Go to the documentation of this file.
33 #include "config_components.h"
61 #define VP3_MV_VLC_BITS 6
62 #define VP4_MV_VLC_BITS 6
63 #define SUPERBLOCK_VLC_BITS 6
65 #define FRAGMENT_PIXELS 8
74 #define SB_NOT_CODED 0
75 #define SB_PARTIALLY_CODED 1
76 #define SB_FULLY_CODED 2
81 #define MAXIMUM_LONG_BIT_RUN 4129
83 #define MODE_INTER_NO_MV 0
85 #define MODE_INTER_PLUS_MV 2
86 #define MODE_INTER_LAST_MV 3
87 #define MODE_INTER_PRIOR_LAST 4
88 #define MODE_USING_GOLDEN 5
89 #define MODE_GOLDEN_MV 6
90 #define MODE_INTER_FOURMV 7
91 #define CODING_MODE_COUNT 8
140 { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
141 { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
142 { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
143 { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
172 #if CONFIG_VP4_DECODER
173 static const VLCElem *vp4_mv_vlc_table[2][7];
174 static const VLCElem *block_pattern_vlc[2];
182 #define MIN_DEQUANT_VAL 2
280 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
281 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
282 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
367 s->theora_tables = 0;
388 for (
int plane = 0; plane < 3; plane++) {
389 int sb_width = plane ?
s->c_superblock_width
390 :
s->y_superblock_width;
391 int sb_height = plane ?
s->c_superblock_height
392 :
s->y_superblock_height;
393 int frag_width =
s->fragment_width[!!plane];
394 int frag_height =
s->fragment_height[!!plane];
396 for (
int sb_y = 0; sb_y < sb_height; sb_y++)
397 for (
int sb_x = 0; sb_x < sb_width; sb_x++)
398 for (
int i = 0;
i < 16;
i++) {
402 if (x < frag_width && y < frag_height)
403 s->superblock_fragments[j++] =
s->fragment_start[plane] +
406 s->superblock_fragments[j++] = -1;
419 int ac_scale_factor =
s->coded_ac_scale_factor[
s->qps[qpi]];
421 for (
int inter = 0; inter < 2; inter++) {
422 for (
int plane = 0; plane < 3; plane++) {
423 int dc_scale_factor =
s->coded_dc_scale_factor[!!plane][
s->qps[qpi]];
424 int sum = 0, bmi, bmj, qistart, qri;
425 for (qri = 0; qri <
s->qr_count[inter][plane]; qri++) {
426 sum +=
s->qr_size[inter][plane][qri];
427 if (
s->qps[qpi] <= sum)
430 qistart = sum -
s->qr_size[inter][plane][qri];
431 bmi =
s->qr_base[inter][plane][qri];
432 bmj =
s->qr_base[inter][plane][qri + 1];
433 for (
int i = 0;
i < 64;
i++) {
434 int coeff = (2 * (sum -
s->qps[qpi]) *
s->base_matrix[bmi][
i] -
435 2 * (qistart -
s->qps[qpi]) *
s->base_matrix[bmj][
i] +
436 s->qr_size[inter][plane][qri]) /
437 (2 *
s->qr_size[inter][plane][qri]);
439 int qmin = 8 << (inter + !
i);
440 int qscale =
i ? ac_scale_factor : dc_scale_factor;
441 int qbias = (1 + inter) * 3;
442 s->qmat[qpi][inter][plane][
s->idct_permutation[
i]] =
443 (
i == 0 ||
s->version < 2) ?
av_clip((qscale *
coeff) / 100 * 4, qmin, 4096)
444 : (qscale * (
coeff - qbias) / 100 + qbias) * 4;
448 s->qmat[qpi][inter][plane][0] =
s->qmat[0][inter][plane][0];
470 const int superblock_starts[3] = {
471 0,
s->u_superblock_start,
s->v_superblock_start
474 int current_superblock = 0;
476 int num_partial_superblocks = 0;
478 int current_fragment;
479 int plane0_num_coded_frags = 0;
488 while (current_superblock < s->superblock_count &&
get_bits_left(gb) > 0) {
496 if (current_run == 34)
499 if (current_run >
s->superblock_count - current_superblock) {
501 "Invalid partially coded superblock run length\n");
505 memset(
s->superblock_coding + current_superblock,
bit, current_run);
507 current_superblock += current_run;
509 num_partial_superblocks += current_run;
514 if (num_partial_superblocks < s->superblock_count) {
515 int superblocks_decoded = 0;
517 current_superblock = 0;
521 while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
530 if (current_run == 34)
533 for (
int j = 0; j < current_run; current_superblock++) {
534 if (current_superblock >=
s->superblock_count) {
536 "Invalid fully coded superblock run length\n");
541 if (
s->superblock_coding[current_superblock] ==
SB_NOT_CODED) {
542 s->superblock_coding[current_superblock] = 2 *
bit;
546 superblocks_decoded += current_run;
552 if (num_partial_superblocks) {
563 s->total_num_coded_frags = 0;
564 memset(
s->macroblock_coding,
MODE_COPY,
s->macroblock_count);
566 s->coded_fragment_list[0] =
s->keyframe ?
s->kf_coded_fragment_list
567 :
s->nkf_coded_fragment_list;
569 for (
int plane = 0; plane < 3; plane++) {
570 int sb_start = superblock_starts[plane];
571 int sb_end = sb_start + (plane ?
s->c_superblock_count
572 :
s->y_superblock_count);
573 int num_coded_frags = 0;
576 if (
s->num_kf_coded_fragment[plane] == -1) {
577 for (
int i = sb_start;
i < sb_end;
i++) {
579 for (
int j = 0; j < 16; j++) {
581 current_fragment =
s->superblock_fragments[
i * 16 + j];
582 if (current_fragment != -1) {
583 s->coded_fragment_list[plane][num_coded_frags++] =
588 s->num_kf_coded_fragment[plane] = num_coded_frags;
590 num_coded_frags =
s->num_kf_coded_fragment[plane];
597 for (
int j = 0; j < 16; j++) {
599 current_fragment =
s->superblock_fragments[
i * 16 + j];
600 if (current_fragment != -1) {
601 int coded =
s->superblock_coding[
i];
606 if (current_run-- == 0) {
616 s->all_fragments[current_fragment].coding_method =
618 s->coded_fragment_list[plane][num_coded_frags++] =
622 s->all_fragments[current_fragment].coding_method =
630 plane0_num_coded_frags = num_coded_frags;
631 s->total_num_coded_frags += num_coded_frags;
632 for (
int i = 0;
i < 64;
i++)
633 s->num_coded_frags[plane][
i] = num_coded_frags;
635 s->coded_fragment_list[plane + 1] =
s->coded_fragment_list[plane] +
641 #define BLOCK_X (2 * mb_x + (k & 1))
642 #define BLOCK_Y (2 * mb_y + (k >> 1))
644 #if CONFIG_VP4_DECODER
656 if (v >
s->yuv_macroblock_count) {
662 skip_bits(gb, 2 + n); \
663 v += (1 << n) + get_bits(gb, n); }
664 #define thresh(n) (0x200 - (0x80 >> n))
665 #define else_if(n) else if (bits < thresh(n)) body(n)
668 }
else if (
bits < thresh(0)) {
685 static int vp4_get_block_pattern(
GetBitContext *gb,
int *next_block_pattern_table)
687 int v =
get_vlc2(gb, block_pattern_vlc[*next_block_pattern_table], 5, 1);
695 int next_block_pattern_table;
696 int bit, current_run, has_partial;
698 memset(
s->macroblock_coding,
MODE_COPY,
s->macroblock_count);
705 for (
int i = 0;
i <
s->yuv_macroblock_count;
i += current_run) {
708 current_run = vp4_get_mb_count(
s, gb);
709 if (current_run >
s->yuv_macroblock_count -
i)
711 memset(
s->superblock_coding +
i, 2 *
bit, current_run);
720 current_run = vp4_get_mb_count(
s, gb);
721 for (
int i = 0;
i <
s->yuv_macroblock_count;
i++) {
722 if (!
