172  }
173  pix += line_size - w;
174  }
175  return s;
176 }
177 
178 static inline int get_penalty_factor(int lambda, int lambda2, int type){
179  switch(type&0xFF){
180  default:
181  case FF_CMP_SAD:
182  return lambda>>FF_LAMBDA_SHIFT;
183  case FF_CMP_DCT:
184  return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
185  case FF_CMP_W53:
186  return (4*lambda)>>(FF_LAMBDA_SHIFT);
187  case FF_CMP_W97:
188  return (2*lambda)>>(FF_LAMBDA_SHIFT);
189  case FF_CMP_SATD:
190  case FF_CMP_DCT264:
191  return (2*lambda)>>FF_LAMBDA_SHIFT;
192  case FF_CMP_RD:
193  case FF_CMP_PSNR:
194  case FF_CMP_SSE:
195  case FF_CMP_NSSE:
196  return lambda2>>FF_LAMBDA_SHIFT;
197  case FF_CMP_BIT:
198  return 1;
199  }
200 }
201 
202 //FIXME copy&paste
203 #define P_LEFT P[1]
204 #define P_TOP P[2]
205 #define P_TOPRIGHT P[3]
206 #define P_MEDIAN P[4]
207 #define P_MV1 P[9]
208 #define FLAG_QPEL 1 //must be 1
209 
210 static int encode_q_branch(SnowContext *s, int level, int x, int y){
211  uint8_t p_buffer[1024];
212  uint8_t i_buffer[1024];
213  uint8_t p_state[sizeof(s->block_state)];
214  uint8_t i_state[sizeof(s->block_state)];
215  RangeCoder pc, ic;
216  uint8_t *pbbak= s->c.bytestream;
217  uint8_t *pbbak_start= s->c.bytestream_start;
218  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
219  const int w= s->b_width << s->block_max_depth;
220  const int h= s->b_height << s->block_max_depth;
221  const int rem_depth= s->block_max_depth - level;
222  const int index= (x + y*w) << rem_depth;
223  const int block_w= 1<<(LOG2_MB_SIZE - level);
224  int trx= (x+1)<<rem_depth;
225  int try= (y+1)<<rem_depth;
226  const BlockNode *left = x ? &s->block[index-1] : &null_block;
227  const BlockNode *top = y ? &s->block[index-w] : &null_block;
228  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
229  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
230  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
231  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
232  int pl = left->color[0];
233  int pcb= left->color[1];
234  int pcr= left->color[2];
235  int pmx, pmy;
236  int mx=0, my=0;
237  int l,cr,cb;
238  const int stride= s->current_picture->linesize[0];
239  const int uvstride= s->current_picture->linesize[1];
240  uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
241  s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
242  s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
243  int P[10][2];
244  int16_t last_mv[3][2];
245  int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
246  const int shift= 1+qpel;
247  MotionEstContext *c= &s->m.me;
248  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
249  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
250  int my_context= av_log2(2*FFABS(left->my - top->my));
251  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
252  int ref, best_ref, ref_score, ref_mx, ref_my;
253 
254  av_assert0(sizeof(s->block_state) >= 256);
255  if(s->keyframe){
256  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
257  return 0;
258  }
259 
260 // clip predictors / edge ?
261 
262  P_LEFT[0]= left->mx;
263  P_LEFT[1]= left->my;
264  P_TOP [0]= top->mx;
265  P_TOP [1]= top->my;
266  P_TOPRIGHT[0]= tr->mx;
267  P_TOPRIGHT[1]= tr->my;
268 
269  last_mv[0][0]= s->block[index].mx;
270  last_mv[0][1]= s->block[index].my;
271  last_mv[1][0]= right->mx;
272  last_mv[1][1]= right->my;
273  last_mv[2][0]= bottom->mx;
274  last_mv[2][1]= bottom->my;
275 
276  s->m.mb_stride=2;
277  s->m.mb_x=
278  s->m.mb_y= 0;
279  c->skip= 0;
280 
281  av_assert1(c-> stride == stride);
282  av_assert1(c->uvstride == uvstride);
283 
288 
289  c->xmin = - x*block_w - 16+3;
290  c->ymin = - y*block_w - 16+3;
291  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
292  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
293 
294  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
295  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
296  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
297  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
298  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
299  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
300  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
301 
302  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
303  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
304 
305  if (!y) {
306  c->pred_x= P_LEFT[0];
307  c->pred_y= P_LEFT[1];
308  } else {
309  c->pred_x = P_MEDIAN[0];
310  c->pred_y = P_MEDIAN[1];
311  }
312 
313  score= INT_MAX;
314  best_ref= 0;
315  for(ref=0; ref<s->ref_frames; ref++){
316  init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
317 
318  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
319  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
320 
321  av_assert2(ref_mx >= c->xmin);
322  av_assert2(ref_mx <= c->xmax);
323  av_assert2(ref_my >= c->ymin);
324  av_assert2(ref_my <= c->ymax);
325 
326  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
327  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
328  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
329  if(s->ref_mvs[ref]){
330  s->ref_mvs[ref][index][0]= ref_mx;
331  s->ref_mvs[ref][index][1]= ref_my;
332  s->ref_scores[ref][index]= ref_score;
333  }
334  if(score > ref_score){
335  score= ref_score;
336  best_ref= ref;
337  mx= ref_mx;
338  my= ref_my;
339  }
340  }
341  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
342 
343  // subpel search
344  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
345  pc= s->c;
346  pc.bytestream_start=
347  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
348  memcpy(p_state, s->block_state, sizeof(s->block_state));
349 
350  if(level!=s->block_max_depth)
351  put_rac(&pc, &p_state[4 + s_context], 1);
352  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
353  if(s->ref_frames > 1)
354  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
355  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
356  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
357  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
358  p_len= pc.bytestream - pc.bytestream_start;
359  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
360 
361  block_s= block_w*block_w;
362  sum = pix_sum(current_data[0], stride, block_w, block_w);
363  l= (sum + block_s/2)/block_s;
364  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
365 
366  if (s->nb_planes > 2) {
367  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
368  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
369  cb= (sum + block_s/2)/block_s;
370  // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
371  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
372  cr= (sum + block_s/2)/block_s;
373  // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
374  }else
375  cb = cr = 0;
376 
377  ic= s->c;
378  ic.bytestream_start=
379  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
380  memcpy(i_state, s->block_state, sizeof(s->block_state));
381  if(level!=s->block_max_depth)
382  put_rac(&ic, &i_state[4 + s_context], 1);
383  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
384  put_symbol(&ic, &i_state[32], l-pl , 1);
385  if (s->nb_planes > 2) {
386  put_symbol(&ic, &i_state[64], cb-pcb, 1);
387  put_symbol(&ic, &i_state[96], cr-pcr, 1);
388  }
389  i_len= ic.bytestream - ic.bytestream_start;
390  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
391 
392  av_assert1(iscore < 255*255*256 + s->lambda2*10);
393  av_assert1(iscore >= 0);
394  av_assert1(l>=0 && l<=255);
395  av_assert1(pl>=0 && pl<=255);
396 
397  if(level==0){
398  int varc= iscore >> 8;
399  int vard= score >> 8;
400  if (vard <= 64 || vard < varc)
401  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
402  else
403  c->scene_change_score+= s->m.qscale;
404  }
405 
406  if(level!=s->block_max_depth){
407  put_rac(&s->c, &s->block_state[4 + s_context], 0);
408  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
409  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
410  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
411  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
412  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
413 
414  if(score2 < score && score2 < iscore)
415  return score2;
416  }
417 
418  if(iscore < score){
419  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
420  memcpy(pbbak, i_buffer, i_len);
421  s->c= ic;
422  s->c.bytestream_start= pbbak_start;
423  s->c.bytestream= pbbak + i_len;
424  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
425  memcpy(s->block_state, i_state, sizeof(s->block_state));
426  return iscore;
427  }else{
428  memcpy(pbbak, p_buffer, p_len);
429  s->c= pc;
430  s->c.bytestream_start= pbbak_start;
431  s->c.bytestream= pbbak + p_len;
432  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
433  memcpy(s->block_state, p_state, sizeof(s->block_state));
434  return score;
435  }
436 }
437 
438 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
439  const int w= s->b_width << s->block_max_depth;
440  const int rem_depth= s->block_max_depth - level;
441  const int index= (x + y*w) << rem_depth;
442  int trx= (x+1)<<rem_depth;
443  BlockNode *b= &s->block[index];
444  const BlockNode *left = x ? &s->block[index-1] : &null_block;
445  const BlockNode *top = y ? &s->block[index-w] : &null_block;
446  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
447  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
448  int pl = left->color[0];
449  int pcb= left->color[1];
450  int pcr= left->color[2];
451  int pmx, pmy;
452  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
453  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
454  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
455  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
456 
457  if(s->keyframe){
458  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
459  return;
460  }
461 
462  if(level!=s->block_max_depth){
463  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
464  put_rac(&s->c, &s->block_state[4 + s_context], 1);
465  }else{
466  put_rac(&s->c, &s->block_state[4 + s_context], 0);
