FFmpeg
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003-2004 The FFmpeg project
3  * Copyright (C) 2019 Peter Ross
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * On2 VP3/VP4 Video Decoder
25  *
26  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
27  * For more information about the VP3 coding process, visit:
28  * http://wiki.multimedia.cx/index.php?title=On2_VP3
29  *
30  * Theora decoder by Alex Beregszaszi
31  */
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 
37 #include "libavutil/imgutils.h"
38 #include "libavutil/mem_internal.h"
39 
40 #include "avcodec.h"
41 #include "get_bits.h"
42 #include "hpeldsp.h"
43 #include "internal.h"
44 #include "mathops.h"
45 #include "thread.h"
46 #include "videodsp.h"
47 #include "vp3data.h"
48 #include "vp4data.h"
49 #include "vp3dsp.h"
50 #include "xiph.h"
51 
52 #define VP3_MV_VLC_BITS 6
53 #define VP4_MV_VLC_BITS 6
54 #define SUPERBLOCK_VLC_BITS 6
55 
56 #define FRAGMENT_PIXELS 8
57 
58 // FIXME split things out into their own arrays
59 typedef struct Vp3Fragment {
60  int16_t dc;
63 } Vp3Fragment;
64 
65 #define SB_NOT_CODED 0
66 #define SB_PARTIALLY_CODED 1
67 #define SB_FULLY_CODED 2
68 
69 // This is the maximum length of a single long bit run that can be encoded
70 // for superblock coding or block qps. Theora special-cases this to read a
71 // bit instead of flipping the current bit to allow for runs longer than 4129.
72 #define MAXIMUM_LONG_BIT_RUN 4129
73 
74 #define MODE_INTER_NO_MV 0
75 #define MODE_INTRA 1
76 #define MODE_INTER_PLUS_MV 2
77 #define MODE_INTER_LAST_MV 3
78 #define MODE_INTER_PRIOR_LAST 4
79 #define MODE_USING_GOLDEN 5
80 #define MODE_GOLDEN_MV 6
81 #define MODE_INTER_FOURMV 7
82 #define CODING_MODE_COUNT 8
83 
84 /* special internal mode */
85 #define MODE_COPY 8
86 
87 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
88 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
89 
90 
91 /* There are 6 preset schemes, plus a free-form scheme */
92 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
93  /* scheme 1: Last motion vector dominates */
98 
99  /* scheme 2 */
103  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
104 
105  /* scheme 3 */
109  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
110 
111  /* scheme 4 */
115  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
116 
117  /* scheme 5: No motion vector dominates */
121  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
122 
123  /* scheme 6 */
127  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
128 };
129 
130 static const uint8_t hilbert_offset[16][2] = {
131  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
132  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
133  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
134  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
135 };
136 
137 enum {
143 };
144 
145 static const uint8_t vp4_pred_block_type_map[8] = {
154 };
155 
156 typedef struct {
157  int dc;
158  int type;
159 } VP4Predictor;
160 
161 #define MIN_DEQUANT_VAL 2
162 
163 typedef struct HuffEntry {
165 } HuffEntry;
166 
167 typedef struct HuffTable {
168  HuffEntry entries[32];
170 } HuffTable;
171 
172 typedef struct Vp3DecodeContext {
175  int version;
176  int width, height;
177  int chroma_x_shift, chroma_y_shift;
181  int keyframe;
182  uint8_t idct_permutation[64];
183  uint8_t idct_scantable[64];
187  DECLARE_ALIGNED(16, int16_t, block)[64];
191 
192  int qps[3];
193  int nqps;
194  int last_qps[3];
195 
205  unsigned char *superblock_coding;
206 
207  int macroblock_count; /* y macroblock count */
213  int yuv_macroblock_count; /* y+u+v macroblock count */
214 
216  int fragment_width[2];
217  int fragment_height[2];
218 
220  int fragment_start[3];
221  int data_offset[3];
225 
226  int8_t (*motion_val[2])[2];
227 
228  /* tables */
229  uint16_t coded_dc_scale_factor[2][64];
230  uint32_t coded_ac_scale_factor[64];
231  uint8_t base_matrix[384][64];
232  uint8_t qr_count[2][3];
233  uint8_t qr_size[2][3][64];
234  uint16_t qr_base[2][3][64];
235 
236  /**
237  * This is a list of all tokens in bitstream order. Reordering takes place
238  * by pulling from each level during IDCT. As a consequence, IDCT must be
239  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
240  * otherwise. The 32 different tokens with up to 12 bits of extradata are
241  * collapsed into 3 types, packed as follows:
242  * (from the low to high bits)
243  *
244  * 2 bits: type (0,1,2)
245  * 0: EOB run, 14 bits for run length (12 needed)
246  * 1: zero run, 7 bits for run length
247  * 7 bits for the next coefficient (3 needed)
248  * 2: coefficient, 14 bits (11 needed)
249  *
250  * Coefficients are signed, so are packed in the highest bits for automatic
251  * sign extension.