s->superblock_coding[
i]) {
725 current_run = vp4_get_mb_count(
s, gb);
727 s->superblock_coding[
i] =
bit;
735 next_block_pattern_table = 0;
736 for (
int plane = 0,
i = 0; plane < 3; plane++) {
737 int sb_width = plane ?
s->c_superblock_width :
s->y_superblock_width;
738 int sb_height = plane ?
s->c_superblock_height :
s->y_superblock_height;
739 int mb_width = plane ?
s->c_macroblock_width :
s->macroblock_width;
740 int mb_height = plane ?
s->c_macroblock_height :
s->macroblock_height;
741 int fragment_width =
s->fragment_width[!!plane];
742 int fragment_height =
s->fragment_height[!!plane];
744 for (
int sb_y = 0; sb_y < sb_height; sb_y++) {
745 for (
int sb_x = 0; sb_x < sb_width; sb_x++) {
746 for (
int j = 0; j < 4; j++) {
747 int mb_x = 2 * sb_x + (j >> 1);
748 int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
749 int mb_coded, pattern, coded;
751 if (mb_x >= mb_width || mb_y >= mb_height)
754 mb_coded =
s->superblock_coding[
i++];
759 pattern = vp4_get_block_pattern(gb, &next_block_pattern_table);
763 for (
int k = 0; k < 4; k++) {
767 coded = pattern & (8 >> k);
787 int current_macroblock;
788 int current_fragment;
795 for (
int i = 0;
i <
s->fragment_count;
i++)
803 for (
int i = 0;
i < 8;
i++)
805 for (
int i = 0;
i < 8;
i++)
806 custom_mode_alphabet[
get_bits(gb, 3)] =
i;
807 alphabet = custom_mode_alphabet;
813 for (
int sb_y = 0; sb_y <
s->y_superblock_height; sb_y++) {
814 for (
int sb_x = 0; sb_x <
s->y_superblock_width; sb_x++) {
818 for (
int j = 0; j < 4; j++) {
820 int mb_x = 2 * sb_x + (j >> 1);
821 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
822 current_macroblock = mb_y *
s->macroblock_width + mb_x;
824 if (mb_x >=
s->macroblock_width ||
825 mb_y >=
s->macroblock_height)
831 for (k = 0; k < 4; k++) {
834 if (
s->all_fragments[current_fragment].coding_method !=
MODE_COPY)
848 s->macroblock_coding[current_macroblock] = coding_mode;
849 for (k = 0; k < 4; k++) {
855 #define SET_CHROMA_MODES \
856 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
857 frag[s->fragment_start[1]].coding_method = coding_mode; \
858 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
859 frag[s->fragment_start[2]].coding_method = coding_mode;
861 if (
s->chroma_y_shift) {
862 frag =
s->all_fragments + mb_y *
863 s->fragment_width[1] + mb_x;
865 }
else if (
s->chroma_x_shift) {
866 frag =
s->all_fragments +
867 2 * mb_y *
s->fragment_width[1] + mb_x;
868 for (k = 0; k < 2; k++) {
870 frag +=
s->fragment_width[1];
873 for (k = 0; k < 4; k++) {
874 frag =
s->all_fragments +
889 #if CONFIG_VP4_DECODER
892 return last_motion < 0 ? -v : v;
907 int last_motion_x = 0;
908 int last_motion_y = 0;
909 int prior_last_motion_x = 0;
910 int prior_last_motion_y = 0;
911 int last_gold_motion_x = 0;
912 int last_gold_motion_y = 0;
913 int current_macroblock;
914 int current_fragment;
921 coding_mode =
s->version < 2 ?
get_bits1(gb) : 2;
925 for (
int sb_y = 0; sb_y <
s->y_superblock_height; sb_y++) {
926 for (
int sb_x = 0; sb_x <
s->y_superblock_width; sb_x++) {
930 for (
int j = 0; j < 4; j++) {
931 int mb_x = 2 * sb_x + (j >> 1);
932 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
933 current_macroblock = mb_y *
s->macroblock_width + mb_x;
935 if (mb_x >=
s->macroblock_width ||
936 mb_y >=
s->macroblock_height ||
937 s->macroblock_coding[current_macroblock] ==
MODE_COPY)
940 switch (
s->macroblock_coding[current_macroblock]) {
942 if (coding_mode == 2) {
943 last_gold_motion_x = motion_x[0] =
vp4_get_mv(gb, 0, last_gold_motion_x);
944 last_gold_motion_y = motion_y[0] =
vp4_get_mv(gb, 1, last_gold_motion_y);
949 if (coding_mode == 0) {
954 }
else if (coding_mode == 1) {
958 motion_x[0] =
vp4_get_mv(gb, 0, last_motion_x);
959 motion_y[0] =
vp4_get_mv(gb, 1, last_motion_y);
964 prior_last_motion_x = last_motion_x;
965 prior_last_motion_y = last_motion_y;
966 last_motion_x = motion_x[0];
967 last_motion_y = motion_y[0];
973 prior_last_motion_x = last_motion_x;
974 prior_last_motion_y = last_motion_y;
978 for (
int k = 0; k < 4; k++) {
980 if (
s->all_fragments[current_fragment].coding_method !=
MODE_COPY) {
981 if (coding_mode == 0) {
986 }
else if (coding_mode == 1) {
990 motion_x[k] =
vp4_get_mv(gb, 0, prior_last_motion_x);
991 motion_y[k] =
vp4_get_mv(gb, 1, prior_last_motion_y);
993 last_motion_x = motion_x[k];
994 last_motion_y = motion_y[k];
1004 motion_x[0] = last_motion_x;
1005 motion_y[0] = last_motion_y;
1014 motion_x[0] = prior_last_motion_x;
1015 motion_y[0] = prior_last_motion_y;
1018 prior_last_motion_x = last_motion_x;
1019 prior_last_motion_y = last_motion_y;
1020 last_motion_x = motion_x[0];
1021 last_motion_y = motion_y[0];
1034 for (
int k = 0; k < 4; k++) {
1038 s->motion_val[0][current_fragment][0] = motion_x[k];
1039 s->motion_val[0][current_fragment][1] = motion_y[k];
1041 s->motion_val[0][current_fragment][0] = motion_x[0];
1042 s->motion_val[0][current_fragment][1] = motion_y[0];
1046 if (
s->chroma_y_shift) {
1048 motion_x[0] =
RSHIFT(motion_x[0] + motion_x[1] +
1049 motion_x[2] + motion_x[3], 2);
1050 motion_y[0] =
RSHIFT(motion_y[0] + motion_y[1] +
1051 motion_y[2] + motion_y[3], 2);
1053 if (
s->version <= 2) {
1054 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1055 motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