467  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
468  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
469  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
470  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
471  return;
472  }
473  }
474  if(b->type & BLOCK_INTRA){
475  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
476  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
477  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
478  if (s->nb_planes > 2) {
479  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
480  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
481  }
482  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
483  }else{
484  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
485  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
486  if(s->ref_frames > 1)
487  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
488  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
489  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
490  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
491  }
492 }
493 
494 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
495  int i, x2, y2;
496  Plane *p= &s->plane[plane_index];
497  const int block_size = MB_SIZE >> s->block_max_depth;
498  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
499  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
500  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
501  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
502  const int ref_stride= s->current_picture->linesize[plane_index];
503  uint8_t *src= s-> input_picture->data[plane_index];
504  IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
505  const int b_stride = s->b_width << s->block_max_depth;
506  const int w= p->width;
507  const int h= p->height;
508  int index= mb_x + mb_y*b_stride;
509  BlockNode *b= &s->block[index];
510  BlockNode backup= *b;
511  int ab=0;
512  int aa=0;
513 
514  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
515 
516  b->type|= BLOCK_INTRA;
517  b->color[plane_index]= 0;
518  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
519 
520  for(i=0; i<4; i++){
521  int mb_x2= mb_x + (i &1) - 1;
522  int mb_y2= mb_y + (i>>1) - 1;
523  int x= block_w*mb_x2 + block_w/2;
524  int y= block_h*mb_y2 + block_h/2;
525 
526  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
527  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
528 
529  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
530  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
531  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
532  int obmc_v= obmc[index];
533  int d;
534  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
535  if(x<0) obmc_v += obmc[index + block_w];
536  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
537  if(x+block_w>w) obmc_v += obmc[index - block_w];
538  //FIXME precalculate this or simplify it somehow else
539 
540  d = -dst[index] + (1<<(FRAC_BITS-1));
541  dst[index] = d;
542  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
543  aa += obmc_v * obmc_v; //FIXME precalculate this
544  }
545  }
546  }
547  *b= backup;
548 
549  return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
550 }
551 
552 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
553  const int b_stride = s->b_width << s->block_max_depth;
554  const int b_height = s->b_height<< s->block_max_depth;
555  int index= x + y*b_stride;
556  const BlockNode *b = &s->block[index];
557  const BlockNode *left = x ? &s->block[index-1] : &null_block;
558  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
559  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
560  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
561  int dmx, dmy;
562 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
563 // int my_context= av_log2(2*FFABS(left->my - top->my));
564 
565  if(x<0 || x>=b_stride || y>=b_height)
566  return 0;
567 /*
568 1 0 0
569 01X 1-2 1
570 001XX 3-6 2-3
571 0001XXX 7-14 4-7
572 00001XXXX 15-30 8-15
573 */
574 //FIXME try accurate rate
575 //FIXME intra and inter predictors if surrounding blocks are not the same type
576  if(b->type & BLOCK_INTRA){
577  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
578  + av_log2(2*FFABS(left->color[1] - b->color[1]))
579  + av_log2(2*FFABS(left->color[2] - b->color[2])));
580  }else{
581  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
582  dmx-= b->mx;
583  dmy-= b->my;
584  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
585  + av_log2(2*FFABS(dmy))
586  + av_log2(2*b->ref));
587  }
588 }
589 
590 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
591  Plane *p= &s->plane[plane_index];
592  const int block_size = MB_SIZE >> s->block_max_depth;
593  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
594  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
595  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
596  const int ref_stride= s->current_picture->linesize[plane_index];
597  uint8_t *dst= s->current_picture->data[plane_index];
598  uint8_t *src= s-> input_picture->data[plane_index];
599  IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
600  uint8_t *cur = s->scratchbuf;
601  uint8_t *tmp = s->emu_edge_buffer;
602  const int b_stride = s->b_width << s->block_max_depth;
603  const int b_height = s->b_height<< s->block_max_depth;
604  const int w= p->width;
605  const int h= p->height;
606  int distortion;
607  int rate= 0;
608  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
609  int sx= block_w*mb_x - block_w/2;
610  int sy= block_h*mb_y - block_h/2;
611  int x0= FFMAX(0,-sx);
612  int y0= FFMAX(0,-sy);
613  int x1= FFMIN(block_w*2, w-sx);
614  int y1= FFMIN(block_h*2, h-sy);
615  int i,x,y;
616 
617  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
618 
619  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
620 
621  for(y=y0; y<y1; y++){
622  const uint8_t *obmc1= obmc_edged[y];
623  const IDWTELEM *pred1 = pred + y*obmc_stride;
624  uint8_t *cur1 = cur + y*ref_stride;
625  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
626  for(x=x0; x<x1; x++){
627 #if FRAC_BITS >= LOG2_OBMC_MAX
628  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
629 #else
630  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
631 #endif
632  v = (v + pred1[x]) >> FRAC_BITS;
633  if(v&(~255)) v= ~(v>>31);
634  dst1[x] = v;
635  }
636  }
637 
638  /* copy the regions where obmc[] = (uint8_t)256 */
639  if(LOG2_OBMC_MAX == 8
640  && (mb_x == 0 || mb_x == b_stride-1)
641  && (mb_y == 0 || mb_y == b_height-1)){
642  if(mb_x == 0)
643  x1 = block_w;
644  else
645  x0 = block_w;
646  if(mb_y == 0)
647  y1 = block_h;
648  else
649  y0 = block_h;
650  for(y=y0; y<y1; y++)
651  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
652  }
653 
654  if(block_w==16){
655  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
656  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
657  /* FIXME cmps overlap but do not cover the wavelet's whole support.
658  * So improving the score of one block is not strictly guaranteed
659  * to improve the score of the whole frame, thus iterative motion
660  * estimation does not always converge. */
661  if(s->avctx->me_cmp == FF_CMP_W97)
662  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
663  else if(s->avctx->me_cmp == FF_CMP_W53)
664  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
665  else{
666  distortion = 0;
667  for(i=0; i<4; i++){
668  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
669  distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
670  }
671  }
672  }else{
673  av_assert2(block_w==8);
674  distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
675  }
676 
677  if(plane_index==0){
678  for(i=0; i<4; i++){
679 /* ..RRr
680  * .RXx.
681  * rxx..
682  */
683  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
684  }
685  if(mb_x == b_stride-2)
686  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
687  }
688  return distortion + rate*penalty_factor;
689 }
690 
691 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
692  int i, y2;
693  Plane *p= &s->plane[plane_index];
694  const int block_size = MB_SIZE >> s->block_max_depth;
695  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
696  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
697  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
698  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
699  const int ref_stride= s->current_picture->linesize[plane_index];
700  uint8_t *dst= s->current_picture->data[plane_index];
701  uint8_t *src= s-> input_picture->data[plane_index];
702  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
703  // const has only been removed from zero_dst to suppress a warning
704  static IDWTELEM zero_dst[4096]; //FIXME
705  const int b_stride = s->b_width << s->block_max_depth;
706  const int w= p->width;
707  const int h= p->height;
708  int distortion= 0;
709  int rate= 0;
710  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
711 
712  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
713 
714  for(i=0; i<9; i++){
715  int mb_x2= mb_x + (i%3) - 1;
716  int mb_y2= mb_y + (i/3) - 1;
717  int x= block_w*mb_x2 + block_w/2;
718  int y= block_h*mb_y2 + block_h/2;
719 
720  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
721  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
722 
723  //FIXME find a cleaner/simpler way to skip the outside stuff
724  for(y2= y; y2<0; y2++)
725  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
726  for(y2= h; y2<y+block_h; y2++)
727  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
728  if(x<0){
729  for(y2= y; y2<y+block_h; y2++)
730  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
731  }
732  if(x+block_w > w){
733  for(y2= y; y2<y+block_h; y2++)
734  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
735  }
736 
737  av_assert1(block_w== 8 || block_w==16);
738  distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
739  }
740 
741  if(plane_index==0){
742  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
743  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
744 
745 /* ..RRRr
746  * .RXXx.
747  * .RXXx.
748  * rxxx.