252  */
253  int16_t *dct_tokens[3][64];
254  int16_t *dct_tokens_base;
255 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
256 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
257 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
258 
259  /**
260  * number of blocks that contain DCT coefficients at
261  * the given level or higher
262  */
263  int num_coded_frags[3][64];
265 
266  /* this is a list of indexes into the all_fragments array indicating
267  * which of the fragments are coded */
268  int *coded_fragment_list[3];
269 
272  int num_kf_coded_fragment[3];
273 
274  /* The first 16 of the following VLCs are for the dc coefficients;
275  the others are four groups of 16 VLCs each for ac coefficients. */
276  VLC coeff_vlc[5 * 16];
277 
278  VLC superblock_run_length_vlc; /* version < 2 */
279  VLC fragment_run_length_vlc; /* version < 2 */
280  VLC block_pattern_vlc[2]; /* version >= 2*/
282  VLC motion_vector_vlc; /* version < 2 */
283  VLC vp4_mv_vlc[2][7]; /* version >=2 */
284 
285  /* these arrays need to be on 16-byte boundaries since SSE2 operations
286  * index into them */
287  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
288 
289  /* This table contains superblock_count * 16 entries. Each set of 16
290  * numbers corresponds to the fragment indexes 0..15 of the superblock.
291  * An entry will be -1 to indicate that no entry corresponds to that
292  * index. */
294 
295  /* This is an array that indicates how a particular macroblock
296  * is coded. */
297  unsigned char *macroblock_coding;
298 
300 
301  /* Huffman decode */
303 
304  uint8_t filter_limit_values[64];
305  DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
306 
307  VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
309 
310 /************************************************************************
311  * VP3 specific functions
312  ************************************************************************/
313 
314 static av_cold void free_tables(AVCodecContext *avctx)
315 {
316  Vp3DecodeContext *s = avctx->priv_data;
317 
319  av_freep(&s->all_fragments);
325  av_freep(&s->dc_pred_row);
326  av_freep(&s->motion_val[0]);
327  av_freep(&s->motion_val[1]);
328 }
329 
330 static void vp3_decode_flush(AVCodecContext *avctx)
331 {
332  Vp3DecodeContext *s = avctx->priv_data;
333 
334  if (s->golden_frame.f)
336  if (s->last_frame.f)
338  if (s->current_frame.f)
340 }
341 
343 {
344  Vp3DecodeContext *s = avctx->priv_data;
345  int i, j;
346 
347  free_tables(avctx);
349 
350  s->theora_tables = 0;
351 
352  /* release all frames */
353  vp3_decode_flush(avctx);
357 
358  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++)
359  ff_free_vlc(&s->coeff_vlc[i]);
360 
365 
366  for (j = 0; j < 2; j++)
367  for (i = 0; i < 7; i++)
368  ff_free_vlc(&s->vp4_mv_vlc[j][i]);
369 
370  for (i = 0; i < 2; i++)
372  return 0;
373 }
374 
375 /**
376  * This function sets up all of the various blocks mappings:
377  * superblocks <-> fragments, macroblocks <-> fragments,
378  * superblocks <-> macroblocks
379  *
380  * @return 0 is successful; returns 1 if *anything* went wrong.
381  */
383 {
384  int sb_x, sb_y, plane;
385  int x, y, i, j = 0;
386 
387  for (plane = 0; plane < 3; plane++) {
388  int sb_width = plane ? s->c_superblock_width
389  : s->y_superblock_width;
390  int sb_height = plane ? s->c_superblock_height
391  : s->y_superblock_height;
392  int frag_width = s->fragment_width[!!plane];
393  int frag_height = s->fragment_height[!!plane];
394 
395  for (sb_y = 0; sb_y < sb_height; sb_y++)
396  for (sb_x = 0; sb_x < sb_width; sb_x++)
397  for (i = 0; i < 16; i++) {
398  x = 4 * sb_x + hilbert_offset[i][0];
399  y = 4 * sb_y + hilbert_offset[i][1];
400 
401  if (x < frag_width && y < frag_height)
402  s->superblock_fragments[j++] = s->fragment_start[plane] +
403  y * frag_width + x;
404  else
405  s->superblock_fragments[j++] = -1;
406  }
407  }
408 
409  return 0; /* successful path out */
410 }
411 
412 /*
413  * This function sets up the dequantization tables used for a particular
414  * frame.