1057 frag = mb_y *
s->fragment_width[1] + mb_x;
1058 s->motion_val[1][frag][0] = motion_x[0];
1059 s->motion_val[1][frag][1] = motion_y[0];
1060 }
else if (
s->chroma_x_shift) {
1062 motion_x[0] =
RSHIFT(motion_x[0] + motion_x[1], 1);
1063 motion_y[0] =
RSHIFT(motion_y[0] + motion_y[1], 1);
1064 motion_x[1] =
RSHIFT(motion_x[2] + motion_x[3], 1);
1065 motion_y[1] =
RSHIFT(motion_y[2] + motion_y[3], 1);
1067 motion_x[1] = motion_x[0];
1068 motion_y[1] = motion_y[0];
1070 if (
s->version <= 2) {
1071 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1072 motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
1074 frag = 2 * mb_y *
s->fragment_width[1] + mb_x;
1075 for (
int k = 0; k < 2; k++) {
1076 s->motion_val[1][frag][0] = motion_x[k];
1077 s->motion_val[1][frag][1] = motion_y[k];
1078 frag +=
s->fragment_width[1];
1081 for (
int k = 0; k < 4; k++) {
1084 s->motion_val[1][frag][0] = motion_x[k];
1085 s->motion_val[1][frag][1] = motion_y[k];
1087 s->motion_val[1][frag][0] = motion_x[0];
1088 s->motion_val[1][frag][1] = motion_y[0];
1101 int num_blocks =
s->total_num_coded_frags;
1103 for (
int qpi = 0; qpi <
s->nqps - 1 && num_blocks > 0; qpi++) {
1104 int i = 0, blocks_decoded = 0, num_blocks_at_qpi = 0;
1105 int bit, run_length;
1118 if (run_length == 34)
1120 blocks_decoded += run_length;
1123 num_blocks_at_qpi += run_length;
1125 for (
int j = 0; j < run_length;
i++) {
1126 if (
i >=
s->total_num_coded_frags)
1129 if (
s->all_fragments[
s->coded_fragment_list[0][
i]].qpi == qpi) {
1130 s->all_fragments[
s->coded_fragment_list[0][
i]].qpi +=
bit;
1134 }
while (blocks_decoded < num_blocks &&
get_bits_left(gb) > 0);
1136 num_blocks -= num_blocks_at_qpi;
1152 int bits_to_get, zero_run;
1156 bits_to_get =
get_bits(gb, bits_to_get);
1179 const VLCElem *vlc_table,
int coeff_index,
1189 int num_coeffs =
s->num_coded_frags[plane][coeff_index];
1190 int16_t *dct_tokens =
s->dct_tokens[plane][coeff_index];
1193 const int *coded_fragment_list =
s->coded_fragment_list[plane];
1196 if (num_coeffs < 0) {
1198 "Invalid number of coefficients at level %d\n", coeff_index);
1202 if (eob_run > num_coeffs) {
1204 blocks_ended = num_coeffs;
1205 eob_run -= num_coeffs;
1208 blocks_ended = eob_run;
1214 dct_tokens[j++] = blocks_ended << 2;
1218 token =
get_vlc2(gb, vlc_table, 11, 3);
1220 if ((
unsigned) token <= 6
U) {
1227 if (eob_run > num_coeffs - coeff_i) {
1228 dct_tokens[j++] =
TOKEN_EOB(num_coeffs - coeff_i);
1229 blocks_ended += num_coeffs - coeff_i;
1230 eob_run -= num_coeffs - coeff_i;
1231 coeff_i = num_coeffs;
1234 blocks_ended += eob_run;
1238 }
else if (token >= 0) {
1249 all_fragments[coded_fragment_list[coeff_i]].
dc =
coeff;
1254 if (coeff_index + zero_run > 64) {
1256 "Invalid zero run of %d with %d coeffs left\n",
1257 zero_run, 64 - coeff_index);
1258 zero_run = 64 - coeff_index;
1263 for (
int i = coeff_index + 1;
i <= coeff_index + zero_run;
i++)
1264 s->num_coded_frags[plane][
i]--;
1272 if (blocks_ended >
s->num_coded_frags[plane][coeff_index])
1278 for (
int i = coeff_index + 1;
i < 64;
i++)
1279 s->num_coded_frags[plane][
i] -= blocks_ended;
1283 s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1284 else if (coeff_index < 63)
1285 s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1293 int fragment_height);
1305 int residual_eob_run = 0;
1306 const VLCElem *y_tables[64], *c_tables[64];
1308 s->dct_tokens[0][0] =
s->dct_tokens_base;
1319 0, residual_eob_run);
1320 if (residual_eob_run < 0)
1321 return residual_eob_run;
1330 1, residual_eob_run);
1331 if (residual_eob_run < 0)
1332 return residual_eob_run;
1334 2, residual_eob_run);
1335 if (residual_eob_run < 0)
1336 return residual_eob_run;
1341 s->fragment_width[1],
s->fragment_height[1]);
1343 s->fragment_width[1],
s->fragment_height[1]);
1353 for (
int i = 1;
i <= 5;
i++) {
1358 for (
int i = 6;
i <= 14;
i++) {
1363 for (
int i = 15;
i <= 27;
i++) {
1368 for (
int i = 28;
i <= 63;
i++) {
1375 for (
int i = 1;
i <= 63;
i++) {
1377 0, residual_eob_run);
1378 if (residual_eob_run < 0)
1379 return residual_eob_run;
1382 1, residual_eob_run);
1383 if (residual_eob_run < 0)
1384 return residual_eob_run;
1386 2, residual_eob_run);
1387 if (residual_eob_run < 0)
1388 return residual_eob_run;
1394 #if CONFIG_VP4_DECODER
1403 int plane,
int eob_tracker[64],
int fragment)
1411 while (!eob_tracker[coeff_i]) {
1418 if ((
unsigned) token <= 6
U) {
1420 *
s->dct_tokens[plane][coeff_i]++ =
TOKEN_EOB(0);
1421 eob_tracker[coeff_i] = eob_run - 1;
1423 }
else if (token >= 0) {
1427 if (coeff_i + zero_run > 64) {
1429 "Invalid zero run of %d with %d coeffs left\n",
1430 zero_run, 64 - coeff_i);
1431 zero_run = 64 - coeff_i;
1434 coeff_i += zero_run;
1449 *
s->dct_tokens[plane][coeff_i]++ =
TOKEN_EOB(0);
1450 eob_tracker[coeff_i]--;
1462 for (
int i = 0;
i < 4;
i++)
1463 dc_pred[0][
i + 1] =
s->dc_pred_row[sb_x * 4 +
i];
1465 for (
int j = 1; j < 5; j++)
1466 for (
int i = 0;
i < 4;
i++)
1467 vp4_dc_predictor_reset(&dc_pred[j][
i + 1]);
1472 for (
int i = 0;
i < 4;
i++)
1473 s->dc_pred_row[sb_x * 4 +
i] = dc_pred[4][
i + 1];
1475 for (
int i = 1;
i < 5;
i++)
1476 dc_pred[
i][0] = dc_pred[
i][4];
1486 dc += dc_pred[-6].