749  */
750  if(merged)
751  rate = get_block_bits(s, mb_x, mb_y, 2);
752  for(i=merged?4:0; i<9; i++){
753  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
754  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
755  }
756  }
757  return distortion + rate*penalty_factor;
758 }
759 
760 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
761  const int w= b->width;
762  const int h= b->height;
763  int x, y;
764 
765  if(1){
766  int run=0;
767  int *runs = s->run_buffer;
768  int run_index=0;
769  int max_index;
770 
771  for(y=0; y<h; y++){
772  for(x=0; x<w; x++){
773  int v, p=0;
774  int /*ll=0, */l=0, lt=0, t=0, rt=0;
775  v= src[x + y*stride];
776 
777  if(y){
778  t= src[x + (y-1)*stride];
779  if(x){
780  lt= src[x - 1 + (y-1)*stride];
781  }
782  if(x + 1 < w){
783  rt= src[x + 1 + (y-1)*stride];
784  }
785  }
786  if(x){
787  l= src[x - 1 + y*stride];
788  /*if(x > 1){
789  if(orientation==1) ll= src[y + (x-2)*stride];
790  else ll= src[x - 2 + y*stride];
791  }*/
792  }
793  if(parent){
794  int px= x>>1;
795  int py= y>>1;
796  if(px<b->parent->width && py<b->parent->height)
797  p= parent[px + py*2*stride];
798  }
799  if(!(/*ll|*/l|lt|t|rt|p)){
800  if(v){
801  runs[run_index++]= run;
802  run=0;
803  }else{
804  run++;
805  }
806  }
807  }
808  }
809  max_index= run_index;
810  runs[run_index++]= run;
811  run_index=0;
812  run= runs[run_index++];
813 
814  put_symbol2(&s->c, b->state[30], max_index, 0);
815  if(run_index <= max_index)
816  put_symbol2(&s->c, b->state[1], run, 3);
817 
818  for(y=0; y<h; y++){
819  if(s->c.bytestream_end - s->c.bytestream < w*40){
820  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
821  return -1;
822  }
823  for(x=0; x<w; x++){
824  int v, p=0;
825  int /*ll=0, */l=0, lt=0, t=0, rt=0;
826  v= src[x + y*stride];
827 
828  if(y){
829  t= src[x + (y-1)*stride];
830  if(x){
831  lt= src[x - 1 + (y-1)*stride];
832  }
833  if(x + 1 < w){
834  rt= src[x + 1 + (y-1)*stride];
835  }
836  }
837  if(x){
838  l= src[x - 1 + y*stride];
839  /*if(x > 1){
840  if(orientation==1) ll= src[y + (x-2)*stride];
841  else ll= src[x - 2 + y*stride];
842  }*/
843  }
844  if(parent){
845  int px= x>>1;
846  int py= y>>1;
847  if(px<b->parent->width && py<b->parent->height)
848  p= parent[px + py*2*stride];
849  }
850  if(/*ll|*/l|lt|t|rt|p){
851  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
852 
853  put_rac(&s->c, &b->state[0][context], !!v);
854  }else{
855  if(!run){
856  run= runs[run_index++];
857 
858  if(run_index <= max_index)
859  put_symbol2(&s->c, b->state[1], run, 3);
860  av_assert2(v);
861  }else{
862  run--;
863  av_assert2(!v);
864  }
865  }
866  if(v){
867  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
868  int l2= 2*FFABS(l) + (l<0);
869  int t2= 2*FFABS(t) + (t<0);
870 
871  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
872  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
873  }
874  }
875  }
876  }
877  return 0;
878 }
879 
880 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
881 // encode_subband_qtree(s, b, src, parent, stride, orientation);
882 // encode_subband_z0run(s, b, src, parent, stride, orientation);
883  return encode_subband_c0run(s, b, src, parent, stride, orientation);
884 // encode_subband_dzr(s, b, src, parent, stride, orientation);
885 }
886 
887 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
888  const int b_stride= s->b_width << s->block_max_depth;
889  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
890  BlockNode backup= *block;
891  unsigned value;
892  int rd, index;
893 
894  av_assert2(mb_x>=0 && mb_y>=0);
895  av_assert2(mb_x<b_stride);
896 
897  if(intra){
898  block->color[0] = p[0];
899  block->color[1] = p[1];
900  block->color[2] = p[2];
901  block->type |= BLOCK_INTRA;
902  }else{
903  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
904  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
905  if(s->me_cache[index] == value)
906  return 0;
907  s->me_cache[index]= value;
908 
909  block->mx= p[0];
910  block->my= p[1];
911  block->type &= ~BLOCK_INTRA;
912  }
913 
914  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
915 
916 //FIXME chroma
917  if(rd < *best_rd){
918  *best_rd= rd;
919  return 1;
920  }else{
921  *block= backup;
922  return 0;
923  }
924 }
925 
926 /* special case for int[2] args we discard afterwards,
927  * fixes compilation problem with gcc 2.95 */
928 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
929  int p[2] = {p0, p1};
930  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
931 }
932 
933 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
934  const int b_stride= s->b_width << s->block_max_depth;
935  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
936  BlockNode backup[4];
937  unsigned value;
938  int rd, index;
939 
940  /* We don't initialize backup[] during variable declaration, because
941  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
942  * 'int16_t'". */
943  backup[0] = block[0];
944  backup[1] = block[1];
945  backup[2] = block[b_stride];
946  backup[3] = block[b_stride + 1];
947 
948  av_assert2(mb_x>=0 && mb_y>=0);
949  av_assert2(mb_x<b_stride);
950  av_assert2(((mb_x|mb_y)&1) == 0);
951 
952  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
953  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
954  if(s->me_cache[index] == value)
955  return 0;
956  s->me_cache[index]= value;
957 
958  block->mx= p0;
959  block->my= p1;
960  block->ref= ref;
961  block->type &= ~BLOCK_INTRA;
962  block[1]= block[b_stride]= block[b_stride+1]= *block;
963 
964  rd= get_4block_rd(s, mb_x, mb_y, 0);
965 
966 //FIXME chroma
967  if(rd < *best_rd){
968  *best_rd= rd;
969  return 1;
970  }else{
971  block[0]= backup[0];
972  block[1]= backup[1];
973  block[b_stride]= backup[2];
974  block[b_stride+1]= backup[3];
975  return 0;
976  }
977 }
978 
979 static void iterative_me(SnowContext *s){
980  int pass, mb_x, mb_y;
981  const int b_width = s->b_width << s->block_max_depth;
982  const int b_height= s->b_height << s->block_max_depth;
983  const int b_stride= b_width;
984  int color[3];
985 
986  {
987  RangeCoder r = s->c;
988  uint8_t state[sizeof(s->block_state)];
989  memcpy(state, s->block_state, sizeof(s->block_state));
990  for(mb_y= 0; mb_y<s->b_height; mb_y++)
991  for(mb_x= 0; mb_x<s->b_width; mb_x++)
992  encode_q_branch(s, 0, mb_x, mb_y);
993  s->c = r;
994  memcpy(s->block_state, state, sizeof(s->block_state));
995  }
996 
997  for(pass=0; pass<25; pass++){
998  int change= 0;
999 
1000  for(mb_y= 0; mb_y<b_height; mb_y++){
1001  for(mb_x= 0; mb_x<b_width; mb_x++){
1002  int dia_change, i, j, ref;
1003  int best_rd= INT_MAX, ref_rd;
1004  BlockNode backup, ref_b;
1005  const int index= mb_x + mb_y * b_stride;
1006  BlockNode *block= &s->block[index];
1007  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1008  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1009  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1010  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1011  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1012  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1013  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1014  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1015  const int b_w= (MB_SIZE >> s->block_max_depth);
1016  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1017 
1018  if(pass && (block->type & BLOCK_OPT))
1019  continue;
1020  block->type |= BLOCK_OPT;
1021 
1022  backup= *block;
1023 
1024  if(!s->me_cache_generation)
1025  memset(s->me_cache, 0, sizeof(s->me_cache));
1026  s->me_cache_generation += 1<<22;
1027 
1028  //FIXME precalculate
1029  {
1030  int x, y;
1031  for (y = 0; y < b_w * 2; y++)
1032  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1033  if(mb_x==0)
1034  for(y=0; y<b_w*2; y++)
1035  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1036  if(mb_x==b_stride-1)
1037  for(y=0; y<b_w*2; y++)
1038  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1039  if(mb_y==0){
1040  for(x=0; x<b_w*2; x++)
1041  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1042  for(y=1; y<b_w; y++)
1043  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1044  }
1045  if(mb_y==b_height-1){
1046  for(x=0; x<b_w*2; x++)
1047  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1048  for(y=b_w; y<b_w*2-1; y++)
1049  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1050  }
1051  }
1052 
1053  //skip stuff outside the picture
1054  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1055  uint8_t *src= s-> input_picture->data[0];
1056  uint8_t *dst= s->current_picture->data[0];
1057  const int stride= s->current_picture->linesize[0];
1058  const int block_w= MB_SIZE >> s->block_max_depth;
1059  const int block_h= MB_SIZE >> s->block_max_depth;
1060  const int sx= block_w*mb_x - block_w/2;
1061  const int sy= block_h*mb_y - block_h/2;
1062  const int w= s->plane[0].width;
1063  const int h= s->plane[0].height;
1064  int y;
1065 
1066  for(y=sy; y<0; y++)
1067  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1068  for(y=h; y<sy+block_h*2; y++)
1069  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1070  if(sx<0){
1071  for(y=sy; y<sy+block_h*2; y++)
1072  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1073  }
1074  if(sx+block_w*2 > w){
1075  for(y=sy; y<sy+block_h*2; y++)
1076  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1077  }
1078  }
1079 
1080  // intra(black) = neighbors' contribution to the current block
1081  for(i=0; i < s->nb_planes; i++)
1082  color[i]= get_dc(s, mb_x, mb_y, i);
1083 
1084  // get previous score (cannot be cached due to OBMC)
1085  if(pass > 0 && (block->type&BLOCK_INTRA)){
1086  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1087  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1088  }else
1089  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1090 
1091  ref_b= *block;
1092  ref_rd= best_rd;
1093  for(ref=0; ref < s->ref_frames; ref++){
1094  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1095  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1096  continue;
1097  block->ref= ref;
1098  best_rd= INT_MAX;
1099 
1100  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1101  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1102  if(tb)
1103  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1104  if(lb)
1105  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1106  if(rb)
1107  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1108  if(bb)
1109  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1110 
1111  /* fullpel ME */
1112  //FIXME avoid subpel interpolation / round to nearest integer
1113  do{
1114  int newx = block->mx;
1115  int newy = block->my;
1116  dia_change=0;
1117  for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
1118  for(j=0; j<i; j++){
1119  dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
1120  dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
1121  dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
1122  dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
1123  }
1124  }
1125  }while(dia_change);
1126  /* subpel ME */
1127  do{
1128  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1129  dia_change=0;
1130  for(i=0; i<8; i++)
1131  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1132  }while(dia_change);
1133  //FIXME or try the standard 2 pass qpel or similar
1134 
1135  mvr[0][0]= block->mx;
1136  mvr[0][1]= block->my;
1137  if(ref_rd > best_rd){
1138  ref_rd= best_rd;
1139  ref_b= *block;
1140  }
1141  }
1142  best_rd= ref_rd;
1143  *block= ref_b;
1144  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1145  //FIXME RD style color selection
1146  if(!same_block(block, &backup)){
1147  if(tb ) tb ->type &= ~BLOCK_OPT;
1148  if(lb ) lb ->type &= ~BLOCK_OPT;
1149  if(rb ) rb ->type &= ~BLOCK_OPT;
1150  if(bb ) bb ->type &= ~BLOCK_OPT;
1151  if(tlb) tlb->type &= ~BLOCK_OPT;
1152  if(trb) trb->type &= ~BLOCK_OPT;
1153  if(blb) blb->type &= ~BLOCK_OPT;
1154  if(brb) brb->type &= ~BLOCK_OPT;
1155  change ++;
1156  }
1157  }
1158  }
1159  av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
1160  if(!change)
1161  break;
1162  }
1163 
1164  if(s->block_max_depth == 1){
1165  int change= 0;
1166  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1167  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1168  int i;
1169  int best_rd, init_rd;
1170  const int index= mb_x + mb_y * b_stride;
1171  BlockNode *b[4];
1172 
1173  b[0]= &s->block[index];
1174  b[1]= b[0]+1;
1175  b[2]= b[0]+b_stride;
1176  b[3]= b[2]+1;
1177  if(same_block(b[0], b[1]) &&
1178  same_block(b[0], b[2]) &&
1179  same_block(b[0], b[3]))
1180  continue;
1181 
1182  if(!s->me_cache_generation)
1183  memset(s->me_cache, 0, sizeof(s->me_cache));
1184  s->me_cache_generation += 1<<22;
1185 
1186  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1187 
1188  //FIXME more multiref search?