415  */
417 {
418  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
419  int i, plane, inter, qri, bmi, bmj, qistart;
420 
421  for (inter = 0; inter < 2; inter++) {
422  for (plane = 0; plane < 3; plane++) {
423  int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
424  int sum = 0;
425  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
426  sum += s->qr_size[inter][plane][qri];
427  if (s->qps[qpi] <= sum)
428  break;
429  }
430  qistart = sum - s->qr_size[inter][plane][qri];
431  bmi = s->qr_base[inter][plane][qri];
432  bmj = s->qr_base[inter][plane][qri + 1];
433  for (i = 0; i < 64; i++) {
434  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
435  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
436  s->qr_size[inter][plane][qri]) /
437  (2 * s->qr_size[inter][plane][qri]);
438 
439  int qmin = 8 << (inter + !i);
440  int qscale = i ? ac_scale_factor : dc_scale_factor;
441  int qbias = (1 + inter) * 3;
442  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
443  (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
444  : (qscale * (coeff - qbias) / 100 + qbias) * 4;
445  }
446  /* all DC coefficients use the same quant so as not to interfere
447  * with DC prediction */
448  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
449  }
450  }
451 }
452 
453 /*
454  * This function initializes the loop filter boundary limits if the frame's
455  * quality index is different from the previous frame's.
456  *
457  * The filter_limit_values may not be larger than 127.
458  */
460 {
462 }
463 
464 /*
465  * This function unpacks all of the superblock/macroblock/fragment coding
466  * information from the bitstream.
467  */
469 {
470  int superblock_starts[3] = {
472  };
473  int bit = 0;
474  int current_superblock = 0;
475  int current_run = 0;
476  int num_partial_superblocks = 0;
477 
478  int i, j;
479  int current_fragment;
480  int plane;
481  int plane0_num_coded_frags = 0;
482 
483  if (s->keyframe) {
485  } else {
486  /* unpack the list of partially-coded superblocks */
487  bit = get_bits1(gb) ^ 1;
488  current_run = 0;
489 
490  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
491  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
492  bit = get_bits1(gb);
493  else
494  bit ^= 1;
495 
496  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
498  if (current_run == 34)
499  current_run += get_bits(gb, 12);
500 
501  if (current_run > s->superblock_count - current_superblock) {
503  "Invalid partially coded superblock run length\n");
504  return -1;
505  }
506 
507  memset(s->superblock_coding + current_superblock, bit, current_run);
508 
509  current_superblock += current_run;
510  if (bit)
511  num_partial_superblocks += current_run;
512  }
513 
514  /* unpack the list of fully coded superblocks if any of the blocks were
515  * not marked as partially coded in the previous step */
516  if (num_partial_superblocks < s->superblock_count) {
517  int superblocks_decoded = 0;
518 
519  current_superblock = 0;
520  bit = get_bits1(gb) ^ 1;
521  current_run = 0;
522 
523  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
524  get_bits_left(gb) > 0) {
525  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
526  bit = get_bits1(gb);
527  else
528  bit ^= 1;
529 
530  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
532  if (current_run == 34)
533  current_run += get_bits(gb, 12);
534 
535  for (j = 0; j < current_run; current_superblock++) {
536  if (current_superblock >= s->superblock_count) {
538  "Invalid fully coded superblock run length\n");
539  return -1;
540  }
541 
542  /* skip any superblocks already marked as partially coded */
543  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
544  s->superblock_coding[current_superblock] = 2 * bit;
545  j++;
546  }
547  }
548  superblocks_decoded += current_run;
549  }
550  }
551 
552  /* if there were partial blocks, initialize bitstream for
553  * unpacking fragment codings */
554  if (num_partial_superblocks) {
555  current_run = 0;
556  bit = get_bits1(gb);
557  /* toggle the bit because as soon as the first run length is
558  * fetched the bit will be toggled again */
559  bit ^= 1;
560  }
561  }
562 
563  /* figure out which fragments are coded; iterate through each
564  * superblock (all planes) */
565  s->total_num_coded_frags = 0;
567 
570 
571  for (plane = 0; plane < 3; plane++) {