dc;
1491 dc += dc_pred[6].
dc;
1495 if (count != 2 && dc_pred[-1].
type ==
type) {
1496 dc += dc_pred[-1].
dc;
1500 if (count != 2 && dc_pred[1].
type ==
type) {
1501 dc += dc_pred[1].
dc;
1506 return count == 2 ?
dc / 2 : last_dc[
type];
1511 int16_t *
base =
s->dct_tokens_base;
1512 for (
int plane = 0; plane < 3; plane++) {
1513 for (
int i = 0;
i < 64;
i++) {
1514 s->dct_tokens[plane][
i] =
base;
1515 base +=
s->fragment_width[!!plane] *
s->fragment_height[!!plane];
1528 int eob_tracker[64];
1547 for (
int i = 1;
i <= 5;
i++) {
1552 for (
int i = 6;
i <= 14;
i++) {
1557 for (
int i = 15;
i <= 27;
i++) {
1562 for (
int i = 28;
i <= 63;
i++) {
1568 vp4_set_tokens_base(
s);
1570 memset(last_dc, 0,
sizeof(last_dc));
1573 memset(eob_tracker, 0,
sizeof(eob_tracker));
1576 for (
int i = 0;
i <
s->fragment_width[!!plane];
i++)
1577 vp4_dc_predictor_reset(&
s->dc_pred_row[
i]);
1579 for (
int j = 0; j < 6; j++)
1580 for (
int i = 0;
i < 6;
i++)
1581 vp4_dc_predictor_reset(&dc_pred[j][
i]);
1583 for (
int sb_y = 0; sb_y * 4 <
s->fragment_height[!!plane]; sb_y++) {
1584 for (
int sb_x = 0; sb_x *4 <
s->fragment_width[!!plane]; sb_x++) {
1585 vp4_dc_pred_before(
s, dc_pred, sb_x);
1586 for (
int j = 0; j < 16; j++) {
1589 int x = 4 * sb_x + hx;
1590 int y = 4 * sb_y + hy;
1594 if (x >=
s->fragment_width[!!plane] || y >=
s->fragment_height[!!plane])
1597 fragment =
s->fragment_start[plane] + y *
s->fragment_width[!!plane] + x;
1602 if (vp4_unpack_vlcs(
s, gb,
tables[!!plane], plane, eob_tracker,
fragment) < 0)
1608 vp4_dc_pred(
s, this_dc_pred, last_dc, dc_block_type, plane);
1610 this_dc_pred->
type = dc_block_type,
1611 this_dc_pred->
dc = last_dc[dc_block_type] =
s->all_fragments[
fragment].dc;
1613 vp4_dc_pred_after(
s, dc_pred, sb_x);
1618 vp4_set_tokens_base(
s);
1629 #define COMPATIBLE_FRAME(x) \
1630 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1631 #define DC_COEFF(u) s->all_fragments[u].dc
1636 int fragment_height)
1643 int i = first_fragment;
1648 int vl, vul, vu, vur;
1660 static const int predictor_transform[16][4] = {
1674 { -104, 116, 0, 116 },
1676 { -104, 116, 0, 116 }
1685 static const unsigned char compatible_frame[9] = {
1696 int current_frame_type;
1712 for (
int y = 0; y < fragment_height; y++) {
1714 for (
int x = 0; x < fragment_width; x++,
i++) {
1717 if (
s->all_fragments[
i].coding_method !=
MODE_COPY) {
1718 current_frame_type =
1719 compatible_frame[
s->all_fragments[
i].coding_method];
1729 u =
i - fragment_width;
1734 ul =
i - fragment_width - 1;
1739 if (x + 1 < fragment_width) {
1740 ur =
i - fragment_width + 1;
1750 predicted_dc = last_dc[current_frame_type];
1754 (predictor_transform[
transform][0] * vul) +
1755 (predictor_transform[
transform][1] * vu) +
1756 (predictor_transform[
transform][2] * vur) +
1757 (predictor_transform[
transform][3] * vl);
1759 predicted_dc /= 128;
1764 if (
FFABS(predicted_dc - vu) > 128)
1766 else if (
FFABS(predicted_dc - vl) > 128)
1768 else if (
FFABS(predicted_dc - vul) > 128)
1776 last_dc[current_frame_type] =
DC_COEFF(
i);
1783 int ystart,
int yend)
1785 int *bounding_values =
s->bounding_values_array + 127;
1787 int width =
s->fragment_width[!!plane];
1788 int height =
s->fragment_height[!!plane];
1790 ptrdiff_t
stride =
s->current_frame.f->linesize[plane];
1791 uint8_t *plane_data =
s->current_frame.f->data[plane];
1792 if (!
s->flipped_image)
1794 plane_data +=
s->data_offset[plane] + 8 * ystart *
stride;
1796 for (
int y = ystart; y < yend; y++) {
1797 for (
int x = 0; x <
width; x++) {
1805 s->vp3dsp.h_loop_filter(
1807 stride, bounding_values);
1812 s->vp3dsp.v_loop_filter(
1814 stride, bounding_values);
1820 if ((x <
width - 1) &&
1822 s->vp3dsp.h_loop_filter(
1823 plane_data + 8 * x + 8,
1824 stride, bounding_values);
1832 s->vp3dsp.v_loop_filter(
1833 plane_data + 8 * x + 8 *
stride,
1834 stride, bounding_values);
1840 plane_data += 8 *
stride;
1849 int plane,
int inter, int16_t
block[64])
1851 const int16_t *dequantizer =
s->qmat[frag->
qpi][inter][plane];
1852 const uint8_t *
perm =
s->idct_scantable;
1856 int token = *
s->dct_tokens[plane][
i];
1857 switch (token & 3) {
1860 s->dct_tokens[plane][
i]++;
1862 *
s->dct_tokens[plane][
i] = token & ~3;
1865 s->dct_tokens[plane][
i]++;
1866 i += (token >> 2) & 0x7f;
1876 s->dct_tokens[plane][
i++]++;
1886 block[0] = frag->
dc *
s->qmat[0][inter][plane][0];
1899 int y_flipped =
s->flipped_image ?
s->height - y : y;
1905 y_flipped ==
s->height ? INT_MAX
1909 if (!
s->avctx->draw_horiz_band)
1912 h = y -
s->last_slice_end;
1913 s->last_slice_end = y;
1916 if (!