1189  check_4block_inter(s, mb_x, mb_y,
1190  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1191  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1192 
1193  for(i=0; i<4; i++)
1194  if(!(b[i]->type&BLOCK_INTRA))
1195  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1196 
1197  if(init_rd != best_rd)
1198  change++;
1199  }
1200  }
1201  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1202  }
1203 }
1204 
1205 static void encode_blocks(SnowContext *s, int search){
1206  int x, y;
1207  int w= s->b_width;
1208  int h= s->b_height;
1209 
1210  if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
1211  iterative_me(s);
1212 
1213  for(y=0; y<h; y++){
1214  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1215  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1216  return;
1217  }
1218  for(x=0; x<w; x++){
1219  if(s->avctx->me_method == ME_ITER || !search)
1220  encode_q_branch2(s, 0, x, y);
1221  else
1222  encode_q_branch (s, 0, x, y);
1223  }
1224  }
1225 }
1226 
1227 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1228  const int w= b->width;
1229  const int h= b->height;
1230  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1231  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1232  int x,y, thres1, thres2;
1233 
1234  if(s->qlog == LOSSLESS_QLOG){
1235  for(y=0; y<h; y++)
1236  for(x=0; x<w; x++)
1237  dst[x + y*stride]= src[x + y*stride];
1238  return;
1239  }
1240 
1241  bias= bias ? 0 : (3*qmul)>>3;
1242  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1243  thres2= 2*thres1;
1244 
1245  if(!bias){
1246  for(y=0; y<h; y++){
1247  for(x=0; x<w; x++){
1248  int i= src[x + y*stride];
1249 
1250  if((unsigned)(i+thres1) > thres2){
1251  if(i>=0){
1252  i<<= QEXPSHIFT;
1253  i/= qmul; //FIXME optimize
1254  dst[x + y*stride]= i;
1255  }else{
1256  i= -i;
1257  i<<= QEXPSHIFT;
1258  i/= qmul; //FIXME optimize
1259  dst[x + y*stride]= -i;
1260  }
1261  }else
1262  dst[x + y*stride]= 0;
1263  }
1264  }
1265  }else{
1266  for(y=0; y<h; y++){
1267  for(x=0; x<w; x++){
1268  int i= src[x + y*stride];
1269 
1270  if((unsigned)(i+thres1) > thres2){
1271  if(i>=0){
1272  i<<= QEXPSHIFT;
1273  i= (i + bias) / qmul; //FIXME optimize
1274  dst[x + y*stride]= i;
1275  }else{
1276  i= -i;
1277  i<<= QEXPSHIFT;
1278  i= (i + bias) / qmul; //FIXME optimize
1279  dst[x + y*stride]= -i;
1280  }
1281  }else
1282  dst[x + y*stride]= 0;
1283  }
1284  }
1285  }
1286 }
1287 
1288 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1289  const int w= b->width;
1290  const int h= b->height;
1291  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1292  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1293  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1294  int x,y;
1295 
1296  if(s->qlog == LOSSLESS_QLOG) return;
1297 
1298  for(y=0; y<h; y++){
1299  for(x=0; x<w; x++){
1300  int i= src[x + y*stride];
1301  if(i<0){
1302  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1303  }else if(i>0){
1304  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1305  }
1306  }
1307  }
1308 }
1309 
1310 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1311  const int w= b->width;
1312  const int h= b->height;
1313  int x,y;
1314 
1315  for(y=h-1; y>=0; y--){
1316  for(x=w-1; x>=0; x--){
1317  int i= x + y*stride;
1318 
1319  if(x){
1320  if(use_median){
1321  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1322  else src[i] -= src[i - 1];
1323  }else{
1324  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1325  else src[i] -= src[i - 1];
1326  }
1327  }else{
1328  if(y) src[i] -= src[i - stride];
1329  }
1330  }
1331  }
1332 }
1333 
1334 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1335  const int w= b->width;
1336  const int h= b->height;
1337  int x,y;
1338 
1339  for(y=0; y<h; y++){
1340  for(x=0; x<w; x++){
1341  int i= x + y*stride;
1342 
1343  if(x){
1344  if(use_median){
1345  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1346  else src[i] += src[i - 1];
1347  }else{
1348  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1349  else src[i] += src[i - 1];
1350  }
1351  }else{
1352  if(y) src[i] += src[i - stride];
1353  }
1354  }
1355  }
1356 }
1357 
1358 static void encode_qlogs(SnowContext *s){
1359  int plane_index, level, orientation;
1360 
1361  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1362  for(level=0; level<s->spatial_decomposition_count; level++){
1363  for(orientation=level ? 1:0; orientation<4; orientation++){
1364  if(orientation==2) continue;
1365  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1366  }
1367  }
1368  }
1369 }
1370 
1371 static void encode_header(SnowContext *s){
1372  int plane_index, i;
1373  uint8_t kstate[32];
1374 
1375  memset(kstate, MID_STATE, sizeof(kstate));
1376 
1377  put_rac(&s->c, kstate, s->keyframe);
1378  if(s->keyframe || s->always_reset){
1381  s->last_qlog=
1382  s->last_qbias=
1383  s->last_mv_scale=
1384  s->last_block_max_depth= 0;
1385  for(plane_index=0; plane_index<2; plane_index++){
1386  Plane *p= &s->plane[plane_index];
1387  p->last_htaps=0;
1388  p->last_diag_mc=0;
1389  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1390  }
1391  }
1392  if(s->keyframe){
1393  put_symbol(&s->c, s->header_state, s->version, 0);
1394  put_rac(&s->c, s->header_state, s->always_reset);
1398  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1399  if (s->nb_planes > 2) {
1400  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1401  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1402  }
1404 // put_rac(&s->c, s->header_state, s->rate_scalability);
1405  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1406 
1407  encode_qlogs(s);
1408  }
1409 
1410  if(!s->keyframe){
1411  int update_mc=0;
1412  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1413  Plane *p= &s->plane[plane_index];
1414  update_mc |= p->last_htaps != p->htaps;
1415  update_mc |= p->last_diag_mc != p->diag_mc;
1416  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1417  }
1418  put_rac(&s->c, s->header_state, update_mc);
1419  if(update_mc){
1420  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1421  Plane *p= &s->plane[plane_index];
1422  put_rac(&s->c, s->header_state, p->diag_mc);
1423  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1424  for(i= p->htaps/2; i; i--)
1425  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1426  }
1427  }
1429  put_rac(&s->c, s->header_state, 1);
1431  encode_qlogs(s);
1432  }else
1433  put_rac(&s->c, s->header_state, 0);
1434  }
1435 
1437  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1438  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1439  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1441 
1442 }
1443 
1445  int plane_index;
1446 
1447  if(!s->keyframe){
1448  for(plane_index=0; plane_index<2; plane_index++){
1449  Plane *p= &s->plane[plane_index];
1450  p->last_diag_mc= p->diag_mc;
1451  p->last_htaps = p->htaps;
1452  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1453  }
1454  }
1455 
1457  s->last_qlog = s->qlog;
1458  s->last_qbias = s->qbias;
1459  s->last_mv_scale = s->mv_scale;
1462 }
1463 
1464 static int qscale2qlog(int qscale){
1465  return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1466  + 61*QROOT/8; ///< 64 > 60
1467 }
1468 
1470 {
1471  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1472  * FIXME we know exact mv bits at this point,
1473  * but ratecontrol isn't set up to include them. */
1474  uint32_t coef_sum= 0;
1475  int level, orientation, delta_qlog;
1476 
1477  for(level=0; level<s->spatial_decomposition_count; level++){
1478  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1479  SubBand *b= &s->plane[0].band[level][orientation];
1480  IDWTELEM *buf= b->ibuf;
1481  const int w= b->width;
1482  const int h= b->height;
1483  const int stride= b->stride;
1484  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1485  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1486  const int qdiv= (1<<16)/qmul;
1487  int x, y;
1488  //FIXME this is ugly
1489  for(y=0; y<h; y++)
1490  for(x=0; x<w; x++)
1491  buf[x+y*stride]= b->buf[x+y*stride];
1492  if(orientation==0)
1493  decorrelate(s, b, buf, stride, 1, 0);
1494  for(y=0; y<h; y++)
1495  for(x=0; x<w; x++)
1496  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1497  }
1498  }
1499 
1500  /* ugly, ratecontrol just takes a sqrt again */
1501  av_assert0(coef_sum < INT_MAX);
1502  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1503 
1504  if(pict->pict_type == AV_PICTURE_TYPE_I){
1505  s->m.current_picture.mb_var_sum= coef_sum;
1507  }else{
1508  s->m.current_picture.mc_mb_var_sum= coef_sum;
1510  }
1511 
1512  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1513  if (pict->quality < 0)
1514  return INT_MIN;
1515  s->lambda= pict->quality * 3/2;
1516  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1517  s->qlog+= delta_qlog;
1518  return delta_qlog;
1519 }
1520 
1522  int width = p->width;
1523  int height= p->height;
1524  int level, orientation, x, y;