s->flipped_image)
1917 y =
s->height - y -
h;
1919 cy = y >>
s->chroma_y_shift;
1920 offset[0] =
s->current_frame.f->linesize[0] * y;
1921 offset[1] =
s->current_frame.f->linesize[1] * cy;
1922 offset[2] =
s->current_frame.f->linesize[2] * cy;
1927 s->avctx->draw_horiz_band(
s->avctx,
s->current_frame.f,
offset, y, 3,
h);
1935 int motion_y,
int y)
1939 int border = motion_y & 1;
1947 ref_row = y + (motion_y >> 1);
1948 ref_row =
FFMAX(
FFABS(ref_row), ref_row + 8 + border);
1953 #if CONFIG_VP4_DECODER
1957 static int vp4_mc_loop_filter(
Vp3DecodeContext *
s,
int plane,
int motion_x,
int motion_y,
int bx,
int by,
1958 const uint8_t *motion_source, ptrdiff_t
stride,
1959 int src_x,
int src_y, uint8_t *
temp)
1961 int motion_shift = plane ? 4 : 2;
1962 int subpel_mask = plane ? 3 : 1;
1963 int *bounding_values =
s->bounding_values_array + 127;
1967 int x_subpel, y_subpel;
1968 int x_offset, y_offset;
1970 int block_width = plane ? 8 : 16;
1971 int plane_width =
s->width >> (plane &&
s->chroma_x_shift);
1972 int plane_height =
s->height >> (plane &&
s->chroma_y_shift);
1974 #define loop_stride 12
1975 uint8_t
loop[12 * loop_stride];
1978 x = 8 * bx + motion_x / motion_shift;
1979 y = 8 * by + motion_y / motion_shift;
1981 x_subpel = motion_x & subpel_mask;
1982 y_subpel = motion_y & subpel_mask;
1984 if (x_subpel || y_subpel) {
1994 x2 = x + block_width;
1995 y2 = y + block_width;
1997 if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
2000 x_offset = (-(x + 2) & 7) + 2;
2001 y_offset = (-(y + 2) & 7) + 2;
2003 av_assert1(!(x_offset > 8 + x_subpel && y_offset > 8 + y_subpel));
2005 s->vdsp.emulated_edge_mc(
loop, motion_source -
stride - 1,
2007 12, 12, src_x - 1, src_y - 1,
2011 if (x_offset <= 8 + x_subpel)
2014 if (y_offset <= 8 + y_subpel)
2022 if (!x_offset && !y_offset)
2025 s->vdsp.emulated_edge_mc(
loop, motion_source -
stride - 1,
2027 12, 12, src_x - 1, src_y - 1,
2031 #define safe_loop_filter(name, ptr, stride, bounding_values) \
2032 if (VP3_LOOP_FILTER_NO_UNALIGNED_SUPPORT && (uintptr_t)(ptr) & 7) \
2033 s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
2035 s->vp3dsp.name(ptr, stride, bounding_values);
2038 safe_loop_filter(h_loop_filter,
loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
2041 safe_loop_filter(v_loop_filter,
loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
2044 for (
int i = 0;
i < 9;
i++)
2057 int16_t *
block =
s->block;
2058 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2063 const AVFrame *last_frame =
s->last_frame.f ?
2064 s->last_frame.f :
s->current_frame.f;
2065 const AVFrame *golden_frame =
s->golden_frame.f ?
2066 s->golden_frame.f :
s->current_frame.f;
2067 int motion_halfpel_index;
2070 if (slice >=
s->c_superblock_height)
2073 for (
int plane = 0; plane < 3; plane++) {
2075 s->data_offset[plane];
2076 const uint8_t *last_plane = last_frame->
data[plane] +
2077 s->data_offset[plane];
2078 const uint8_t *golden_plane = golden_frame->
data[plane] +
2079 s->data_offset[plane];
2080 ptrdiff_t
stride =
s->current_frame.f->linesize[plane];
2081 int plane_width =
s->width >> (plane &&
s->chroma_x_shift);
2082 int plane_height =
s->height >> (plane &&
s->chroma_y_shift);
2083 const int8_t (*motion_val)[2] =
s->motion_val[!!plane];
2085 int sb_y = slice << (!plane &&
s->chroma_y_shift);
2086 int slice_height = sb_y + 1 + (!plane &&
s->chroma_y_shift);
2087 int slice_width = plane ?
s->c_superblock_width
2088 :
s->y_superblock_width;
2090 int fragment_width =
s->fragment_width[!!plane];
2091 int fragment_height =
s->fragment_height[!!plane];
2092 int fragment_start =
s->fragment_start[plane];
2094 int do_await = !plane && HAVE_THREADS &&
2097 if (!
s->flipped_image)
2103 for (; sb_y < slice_height; sb_y++) {
2105 for (
int sb_x = 0; sb_x < slice_width; sb_x++) {
2107 for (
int j = 0; j < 16; j++) {
2110 int fragment = y * fragment_width + x;
2115 if (x >= fragment_width || y >= fragment_height)
2118 first_pixel = 8 * y *
stride + 8 * x;
2124 (16 * y) >>
s->chroma_y_shift);
2127 if (
s->all_fragments[
i].coding_method !=
MODE_COPY) {
2128 const uint8_t *motion_source;
2131 motion_source = golden_plane;
2133 motion_source = last_plane;
2135 motion_source += first_pixel;
2136 motion_halfpel_index = 0;
2140 if ((
s->all_fragments[
i].coding_method >
MODE_INTRA) &&
2143 int standard_mc = 1;
2144 motion_x = motion_val[
fragment][0];
2145 motion_y = motion_val[
fragment][1];
2146 #if CONFIG_VP4_DECODER
2147 if (plane &&
s->version >= 2) {
2148 motion_x = (motion_x >> 1) | (motion_x & 1);
2149 motion_y = (motion_y >> 1) | (motion_y & 1);
2153 src_x = (motion_x >> 1) + 8 * x;
2154 src_y = (motion_y >> 1) + 8 * y;
2156 motion_halfpel_index = motion_x & 0x01;
2157 motion_source += (motion_x >> 1);
2159 motion_halfpel_index |= (motion_y & 0x01) << 1;
2160 motion_source += ((motion_y >> 1) *
stride);
2162 #if CONFIG_VP4_DECODER
2163 if (
s->version >= 2) {
2164 uint8_t *
temp =
s->edge_emu_buffer;
2167 if (vp4_mc_loop_filter(
s, plane, motion_val[
fragment][0], motion_val[
fragment][1], x, y, motion_source,
stride, src_x, src_y,
temp)) {
2168 motion_source =
temp;
2174 if (standard_mc && (
2175 src_x < 0 || src_y < 0 ||
2176 src_x + 9 >= plane_width ||
2177 src_y + 9 >= plane_height)) {
2178 uint8_t *
temp =
s->edge_emu_buffer;
2182 s->vdsp.emulated_edge_mc(
temp, motion_source,
2187 motion_source =
temp;
2198 if (motion_halfpel_index != 3) {
2199 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2201 motion_source,
stride, 8);
2205 int d = (motion_x ^ motion_y) >> 31;
2208 motion_source +
stride + 1 + d,
2234 s->hdsp.put_pixels_tab[1][0](
2236 last_plane + first_pixel,
2243 if (
s->version < 2 && !