1525 
1526  for(level=0; level<s->spatial_decomposition_count; level++){
1527  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1528  SubBand *b= &p->band[level][orientation];
1529  IDWTELEM *ibuf= b->ibuf;
1530  int64_t error=0;
1531 
1532  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1533  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1535  for(y=0; y<height; y++){
1536  for(x=0; x<width; x++){
1537  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1538  error += d*d;
1539  }
1540  }
1541 
1542  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1543  }
1544  }
1545 }
1546 
1548  const AVFrame *pict, int *got_packet)
1549 {
1550  SnowContext *s = avctx->priv_data;
1551  RangeCoder * const c= &s->c;
1552  AVFrame *pic = pict;
1553  const int width= s->avctx->width;
1554  const int height= s->avctx->height;
1555  int level, orientation, plane_index, i, y, ret;
1556  uint8_t rc_header_bak[sizeof(s->header_state)];
1557  uint8_t rc_block_bak[sizeof(s->block_state)];
1558 
1559  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + FF_MIN_BUFFER_SIZE)) < 0)
1560  return ret;
1561 
1562  ff_init_range_encoder(c, pkt->data, pkt->size);
1563  ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1564 
1565  for(i=0; i < s->nb_planes; i++){
1566  int hshift= i ? s->chroma_h_shift : 0;
1567  int vshift= i ? s->chroma_v_shift : 0;
1568  for(y=0; y<FF_CEIL_RSHIFT(height, vshift); y++)
1569  memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1570  &pict->data[i][y * pict->linesize[i]],
1571  FF_CEIL_RSHIFT(width, hshift));
1573  FF_CEIL_RSHIFT(width, hshift), FF_CEIL_RSHIFT(height, vshift),
1574  EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1575  EDGE_TOP | EDGE_BOTTOM);
1576 
1577  }
1578  emms_c();
1579  s->new_picture = pict;
1580 
1581  s->m.picture_number= avctx->frame_number;
1582  if(avctx->flags&CODEC_FLAG_PASS2){
1584  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1585  if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
1586  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1587  if (pic->quality < 0)
1588  return -1;
1589  }
1590  }else{
1591  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1593  }
1594 
1595  if(s->pass1_rc && avctx->frame_number == 0)
1596  pic->quality = 2*FF_QP2LAMBDA;
1597  if (pic->quality) {
1598  s->qlog = qscale2qlog(pic->quality);
1599  s->lambda = pic->quality * 3/2;
1600  }
1601  if (s->qlog < 0 || (!pic->quality && (avctx->flags & CODEC_FLAG_QSCALE))) {
1602  s->qlog= LOSSLESS_QLOG;
1603  s->lambda = 0;
1604  }//else keep previous frame's qlog until after motion estimation
1605 
1606  if (s->current_picture->data[0] && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)) {
1607  int w = s->avctx->width;
1608  int h = s->avctx->height;
1609 
1611  s->current_picture->linesize[0], w , h ,
1613  if (s->current_picture->data[2]) {
1620  }
1621  }
1622 
1624  av_frame_unref(avctx->coded_frame);
1625  ret = av_frame_ref(avctx->coded_frame, s->current_picture);
1626  if (ret < 0)
1627  return ret;
1628 
1631  s->m.current_picture.f->pts = pict->pts;
1632  if(pic->pict_type == AV_PICTURE_TYPE_P){
1633  int block_width = (width +15)>>4;
1634  int block_height= (height+15)>>4;
1635  int stride= s->current_picture->linesize[0];
1636 
1638  av_assert0(s->last_picture[0]->data[0]);
1639 
1640  s->m.avctx= s->avctx;
1641  s->m. last_picture.f = s->last_picture[0];
1642  s->m. new_picture.f = s->input_picture;
1643  s->m. last_picture_ptr= &s->m. last_picture;
1644  s->m.linesize = stride;
1645  s->m.uvlinesize= s->current_picture->linesize[1];
1646  s->m.width = width;
1647  s->m.height= height;
1648  s->m.mb_width = block_width;
1649  s->m.mb_height= block_height;
1650  s->m.mb_stride= s->m.mb_width+1;
1651  s->m.b8_stride= 2*s->m.mb_width+1;
1652  s->m.f_code=1;
1653  s->m.pict_type = pic->pict_type;
1654  s->m.me_method= s->avctx->me_method;
1655  s->m.me.scene_change_score=0;
1656  s->m.me.dia_size = avctx->dia_size;
1657  s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
1658  s->m.out_format= FMT_H263;
1659  s->m.unrestricted_mv= 1;
1660 
1661  s->m.lambda = s->lambda;
1662  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1663  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1664 
1665  s->m.mecc= s->mecc; //move
1666  s->m.qdsp= s->qdsp; //move
1667  s->m.hdsp = s->hdsp;
1668  ff_init_me(&s->m);
1669  s->hdsp = s->m.hdsp;
1670  s->mecc= s->m.mecc;
1671  }
1672 
1673  if(s->pass1_rc){
1674  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1675  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1676  }
1677 
1678 redo_frame:
1679 
1681 
1682  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1683  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1685 
1686  if (s->spatial_decomposition_count <= 0) {
1687  av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1688  return AVERROR(EINVAL);
1689  }
1690 
1691  s->m.pict_type = pic->pict_type;
1692  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1693 
1695 
1697  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1698  calculate_visual_weight(s, &s->plane[plane_index]);
1699  }
1700  }
1701 
1702  encode_header(s);
1703  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1704  encode_blocks(s, 1);
1705  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1706 
1707  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1708  Plane *p= &s->plane[plane_index];
1709  int w= p->width;
1710  int h= p->height;
1711  int x, y;
1712 // int bits= put_bits_count(&s->c.pb);
1713 
1714  if (!s->memc_only) {
1715  //FIXME optimize
1716  if(pict->data[plane_index]) //FIXME gray hack
1717  for(y=0; y<h; y++){
1718  for(x=0; x<w; x++){
1719  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1720  }
1721  }
1722  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1723 
1724  if( plane_index==0
1725  && pic->pict_type == AV_PICTURE_TYPE_P
1726  && !(avctx->flags&CODEC_FLAG_PASS2)
1728  ff_init_range_encoder(c, pkt->data, pkt->size);
1729  ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1731  s->keyframe=1;
1732  s->current_picture->key_frame=1;
1733  goto redo_frame;
1734  }
1735 
1736  if(s->qlog == LOSSLESS_QLOG){
1737  for(y=0; y<h; y++){
1738  for(x=0; x<w; x++){
1739  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1740  }
1741  }
1742  }else{
1743  for(y=0; y<h; y++){
1744  for(x=0; x<w; x++){
1746  }
1747  }
1748  }
1749 
1751 
1752  if(s->pass1_rc && plane_index==0){
1753  int delta_qlog = ratecontrol_1pass(s, pic);
1754  if (delta_qlog <= INT_MIN)
1755  return -1;
1756  if(delta_qlog){
1757  //reordering qlog in the bitstream would eliminate this reset
1758  ff_init_range_encoder(c, pkt->data, pkt->size);
1759  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1760  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1761  encode_header(s);
1762  encode_blocks(s, 0);
1763  }
1764  }
1765 
1766  for(level=0; level<s->spatial_decomposition_count; level++){
1767  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1768  SubBand *b= &p->band[level][orientation];
1769 
1770  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1771  if(orientation==0)
1772  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1773  if (!s->no_bitstream)
1774  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1775  av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1776  if(orientation==0)
1777  correlate(s, b, b->ibuf, b->stride, 1, 0);
1778  }
1779  }
1780 
1781  for(level=0; level<s->spatial_decomposition_count; level++){
1782  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1783  SubBand *b= &p->band[level][orientation];
1784 
1785  dequantize(s, b, b->ibuf, b->stride);
1786  }
1787  }
1788 
1790  if(s->qlog == LOSSLESS_QLOG){
1791  for(y=0; y<h; y++){
1792  for(x=0; x<w; x++){
1793  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1794  }
1795  }
1796  }
1797  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1798  }else{
1799  //ME/MC only
1800  if(pic->pict_type == AV_PICTURE_TYPE_I){
1801  for(y=0; y<h; y++){
1802  for(x=0; x<w; x++){
1803  s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1804  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1805  }
1806  }
1807  }else{
1808  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1809  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1810  }
1811  }
1812  if(s->avctx->flags&CODEC_FLAG_PSNR){
1813  int64_t error= 0;
1814 
1815  if(pict->data[plane_index]) //FIXME gray hack
1816  for(y=0; y<h; y++){
1817  for(x=0; x<w; x++){
1818  int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1819  error += d*d;
1820  }
1821  }
1822  s->avctx->error[plane_index] += error;
1823  s->current_picture->error[plane_index] = error;
1824  }
1825 
1826  }
1827 
1829 
1830  ff_snow_release_buffer(avctx);
1831 
1833  s->current_picture->pict_type = pict->pict_type;
1834  s->current_picture->quality = pict->quality;
1835  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1836  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1839  s->m.current_picture.f->quality = pic->quality;
1840  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1841  if(s->pass1_rc)
1842  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1843  return -1;
1844  if(avctx->flags&CODEC_FLAG_PASS1)
1845  ff_write_pass1_stats(&s->m);
1846  s->m.last_pict_type = s->m.pict_type;
1847  avctx->frame_bits = s->m.frame_bits;
1848  avctx->mv_bits = s->m.mv_bits;
1849  avctx->misc_bits = s->m.misc_bits;
1850  avctx->p_tex_bits = s->m.p_tex_bits;
1851 
1852  emms_c();
1853 
1854  pkt->size = ff_rac_terminate(c);
1855  if (avctx->coded_frame->key_frame)
1856  pkt->flags |= AV_PKT_FLAG_KEY;
1857  *got_packet = 1;
1858 
1859  return 0;
1860 }
1861 
1863 {
1864  SnowContext *s = avctx->priv_data;
1865 
1866  ff_snow_common_end(s);
1869  av_frame_free(&avctx->coded_frame);
1870  av_freep(&avctx->stats_out);
1871 
1872  return 0;
1873 }
1874 
1875 #define OFFSET(x) offsetof(SnowContext, x)
1876 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1877 static const AVOption options[] = {
1879  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1880  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1881  { "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1882  { NULL },
1883 };
1884 
1885 static const AVClass snowenc_class = {
1886  .class_name = "snow encoder",
1887  .item_name = av_default_item_name,
1888  .option = options,
1889  .version = LIBAVUTIL_VERSION_INT,
1890 };
1891 
1893  .name = "snow",
1894  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1895  .type = AVMEDIA_TYPE_VIDEO,
1896  .id = AV_CODEC_ID_SNOW,
1897  .priv_data_size = sizeof(SnowContext),
1898  .init = encode_init,
1899  .encode2 = encode_frame,
1900  .close = encode_end,
1901  .pix_fmts = (const enum AVPixelFormat[]){
1905  },
1906  .priv_class = &snowenc_class,
1907  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1909 };
1910 
1911 
1912 #ifdef TEST
1913 #undef malloc
1914 #undef free
1915 #undef printf
1916 
1917 #include "libavutil/lfg.h"
1918 #include "libavutil/mathematics.h"
1919 
1920 int main(void){
1921 #define width 256
1922 #define height 256
1923  int buffer[2][width*height];
1924  SnowContext s;
1925  int i;
1926  AVLFG prng;
1929 
1932 
1933  if (!s.temp_dwt_buffer || !s.temp_idwt_buffer) {
1934  fprintf(stderr, "Failed to allocate memory\n");
1935  return 1;
1936  }
1937 
1938  av_lfg_init(&prng, 1);
1939 
1940  printf("testing 5/3 DWT\n");
1941  for(i=0; i<width*height; i++)
1942  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1943 
1946 
1947  for(i=0; i<width*height; i++)
1948  if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1949 
1950  printf("testing 9/7 DWT\n");
1952  for(i=0; i<width*height; i++)
1953  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1954 
1957 
1958  for(i=0; i<width*height; i++)
1959  if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1960 
1961  {
1962  int level, orientation, x, y;
1963  int64_t errors[8][4];
1964  int64_t g=0;
1965 
1966  memset(errors, 0, sizeof(errors));
1969  for(level=0; level<s.spatial_decomposition_count; level++){
1970  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1971  int w= width >> (s.spatial_decomposition_count-level);
1972  int h= height >> (s.spatial_decomposition_count-level);
1973  int stride= width << (s.spatial_decomposition_count-level);
1974  DWTELEM *buf= buffer[0];
1975  int64_t error=0;
1976 
1977  if(orientation&1) buf+=w;
1978  if(orientation>1) buf+=stride>>1;
1979 
1980  memset(buffer[0], 0, sizeof(int)*width*height);
1981  buf[w/2 + h/2*stride]= 256*256;
1983  for(y=0; y<height; y++){
1984  for(x=0; x<width; x++){
1985  int64_t d= buffer[0][x + y*width];
1986  error += d*d;
1987  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
1988  }
1989  if(FFABS(height/2-y)<9 && level==2) printf("\n");
1990  }
1991  error= (int)(sqrt(error)+0.5);
1992  errors[level][orientation]= error;
1993  if(g) g=av_gcd(g, error);
1994  else g= error;
1995  }
1996  }
1997  printf("static int const visual_weight[][4]={\n");
1998  for(level=0; level<s.spatial_decomposition_count; level++){
1999  printf(" {");
2000  for(orientation=0; orientation<4; orientation++){
2001  printf("%8"PRId64",", errors[level][orientation]/g);
2002  }
2003  printf("},\n");
2004  }
2005  printf("};\n");
2006  {
2007  int level=2;
2008  int w= width >> (s.spatial_decomposition_count-level);
2009  //int h= height >> (s.spatial_decomposition_count-level);
2010  int stride= width << (s.spatial_decomposition_count-level);
2011  DWTELEM *buf= buffer[0];
2012  int64_t error=0;
2013 
2014  buf+=w;
2015  buf+=stride>>1;
2016 
2017  memset(buffer[0], 0, sizeof(int)*width*height);
2018  for(y=0; y<height; y++){
2019  for(x=0; x<width; x++){
2020  int tab[4]={0,2,3,1};
2021  buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2022  }
2023  }
2025  for(y=0; y<height; y++){
2026  for(x=0; x<width; x++){
2027  int64_t d= buffer[0][x + y*width];
2028  error += d*d;
2029  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2030  }
2031  if(FFABS(height/2-y)<9) printf("\n");
2032  }
2033  }
2034 
2035  }
2036  return 0;
2037 }
2038 #endif /* TEST */
int last_block_max_depth
Definition: snow.h:168
uint8_t * scratchpad
data area for the ME algo, so that the ME does not need to malloc/free.
Definition: motion_est.h:42
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
static const AVClass snowenc_class
Definition: snowenc.c:1885
Definition: lfg.h:25
int version
Definition: snow.h:135
static av_cold int encode_end(AVCodecContext *avctx)
Definition: snowenc.c:1862
MpegEncContext m
Definition: snow.h:180
int frame_bits
bits used for the current frame
Definition: mpegvideo.h:404
int mv_scale
Definition: snow.h:160
#define NULL
Definition: coverity.c:32
RateControlContext rc_context
contains stuff only accessed in ratecontrol.c
Definition: mpegvideo.h:407
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1736
static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add)
Definition: snow.h:473
int ff_snow_frame_start(SnowContext *s)
Definition: snow.c:655
av_cold void ff_rate_control_uninit(MpegEncContext *s)
Definition: ratecontrol.c:303
#define QSHIFT
Definition: snow.h:42
float v
#define P_MEDIAN
Definition: snowenc.c:206
int picture_number
Definition: mpegvideo.h:196
const char * s
Definition: avisynth_c.h:631
#define P
#define P_TOPRIGHT
Definition: snowenc.c:205
AVCodecContext * avctx
Definition: snow.h:115
int block_max_depth
Definition: snow.h:167
int last_spatial_decomposition_count
Definition: snow.h:140
static int shift(int a, int b)
Definition: sonic.c:82
int chroma_v_shift
Definition: snow.h:153
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
int skip
set if ME is skipped for the current MB
Definition: motion_est.h:39
static double rint(double x)
Definition: libm.h:141
AVOption.
Definition: opt.h:255
int pass1_rc
Definition: snow.h:159
uint64_t error[AV_NUM_DATA_POINTERS]
error
Definition: avcodec.h:2663
#define CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:737
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:68
#define FF_CMP_NSSE
Definition: avcodec.h:1659
RateControlEntry * entry
Definition: ratecontrol.h:65
int * run_buffer
Definition: snow.h:150
#define LIBAVUTIL_VERSION_INT
Definition: version.h:62
#define P_LEFT
Definition: snowenc.c:203
const char * g
Definition: vf_curves.c:108
#define CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:736
void ff_h263_encode_init(MpegEncContext *s)
Definition: ituh263enc.c:761
int ff_epzs_motion_search(struct MpegEncContext *s, int *mx_ptr, int *my_ptr, int P[10][2], int src_index, int ref_index, int16_t(*last_mv)[2], int ref_mv_scale, int size, int h)
AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:2745
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int always_reset
Definition: snow.h:134
#define MAX_MV
Definition: motion_est.h:32
int no_bitstream
Definition: snow.h:177
uint8_t * current_mv_penalty
Definition: motion_est.h:84
#define BLOCK_INTRA
Definition: snow.h:57
#define FF_MPV_COMMON_OPTS
Definition: mpegvideo.h:630
Range coder.
uint8_t * bytestream_end
Definition: rangecoder.h:44
int size
Definition: avcodec.h:1163
const char * b
Definition: vf_curves.c:109
#define FF_CMP_SSE
Definition: avcodec.h:1650
int sub_penalty_factor
Definition: motion_est.h:57
const AVFrame * new_picture
Definition: snow.h:124
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1444
int max_ref_frames
Definition: snow.h:142
uint32_t * score_map
map to store the scores
Definition: motion_est.h:49
mpegvideo header.
int8_t last_hcoeff[HTAPS_MAX/2]
Definition: snow.h:109
int scene_change_score
Definition: motion_est.h:77
int ff_snow_common_init_after_header(AVCodecContext *avctx)
Definition: snow.c:514
static void update_last_header_values(SnowContext *s)
Definition: snowenc.c:1444
int keyframe
Definition: snow.h:133
uint8_t run
Definition: svq3.c:149
static AVPacket pkt
#define EDGE_TOP
#define FF_LAMBDA_SHIFT
Definition: avutil.h:218
QpelDSPContext qdsp
Definition: mpegvideo.h:304
AVCodec.