s->skip_loop_filter)
2245 FFMIN(4 * sb_y + 3, fragment_height - 1));
2283 #if CONFIG_VP4_DECODER
2284 for (
int j = 0; j < 2; j++)
2285 for (
int i = 0;
i < 7;
i++) {
2286 vp4_mv_vlc_table[j][
i] =
2294 for (
int i = 0;
i < 2;
i++) {
2295 block_pattern_vlc[
i] =
2307 int y_fragment_count, c_fragment_count;
2311 y_fragment_count =
s->fragment_width[0] *
s->fragment_height[0];
2312 c_fragment_count =
s->fragment_width[1] *
s->fragment_height[1];
2315 s->superblock_coding =
av_mallocz(
FFMAX(
s->superblock_count,
s->yuv_macroblock_count));
2316 s->all_fragments =
av_calloc(
s->fragment_count,
sizeof(*
s->all_fragments));
2318 s-> kf_coded_fragment_list =
av_calloc(
s->fragment_count,
sizeof(
int));
2319 s->nkf_coded_fragment_list =
av_calloc(
s->fragment_count,
sizeof(
int));
2320 memset(
s-> num_kf_coded_fragment, -1,
sizeof(
s-> num_kf_coded_fragment));
2323 64 *
sizeof(*
s->dct_tokens_base));
2324 s->motion_val[0] =
av_calloc(y_fragment_count,
sizeof(*
s->motion_val[0]));
2325 s->motion_val[1] =
av_calloc(c_fragment_count,
sizeof(*
s->motion_val[1]));
2328 s->superblock_fragments =
av_calloc(
s->superblock_count, 16 *
sizeof(
int));
2329 s->macroblock_coding =
av_mallocz(
s->macroblock_count + 1);
2331 s->dc_pred_row =
av_malloc_array(
s->y_superblock_width * 4,
sizeof(*
s->dc_pred_row));
2333 if (!
s->superblock_coding || !
s->all_fragments ||
2334 !
s->dct_tokens_base || !
s->kf_coded_fragment_list ||
2335 !
s->nkf_coded_fragment_list ||
2336 !
s->superblock_fragments || !
s->macroblock_coding ||
2338 !
s->motion_val[0] || !
s->motion_val[1]) {
2363 int y_fragment_count, c_fragment_count;
2367 #if !CONFIG_VP4_DECODER
2388 for (
int i = 0;
i < 64;
i++) {
2389 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
2397 for (
int i = 0;
i < 3;
i++)
2404 s->y_superblock_width = (
s->width + 31) / 32;
2405 s->y_superblock_height = (
s->height + 31) / 32;
2406 s->y_superblock_count =
s->y_superblock_width *
s->y_superblock_height;
2409 c_width =
s->width >>
s->chroma_x_shift;
2410 c_height =
s->height >>
s->chroma_y_shift;
2411 s->c_superblock_width = (c_width + 31) / 32;
2412 s->c_superblock_height = (c_height + 31) / 32;
2413 s->c_superblock_count =
s->c_superblock_width *
s->c_superblock_height;
2415 s->superblock_count =
s->y_superblock_count + (
s->c_superblock_count * 2);
2416 s->u_superblock_start =
s->y_superblock_count;
2417 s->v_superblock_start =
s->u_superblock_start +
s->c_superblock_count;
2419 s->macroblock_width = (
s->width + 15) / 16;
2420 s->macroblock_height = (
s->height + 15) / 16;
2421 s->macroblock_count =
s->macroblock_width *
s->macroblock_height;
2422 s->c_macroblock_width = (c_width + 15) / 16;
2423 s->c_macroblock_height = (c_height + 15) / 16;
2424 s->c_macroblock_count =
s->c_macroblock_width *
s->c_macroblock_height;
2425 s->yuv_macroblock_count =
s->macroblock_count + 2 *
s->c_macroblock_count;
2429 s->fragment_width[1] =
s->fragment_width[0] >>
s->chroma_x_shift;
2430 s->fragment_height[1] =
s->fragment_height[0] >>
s->chroma_y_shift;
2433 y_fragment_count =
s->fragment_width[0] *
s->fragment_height[0];
2434 c_fragment_count =
s->fragment_width[1] *
s->fragment_height[1];
2435 s->fragment_count = y_fragment_count + 2 * c_fragment_count;
2436 s->fragment_start[1] = y_fragment_count;
2437 s->fragment_start[2] = y_fragment_count + c_fragment_count;
2439 if (!
s->theora_tables) {
2440 for (
int i = 0;
i < 64;
i++) {
2450 for (
int inter = 0; inter < 2; inter++) {
2451 for (
int plane = 0; plane < 3; plane++) {
2452 s->qr_count[inter][plane] = 1;
2453 s->qr_size[inter][plane][0] = 63;
2454 s->qr_base[inter][plane][0] =
2455 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
2466 s->coeff_vlc = vlcs;
2468 if (!
s->theora_tables) {
2469 const uint8_t (*bias_tabs)[32][2];
2475 &bias_tabs[
i][0][1], 2,
2476 &bias_tabs[
i][0][0], 2, 1,
2487 &
tab->entries[0].len,
sizeof(*
tab->entries),
2488 &
tab->entries[0].sym,
sizeof(*
tab->entries), 1,
2513 int qps_changed = 0;
2520 for (
int i = 0;
i < 3;
i++) {
2521 if (
s->qps[
i] != s1->
qps[1]) {
2523 memcpy(&
s->qmat[
i], &s1->
qmat[
i],
sizeof(
s->qmat[
i]));
2527 if (
s->qps[0] != s1->
qps[0])
2529 sizeof(
s->bounding_values_array));
2532 memcpy(
s->qps, s1->
qps,
sizeof(
s->qps));
2543 const uint8_t *buf = avpkt->
data;
2544 int buf_size = avpkt->
size;
2552 #if CONFIG_THEORA_DECODER
2558 av_log(avctx,
AV_LOG_ERROR,
"midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2572 }
else if (
type == 2) {
2585 "Header packet passed to frame decoder, skipping\n");
2591 if (!
s->all_fragments) {
2599 for (
int i = 0;
i < 3;
i++)
2600 last_qps[
i] =
s->qps[
i];
2605 }
while (
s->theora >= 0x030200 &&
s->nqps < 3 &&
get_bits1(&gb));
2606 for (
int i =
s->nqps;
i < 3;
i++)
2611 s->keyframe ?
"key" :
"", avctx->frame_num + 1,
s->qps[0]);
2613 s->skip_loop_filter = !
s->filter_limit_values[
s->qps[0]] ||
2617 if (
s->qps[0] != last_qps[0])
2620 for (
int i = 0;
i <
s->nqps;
i++)
2623 if (
s->qps[
i] != last_qps[
i] ||
s->qps[0] != last_qps[0])
2644 if (!
s->edge_emu_buffer) {
2645 s->edge_emu_buffer =
av_malloc(9 *
FFABS(
s->current_frame.f->linesize[0]));
2646 if (!
s->edge_emu_buffer) {
2658 #if !CONFIG_VP4_DECODER
2666 if (avctx->frame_num == 0)
2668 "VP version: %d\n",
s->version);
2671 if (
s->version ||
s->theora) {
2674 "Warning, unsupported keyframe coding type?!\n");
2677 #if CONFIG_VP4_DECODER
2678 if (
s->version >= 2) {
2679 int mb_height, mb_width;
2680 int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
2684 if (mb_height !=
s->macroblock_height ||
2685 mb_width !=
s->macroblock_width)
2692 if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
2702 if (!