Definition: avcodec.h:3181
int qscale
QP.
Definition: mpegvideo.h:273
void ff_snow_reset_contexts(SnowContext *s)
Definition: snow.c:96
static void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type)
Definition: snow.h:480
short IDWTELEM
Definition: dirac_dwt.h:27
#define FF_CMP_RD
Definition: avcodec.h:1655
HpelDSPContext hdsp
Definition: snow.h:118
#define CODEC_FLAG_QPEL
Use qpel MC.
Definition: avcodec.h:715
int scenechange_threshold
scene change detection threshold 0 is default, larger means fewer detected scene changes.
Definition: avcodec.h:1802
uint32_t ff_square_tab[512]
Definition: me_cmp.c:32
AVCodec ff_snow_encoder
Definition: snowenc.c:1892
#define log2(x)
Definition: libm.h:122
MECmpContext mecc
Definition: snow.h:117
static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)
Definition: snowenc.c:760
#define OFFSET(x)
Definition: snowenc.c:1875
int qlog
log(qscale)/log[2^(1/6)]
Definition: snow.h:87
int ff_rac_terminate(RangeCoder *c)
Definition: rangecoder.c:103
Definition: snow.h:50
int width
Definition: diracdec.c:100
static int get_penalty_factor(int lambda, int lambda2, int type)
Definition: snowenc.c:178
#define CODEC_FLAG_PSNR
error[?] variables will be set during encoding.
Definition: avcodec.h:746
uint8_t level
Definition: snow.h:60
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
uint8_t ref
Definition: snow.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:96
#define FF_CMP_W53
Definition: avcodec.h:1660
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
int b_height
Definition: snow.h:166
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: snowenc.c:1547
ScratchpadContext sc
Definition: mpegvideo.h:271
uint8_t
int16_t mx
Definition: snow.h:51
#define av_cold
Definition: attributes.h:74
#define FRAC_BITS
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:135
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:228
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
static float search(FOCContext *foc, int pass, int maxpass, int xmin, int xmax, int ymin, int ymax, int *best_x, int *best_y, float best_score)
Definition: vf_find_rect.c:162
AVOptions.
enum OutputFormat out_format
output format
Definition: mpegvideo.h:173
uint32_t * ref_scores[MAX_REF_FRAMES]
Definition: snow.h:145
int ff_get_mb_score(struct MpegEncContext *s, int mx, int my, int src_index, int ref_index, int size, int h, int add_rate)
Motion estimation context.
Definition: motion_est.h:37
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:363
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:257
int misc_bits
cbp, mb_type
Definition: mpegvideo.h:418
int me_cmp
motion estimation comparison function
Definition: avcodec.h:1630
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:249
#define ENCODER_EXTRA_BITS
Definition: snow.h:74
static void calculate_visual_weight(SnowContext *s, Plane *p)
Definition: snowenc.c:1521
int16_t my
Definition: snow.h:52
uint8_t * data
Definition: avcodec.h:1162
uint8_t(* mv_penalty)[MAX_MV *2+1]
bit amount needed to encode a MV
Definition: motion_est.h:83
int ff_w97_32_c(struct MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t line_size, int h)
Definition: snow_dwt.c:837
static const BlockNode null_block
Definition: snow.h:63
static void encode_blocks(SnowContext *s, int search)
Definition: snowenc.c:1205
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:198
ptrdiff_t size
Definition: opengl_enc.c:101
void ff_snow_release_buffer(AVCodecContext *avctx)
Definition: snow.c:640
#define QEXPSHIFT
Definition: snow.h:525
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:2494
static void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2)
Definition: snow.h:578
#define av_log(a,...)
#define ff_sqrt
Definition: mathops.h:215
#define ROUNDED_DIV(a, b)
Definition: common.h:55
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1208
#define DWT_97
Definition: snow_dwt.h:66
BlockNode * block
Definition: snow.h:171
MpegvideoEncDSPContext mpvencdsp
Definition: snow.h:122
int last_diag_mc
Definition: snow.h:110
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int16_t(*[MAX_REF_FRAMES] ref_mvs)[2]
Definition: snow.h:144
#define MB_SIZE
Definition: cinepakenc.c:86
int64_t total_bits
Definition: mpegvideo.h:403
unsigned me_cache_generation
Definition: snow.h:174
#define FF_CMP_W97
Definition: avcodec.h:1661
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
av_cold int ff_rate_control_init(MpegEncContext *s)
Definition: ratecontrol.c:86
int me_sub_cmp
subpixel motion estimation comparison function
Definition: avcodec.h:1636
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:148
#define FF_CMP_BIT
Definition: avcodec.h:1654
#define FF_CMP_DCT
Definition: avcodec.h:1652
void ff_write_pass1_stats(MpegEncContext *s)
Definition: ratecontrol.c:44
int unrestricted_mv
mv can point outside of the coded picture
Definition: mpegvideo.h:292
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:175
int diag_mc
Definition: snow.h:105
const char * r
Definition: vf_curves.c:107
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1132
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const uint8_t *const ff_obmc_tab[4]
Definition: snowdata.h:123
int flags
CODEC_FLAG_*.
Definition: avcodec.h:1335
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index)
Definition: snowenc.c:494
#define CODEC_FLAG_QSCALE
Use fixed qscale.
Definition: avcodec.h:712
int64_t av_gcd(int64_t a, int64_t b)
Return the greatest common divisor of a and b.
Definition: mathematics.c:55
int stride
Definition: diracdec.c:99
const char * name
Name of the codec implementation.
Definition: avcodec.h:3188
static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)
Definition: snowenc.c:1334
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:464
static int square(int x)
Definition: roqvideoenc.c:113
int lambda
Definition: snow.h:157
int intra_penalty
Definition: snow.h:178
#define FFMAX(a, b)
Definition: common.h:64
#define FF_CMP_PSNR
Definition: avcodec.h:1653
Libavcodec external API header.
uint8_t * emu_edge_buffer
Definition: snow.h:183
uint8_t * bytestream
Definition: rangecoder.h:43
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1168
uint8_t color[3]
Definition: snow.h:54
#define pass
Definition: fft_template.c:509
int ref_frames
Definition: snow.h:143
int htaps
Definition: snow.h:103
int qlog
Definition: snow.h:155
int refs
number of reference frames
Definition: avcodec.h:1901
int bit_rate
the average bitrate
Definition: avcodec.h:1305
const int8_t ff_quant3bA[256]
Definition: snowdata.h:104
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:242
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define FFMIN(a, b)
Definition: common.h:66
int display_picture_number
picture number in display order
Definition: frame.h:278
float y
#define FF_MIN_BUFFER_SIZE
minimum encoding buffer size Used to avoid some checks during header writing.
Definition: avcodec.h:637
iterative search
Definition: avcodec.h:654
int me_method
ME algorithm.
Definition: mpegvideo.h:327
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t(*obmc_edged)[MB_SIZE *2], int *best_rd)
Definition: snowenc.c:928
#define ME_CACHE_SIZE
Definition: snow.h:172
#define LOSSLESS_QLOG
Definition: snow.h:44
ret
Definition: avfilter.c:974
int width
picture width / height.
Definition: avcodec.h:1414
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
Picture * current_picture_ptr
pointer to the current picture
Definition: mpegvideo.h:253
#define VE
Definition: snowenc.c:1876
#define FF_CEIL_RSHIFT(a, b)
Definition: common.h:57
uint8_t * scratchbuf
Definition: snow.h:182
static int encode_q_branch(SnowContext *s, int level, int x, int y)
Definition: snowenc.c:210
Plane plane[MAX_PLANES]
Definition: snow.h:170
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
Definition: ratecontrol.c:744
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index)
Definition: snow.h:298
int b_width
Definition: snow.h:165
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:62
#define FFABS(a)
Definition: common.h:61
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:283
MotionEstContext me
Definition: mpegvideo.h:349
int last_mv_scale
Definition: snow.h:161
void avcodec_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: imgconvert.c:43
int chroma_h_shift
Definition: snow.h:152
#define ME_MAP_SIZE
Definition: mpegvideo.h:68
int penalty_factor
an estimate of the bits required to code a given mv value, e.g.