s->golden_frame.f) {
2704 "vp3: first frame not a keyframe\n");
2716 memset(
s->all_fragments, 0,
s->fragment_count *
sizeof(
Vp3Fragment));
2718 if (
s->version < 2) {
2723 #if CONFIG_VP4_DECODER
2725 if ((
ret = vp4_unpack_macroblocks(
s, &gb)) < 0) {
2744 if (
s->version < 2) {
2749 #if CONFIG_VP4_DECODER
2751 if ((
ret = vp4_unpack_dct_coeffs(
s, &gb)) < 0) {
2758 for (
int i = 0;
i < 3;
i++) {
2759 int height =
s->height >> (
i &&
s->chroma_y_shift);
2760 if (
s->flipped_image)
2761 s->data_offset[
i] = 0;
2763 s->data_offset[
i] = (
height - 1) *
s->current_frame.f->linesize[
i];
2766 s->last_slice_end = 0;
2767 for (
int i = 0;
i <
s->c_superblock_height;
i++)
2772 for (
int i = 0;
i < 3;
i++) {
2773 int row = (
s->height >> (3 + (
i &&
s->chroma_y_shift))) - 1;
2784 frame->crop_left =
s->offset_x;
2785 frame->crop_right = avctx->coded_width - avctx->width -
s->offset_x;
2786 frame->crop_top =
s->offset_y;
2787 frame->crop_bottom = avctx->coded_height - avctx->height -
s->offset_y;
2810 ff_dlog(avctx,
"code length %d, curr entry %d, token %d\n",
2828 #if CONFIG_THEORA_DECODER
2836 int visible_width, visible_height, colorspace;
2837 uint8_t offset_x = 0, offset_y = 0;
2844 s->theora_header = 0;
2854 if (
s->theora < 0x030200) {
2855 s->flipped_image = 1;
2857 "Old (<alpha3) Theora bitstream, flipped image\n");
2865 if (
s->theora >= 0x030200) {
2875 visible_width + offset_x >
s->width ||
2876 visible_height + offset_y >
s->height ||
2880 "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2881 visible_width, visible_height, offset_x, offset_y,
2882 s->width,
s->height);
2888 if (fps.
num && fps.
den) {
2889 if (fps.
num < 0 || fps.
den < 0) {
2894 fps.
den, fps.
num, 1 << 30);
2899 if (aspect.
num && aspect.
den) {
2902 aspect.
num, aspect.
den, 1 << 30);
2906 if (
s->theora < 0x030200)
2913 if (
s->theora >= 0x030200) {
2930 avctx->
width = visible_width;
2931 avctx->
height = visible_height;
2934 s->offset_x = offset_x;
2935 s->offset_y =
s->height - visible_height - offset_y;
2938 if (colorspace == 1)
2940 else if (colorspace == 2)
2943 if (colorspace == 1 || colorspace == 2) {
2948 s->theora_header = 1;
2955 int n, matrices,
ret;
2957 if (!
s->theora_header)
2960 if (
s->theora >= 0x030200) {
2964 for (
int i = 0;
i < 64;
i++)
2968 if (
s->theora >= 0x030200)
2973 for (
int i = 0;
i < 64;
i++)
2974 s->coded_ac_scale_factor[
i] =
get_bits(gb, n);
2976 if (
s->theora >= 0x030200)
2981 for (
int i = 0;
i < 64;
i++)
2982 s->coded_dc_scale_factor[0][
i] =
2983 s->coded_dc_scale_factor[1][
i] =
get_bits(gb, n);
2985 if (
s->theora >= 0x030200)
2990 if (matrices > 384) {
2995 for (
int j = 0; j < matrices; j++)
2996 for (
int i = 0;
i < 64;
i++)
2999 for (
int inter = 0; inter <= 1; inter++) {
3000 for (
int plane = 0; plane <= 2; plane++) {
3002 if (inter || plane > 0)
3010 qtj = (3 * inter + plane - 1) / 3;
3011 plj = (plane + 2) % 3;
3013 s->qr_count[inter][plane] =
s->qr_count[qtj][plj];
3014 memcpy(
s->qr_size[inter][plane],
s->qr_size[qtj][plj],
3015 sizeof(
s->qr_size[0][0]));
3016 memcpy(
s->qr_base[inter][plane],
s->qr_base[qtj][plj],
3017 sizeof(
s->qr_base[0][0]));
3024 if (
i >= matrices) {
3026 "invalid base matrix index\n");
3029 s->qr_base[inter][plane][qri] =
i;
3033 s->qr_size[inter][plane][qri++] =
i;
3041 s->qr_count[inter][plane] = qri;
3048 s->huffman_table[
i].nb_entries = 0;
3053 s->theora_tables = 1;
3063 const uint8_t *header_start[3];
3077 42, header_start, header_len) < 0) {
3082 for (
int i = 0;
i < 3;
i++) {
3083 if (header_len[
i] <= 0)
3091 if (!(ptype & 0x80)) {
3114 "Unknown Theora config packet: %d\n", ptype & ~0x80);
3119 "%d bits left in packet %X\n",
3121 if (
s->theora < 0x030200)
3134 .
init = theora_decode_init,
3164 #if CONFIG_VP4_DECODER
static void error(const char *err)
static const uint16_t vp4_ac_scale_factor[64]
void ff_progress_frame_report(ProgressFrame *f, int n)
Notify later decoding threads when part of their reference frame is ready.
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
static int vp3_dequant(Vp3DecodeContext *s, const Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
AVPixelFormat
Pixel format.
int ff_vlc_init_from_lengths(VLC *vlc, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int vp4_get_mv(GetBitContext *gb, int axis, int last_motion)
enum AVColorSpace colorspace
YUV colorspace type.
static const uint8_t zero_run_base[32]
#define MODE_INTER_PRIOR_LAST
uint8_t idct_scantable[64]
RefStruct is an API for creating reference-counted objects with minimal overhead.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static const uint8_t mode_code_vlc_len[8]
static VLCElem superblock_run_length_vlc[88]
static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length, AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
#define u(width, name, range_min, range_max)
const FFCodec ff_vp3_decoder
int ff_progress_frame_get_buffer(AVCodecContext *avctx, ProgressFrame *f, int flags)
Wrapper around ff_progress_frame_alloc() and ff_thread_get_buffer().
Vp3Fragment * all_fragments
static VLCElem mode_code_vlc[24+2108 *CONFIG_VP4_DECODER]
uint8_t filter_limit_values[64]
static VLCElem fragment_run_length_vlc[56]
static VLCElem motion_vector_vlc[112]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
static void render_slice(Vp3DecodeContext *s, int slice)
const VLCElem * vlc_tabs[80]
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static VLCElem vlc_tables[VLC_TABLES_SIZE]
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
#define bit(string, value)
static void skip_bits(GetBitContext *s, int n)
static av_cold void close(AVCodecParserContext *s)
int * superblock_fragments
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
ProgressFrame golden_frame
static int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
AVCodec p
The public AVCodec.
static const uint8_t vp4_mv_vlc[2][7][63][2]
#define CODING_MODE_COUNT
static const struct twinvq_data tab
Writing a table generator This documentation is preliminary Parts of the API are not good and should be changed Basic concepts A table generator consists of two *_tablegen c and *_tablegen h The h file will provide the variable declarations and initialization code for the tables
int flags
AV_CODEC_FLAG_*.
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
#define MODE_INTER_LAST_MV
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
int num_kf_coded_fragment[3]
#define TOKEN_ZERO_RUN(coeff, zero_run)
static const uint8_t vp4_pred_block_type_map[8]
#define FF_CODEC_CAP_USES_PROGRESSFRAMES
The decoder might make use of the ProgressFrame API.
static void await_reference_row(Vp3DecodeContext *s, const Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
static int ff_thread_once(char *control, void(*routine)(void))
static const uint8_t motion_vector_vlc_table[63][2]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static const uint8_t hilbert_offset[16][2]
For static VLCs, the number of bits can often be hardcoded at each get_vlc2() callsite.
#define FF_CODEC_DECODE_CB(func)
static void init_loop_filter(Vp3DecodeContext *s)
static const uint8_t vp4_mv_table_selector[32]
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static av_cold void vp3_decode_flush(AVCodecContext *avctx)
static const int8_t transform[32][32]
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments,...
#define SB_PARTIALLY_CODED
static void * av_refstruct_alloc_ext(size_t size, unsigned flags, void *opaque, void(*free_cb)(AVRefStructOpaque opaque, void *obj))
A wrapper around av_refstruct_alloc_ext_c() for the common case of a non-const qualified opaque.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void ff_progress_frame_unref(ProgressFrame *f)
Give up a reference to the underlying frame contained in a ProgressFrame and reset the ProgressFrame,...
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_progress_frame_await() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_progress_frame_report() has been called on them. This includes draw_edges(). Porting codecs to frame threading
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
static const int ModeAlphabet[6][CODING_MODE_COUNT]
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AVCOL_PRI_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
#define MODE_USING_GOLDEN
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
uint8_t idct_permutation[64]
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
#define MODE_INTER_FOURMV
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
static const int16_t *const coeff_tables[32]
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static av_cold void free_vlc_tables(AVRefStructOpaque unused, void *obj)
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Rational number (pair of numerator and denominator).
void ff_vp3dsp_h_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static const uint8_t fragment_run_length_vlc_len[30]
static const uint8_t vp4_bias[5 *16][32][2]
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
#define TOKEN_COEFF(coeff)
static const uint8_t vp4_y_dc_scale_factor[64]
#define UPDATE_THREAD_CONTEXT(func)
CoeffVLCs * coeff_vlc
The first 16 of the following VLCs are for the dc coefficients; the others are four groups of 16 VLCs...
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static const uint16_t vp31_ac_scale_factor[64]
uint8_t qr_size[2][3][64]
static const uint8_t vp31_intra_y_dequant[64]
void ff_vp3dsp_v_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
void ff_vp3dsp_set_bounding_values(int *bounding_values_array, int filter_limit)
int total_num_coded_frags
@ AVDISCARD_NONKEY
discard all frames except keyframes
int flags2
AV_CODEC_FLAG2_*.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
static const int8_t fixed_motion_vector_table[64]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
const FFCodec ff_vp4_decoder
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
#define AV_NUM_DATA_POINTERS
static int ref_frame(VVCFrame *dst, const VVCFrame *src)
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
uint16_t coded_dc_scale_factor[2][64]
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
unsigned char * macroblock_coding
#define AV_LOG_INFO
Standard information.
@ AVCOL_TRC_BT709
also ITU-R BT1361
#define FF_THREAD_FRAME
Decode more than one frame at once.
void av_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
int * nkf_coded_fragment_list
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
#define i(width, name, range_min, range_max)
uint8_t * edge_emu_buffer
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
#define av_malloc_array(a, b)
static int vp3_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static const uint8_t superblock_run_length_vlc_lens[34]
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
const uint8_t ff_mjpeg_std_chrominance_quant_tbl[64]
static const struct @302 eob_run_table[7]
#define SUPERBLOCK_VLC_BITS
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
ProgressFrame current_frame
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
int * coded_fragment_list[3]
const uint8_t ff_zigzag_direct[64]
@ AVCOL_PRI_BT470M
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
void ff_vlc_free(VLC *vlc)
#define FFSWAP(type, a, b)
static av_cold void free_tables(AVCodecContext *avctx)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, const VLCElem *vlc_table, int coeff_index, int plane, int eob_run)
#define MODE_INTER_PLUS_MV
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
enum ThreadingStatus ff_thread_sync_ref(AVCodecContext *avctx, size_t offset)
Allows to synchronize objects whose lifetime is the whole decoding process among all frame threads.
static const uint8_t vp4_block_pattern_table_selector[14]
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
void ff_progress_frame_replace(ProgressFrame *dst, const ProgressFrame *src)
Do nothing if dst and src already refer to the same AVFrame; otherwise unreference dst and if src is ...
const FFCodec ff_theora_decoder
static const uint8_t vp4_filter_limit_values[64]
static const VLCElem * coeff_vlc[2][8][4]
main external API structure.
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
static const uint8_t vp4_generic_dequant[64]
static const uint8_t zero_run_get_bits[32]
uint32_t coded_ac_scale_factor[64]
int bounding_values_array[256+4]
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
static const uint8_t vp31_inter_dequant[64]
static void body(uint32_t ABCD[4], const uint8_t *src, size_t nblocks)
static const uint8_t vp4_block_pattern_vlc[2][14][2]
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const av_cold VLCElem * ff_vlc_init_tables_from_lengths(VLCInitState *state, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags)
unsigned char * superblock_coding
#define COMPATIBLE_FRAME(x)
#define AVERROR_DECODER_NOT_FOUND
Decoder not found.
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PICTURE_TYPE_P
Predicted.
static const VLCElem * ff_vlc_init_tables(VLCInitState *state, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, int flags)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
#define avpriv_request_sample(...)
static const uint8_t vp3_bias[5 *16][32][2]
static int get_eob_run(GetBitContext *gb, int token)
#define VLC_INIT_STATIC_TABLE_FROM_LENGTHS(vlc_table, nb_bits, nb_codes, lens, lens_wrap, syms, syms_wrap, syms_size, offset, flags)
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
HuffTable huffman_table[5 *16]
The ProgressFrame structure.
#define VLC_INIT_STATE(_table)
static const uint8_t vp31_filter_limit_values[64]
This structure stores compressed data.
static av_cold int vp3_decode_init(AVCodecContext *avctx)
uint8_t base_matrix[384][64]
static const uint8_t vp31_dc_scale_factor[64]
int width
picture width / height.
int * kf_coded_fragment_list
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
uint16_t qr_base[2][3][64]
static av_cold int vp3_decode_end(AVCodecContext *avctx)
The exact code depends on how similar the blocks are and how related they are to the block
static const double coeff[2][5]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
static const uint8_t vp4_uv_dc_scale_factor[64]
#define MAXIMUM_LONG_BIT_RUN
static av_cold void init_tables_once(void)
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
int8_t(*[2] motion_val)[2]
av_cold void ff_vp3dsp_init(VP3DSPContext *c)
VP4Predictor * dc_pred_row
static const uint8_t coeff_get_bits[32]
int16_t * dct_tokens_base
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel.
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
#define TOKEN_EOB(eob_run)
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)