Definition: motion_est.h:52
static const float pred[4]
Definition: siprdata.h:259
SubBand band[MAX_DWT_LEVELS][4]
Definition: diracdec.c:133
static av_always_inline int same_block(BlockNode *a, BlockNode *b)
Definition: snow.h:288
uint8_t block_state[128+32 *128]
Definition: snow.h:132
int qbias
Definition: snow.h:162
int coded_picture_number
picture number in bitstream order
Definition: frame.h:274
#define FF_LAMBDA_SCALE
Definition: avutil.h:219
uint64_t error[AV_NUM_DATA_POINTERS]
error
Definition: frame.h:351
int ff_snow_get_buffer(SnowContext *s, AVFrame *frame)
Definition: snow.c:69
AVS_Value src
Definition: avisynth_c.h:482
unsigned int lambda2
(lambda*lambda) >> FF_LAMBDA_SHIFT
Definition: mpegvideo.h:276
static void encode_header(SnowContext *s)
Definition: snowenc.c:1371
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:203
AVCodecContext * avctx
Definition: motion_est.h:38
#define LOG2_OBMC_MAX
Definition: snow.h:48
int spatial_decomposition_count
Definition: snow.h:139
int DWTELEM
Definition: dirac_dwt.h:26
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:199
void ff_set_cmp(MECmpContext *c, me_cmp_func *cmp, int type)
Definition: me_cmp.c:370
int frame_bits
number of bits used for the previously encoded frame
Definition: avcodec.h:2487
main external API structure.
Definition: avcodec.h:1241
int8_t hcoeff[HTAPS_MAX/2]
Definition: snow.h:104
#define QROOT
Definition: snow.h:43
void ff_snow_pred_block(SnowContext *s, uint8_t *dst, uint8_t *tmp, ptrdiff_t stride, int sx, int sy, int b_w, int b_h, const BlockNode *block, int plane_index, int w, int h)
Definition: snow.c:327
int height
picture size. must be a multiple of 16
Definition: mpegvideo.h:169
int ff_snow_alloc_blocks(SnowContext *s)
Definition: snow.c:110
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
Definition: lfg.h:38
struct SubBand * parent
Definition: diracdec.c:104
void * buf
Definition: avisynth_c.h:553
GLint GLenum type
Definition: opengl_enc.c:105
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:77
static void encode_q_branch2(SnowContext *s, int level, int x, int y)
Definition: snowenc.c:438
unsigned me_cache[ME_CACHE_SIZE]
Definition: snow.h:173
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:69
Describe the class of an AVClass context structure.
Definition: log.h:67
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
int64_t mc_mb_var_sum
motion compensated MB variance for current frame
Definition: mpegvideo.h:129
int index
Definition: gxfenc.c:89
struct AVFrame * f
Definition: mpegvideo.h:90
int nb_planes
Definition: snow.h:169
static int get_block_bits(SnowContext *s, int x, int y, int w)
Definition: snowenc.c:552
void ff_spatial_idwt(IDWTELEM *buffer, IDWTELEM *temp, int width, int height, int stride, int type, int decomposition_count)
Definition: snow_dwt.c:731
#define mid_pred
Definition: mathops.h:96
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:204
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:30
int ff_w53_32_c(struct MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t line_size, int h)
Definition: snow_dwt.c:832
DWTELEM * temp_dwt_buffer
Definition: snow.h:147
uint8_t header_state[32]
Definition: snow.h:131
int f_code
forward MV resolution
Definition: mpegvideo.h:307
int last_qlog
Definition: snow.h:156
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:281
int spatial_scalability
Definition: snow.h:154
int bit_rate
wanted bit rate
Definition: mpegvideo.h:172
static int qscale2qlog(int qscale)
Definition: snowenc.c:1464
static int pix_sum(uint8_t *pix, int line_size, int w, int h)
Definition: snowenc.c:146
int ff_snow_common_init(AVCodecContext *avctx)
static void encode_qlogs(SnowContext *s)
Definition: snowenc.c:1358
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:462
#define EDGE_WIDTH
Definition: mpegvideo.h:74
int global_quality
Global quality for codecs which cannot change it per frame.
Definition: avcodec.h:1321
me_cmp_func me_cmp[6]
Definition: me_cmp.h:72
static uint32_t state
Definition: trasher.c:27
int ff_init_me(MpegEncContext *s)
Definition: motion_est.c:306
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
int spatial_decomposition_type
Definition: snow.h:136
AVFrame * current_picture
Definition: snow.h:126
int memc_only
Definition: snow.h:176
uint8_t level
Definition: svq3.c:150
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t(*obmc_edged)[MB_SIZE *2])
Definition: snowenc.c:590
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:200
struct AVCodecContext * avctx
Definition: mpegvideo.h:167
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:1435
#define FF_CMP_DCT264
Definition: avcodec.h:1663
#define FF_CMP_SAD
Definition: avcodec.h:1649
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index)
Definition: snowenc.c:691
#define CODEC_FLAG_EMU_EDGE
Definition: avcodec.h:744
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
int mb_cmp
macroblock comparison function (not supported yet)
Definition: avcodec.h:1642
MECmpContext mecc
Definition: mpegvideo.h:300
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:63
Y , 8bpp.
Definition: pixfmt.h:71
#define MID_STATE
Definition: snow.h:39
int temporal_decomposition_type
Definition: snow.h:138
#define QBIAS_SHIFT
Definition: snow.h:164
common internal api header.
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:199
IDWTELEM * temp_idwt_buffer
Definition: snow.h:149
void ff_spatial_dwt(DWTELEM *buffer, DWTELEM *temp, int width, int height, int stride, int type, int decomposition_count)
Definition: snow_dwt.c:319
static double c[64]
int last_pict_type
Definition: mpegvideo.h:283
#define LOG2_MB_SIZE
Definition: snow.h:72
int prediction_method
prediction method (needed for huffyuv)
Definition: avcodec.h:1604
#define put_rac(C, S, B)
DWTELEM * spatial_dwt_buffer
Definition: snow.h:146
static av_cold int encode_init(AVCodecContext *avctx)
Definition: snowenc.c:35
int lambda2
Definition: snow.h:158
me_cmp_func me_sub_cmp[6]
Definition: me_cmp.h:73
uint8_t state[7+512][32]
Definition: snow.h:95
static const AVOption options[]
Definition: snowenc.c:1877
uint32_t * map
map to avoid duplicate evaluations
Definition: motion_est.h:48
IDWTELEM * spatial_idwt_buffer
Definition: snow.h:148
uint8_t * bytestream_start
Definition: rangecoder.h:42
void * priv_data
Definition: avcodec.h:1283
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd)
Definition: snowenc.c:933
static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride)
Definition: snowenc.c:1288
int dia_size
ME diamond size & shape.
Definition: avcodec.h:1671
uint8_t * obmc_scratchpad
Definition: mpegvideo.h:143
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
static void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index)
Definition: motion_est.c:83
int colorspace_type
Definition: snow.h:151
#define av_log2
Definition: intmath.h:105
int last_htaps
Definition: snow.h:108
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:237
int height
Definition: diracdec.c:101
IDWTELEM * ibuf
Definition: diracdec.c:103
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
Definition: avutil.h:220
int fast_mc
Definition: snow.h:106
#define EDGE_BOTTOM
static const struct twinvq_data tab
int width
Definition: diracdec.c:112
av_cold void ff_snow_common_end(SnowContext *s)
Definition: snow.c:693
#define FF_CMP_SATD
Definition: avcodec.h:1651
RangeCoder c
Definition: snow.h:116
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:228
uint8_t ff_qexp[QROOT]
Definition: snowdata.h:128
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2016
DWTELEM * buf
Definition: snow.h:88
#define P_TOP
Definition: snowenc.c:204
#define av_freep(p)
#define MAX_REF_FRAMES
Definition: snow.h:46
#define av_always_inline
Definition: attributes.h:37
uint8_t * temp
Definition: motion_est.h:46
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
uint8_t type
Definition: snow.h:55
int me_method
Motion estimation algorithm used for video coding.
Definition: avcodec.h:1453
#define stride
int main(int argc, char **argv)
Definition: main.c:22
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
Definition: snowenc.c:1469
AVFrame * last_picture[MAX_REF_FRAMES]
Definition: snow.h:127
int height
Definition: diracdec.c:113
int last_qbias
Definition: snow.h:163
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:97
AVFrame * input_picture
new_picture with the internal linesizes
Definition: snow.h:125
#define CODEC_FLAG_4MV
4 MV per MB allowed / advanced prediction for H.263.
Definition: avcodec.h:713
static int pix_norm1(uint8_t *pix, int line_size, int w)
Definition: snowenc.c:162
int temporal_decomposition_count
Definition: snow.h:141
int64_t mb_var_sum
sum of MB variance for current frame
Definition: mpegvideo.h:128
AVPixelFormat
Pixel format.
Definition: pixfmt.h:61
This structure stores compressed data.
Definition: avcodec.h:1139
static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)
Definition: snowenc.c:1310
int(* sub_motion_search)(struct MpegEncContext *s, int *mx_ptr, int *my_ptr, int dmin, int src_index, int ref_index, int size, int h)
Definition: motion_est.h:85
#define BLOCK_OPT
Definition: snow.h:58
static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias)
Definition: snowenc.c:1227
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:250
static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)
Definition: snowenc.c:880
int last_spatial_decomposition_type
Definition: snow.h:137
#define t2
Definition: regdef.h:30
Predicted.
Definition: avutil.h:268
unsigned int lambda
lagrange multipler used in rate distortion
Definition: mpegvideo.h:275
GLuint buffer
Definition: opengl_enc.c:102
#define tb
Definition: regdef.h:68
HpelDSPContext hdsp
Definition: mpegvideo.h:298
static void iterative_me(SnowContext *s)
Definition: snowenc.c:979
static int width
QpelDSPContext qdsp
Definition: snow.h:119
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t(*obmc_edged)[MB_SIZE *2], int *best_rd)
Definition: snowenc.c:887
static int16_t block[64]
Definition: dct-test.c:110