572  int sb_start = superblock_starts[plane];
573  int sb_end = sb_start + (plane ? s->c_superblock_count
574  : s->y_superblock_count);
575  int num_coded_frags = 0;
576 
577  if (s->keyframe) {
578  if (s->num_kf_coded_fragment[plane] == -1) {
579  for (i = sb_start; i < sb_end; i++) {
580  /* iterate through all 16 fragments in a superblock */
581  for (j = 0; j < 16; j++) {
582  /* if the fragment is in bounds, check its coding status */
583  current_fragment = s->superblock_fragments[i * 16 + j];
584  if (current_fragment != -1) {
585  s->coded_fragment_list[plane][num_coded_frags++] =
586  current_fragment;
587  }
588  }
589  }
590  s->num_kf_coded_fragment[plane] = num_coded_frags;
591  } else
592  num_coded_frags = s->num_kf_coded_fragment[plane];
593  } else {
594  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
595  if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
596  return AVERROR_INVALIDDATA;
597  }
598  /* iterate through all 16 fragments in a superblock */
599  for (j = 0; j < 16; j++) {
600  /* if the fragment is in bounds, check its coding status */
601  current_fragment = s->superblock_fragments[i * 16 + j];
602  if (current_fragment != -1) {
603  int coded = s->superblock_coding[i];
604 
605  if (coded == SB_PARTIALLY_CODED) {
606  /* fragment may or may not be coded; this is the case
607  * that cares about the fragment coding runs */
608  if (current_run-- == 0) {
609  bit ^= 1;
610  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
611  }
612  coded = bit;
613  }
614 
615  if (coded) {
616  /* default mode; actual mode will be decoded in
617  * the next phase */
618  s->all_fragments[current_fragment].coding_method =
620  s->coded_fragment_list[plane][num_coded_frags++] =
621  current_fragment;
622  } else {
623  /* not coded; copy this fragment from the prior frame */
624  s->all_fragments[current_fragment].coding_method =
625  MODE_COPY;
626  }
627  }
628  }
629  }
630  }
631  if (!plane)
632  plane0_num_coded_frags = num_coded_frags;
633  s->total_num_coded_frags += num_coded_frags;
634  for (i = 0; i < 64; i++)
635  s->num_coded_frags[plane][i] = num_coded_frags;
636  if (plane < 2)
637  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
638  num_coded_frags;
639  }
640  return 0;
641 }
642 
643 #define BLOCK_X (2 * mb_x + (k & 1))
644 #define BLOCK_Y (2 * mb_y + (k >> 1))
645 
646 #if CONFIG_VP4_DECODER
647 /**
648  * @return number of blocks, or > yuv_macroblock_count on error.
649  * return value is always >= 1.
650  */
651 static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
652 {
653  int v = 1;
654  int bits;
655  while ((bits = show_bits(gb, 9)) == 0x1ff) {
656  skip_bits(gb, 9);
657  v += 256;
658  if (v > s->yuv_macroblock_count) {
659  av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
660  return v;
661  }
662  }
663 #define body(n) { \
664  skip_bits(gb, 2 + n); \
665  v += (1 << n) + get_bits(gb, n); }
666 #define thresh(n) (0x200 - (0x80 >> n))
667 #define else_if(n) else if (bits < thresh(n)) body(n)
668  if (bits < 0x100) {
669  skip_bits(gb, 1);
670  } else if (bits < thresh(0)) {
671  skip_bits(gb, 2);
672  v += 1;
673  }
674  else_if(1)
675  else_if(2)
676  else_if(3)
677  else_if(4)
678  else_if(5)
679  else_if(6)
680  else body(7)
681 #undef body
682 #undef thresh
683 #undef else_if
684  return v;
685 }
686 
687 static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table)
688 {
689  int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2);
690  *next_block_pattern_table = vp4_block_pattern_table_selector[v];
691  return v + 1;
692 }
693 
694 static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
695 {
696  int plane, i, j, k, fragment;
697  int next_block_pattern_table;
698  int bit, current_run, has_partial;
699 
701 
702  if (s->keyframe)
703  return 0;
704 
705  has_partial = 0;
706  bit = get_bits1(gb);
707  for (i = 0; i < s->yuv_macroblock_count; i += current_run) {
708  if (get_bits_left(gb) <= 0)
709  return AVERROR_INVALIDDATA;
710  current_run = vp4_get_mb_count(s, gb);
711  if (current_run > s->yuv_macroblock_count - i)
712  return -1;
713  memset(s->superblock_coding + i, 2 * bit, current_run);
714  bit ^= 1;
715  has_partial |= bit;
716  }
717 
718  if (has_partial) {
719  if (get_bits_left(gb) <= 0)
720  return AVERROR_INVALIDDATA;
721  bit = get_bits1(gb);
722  current_run = vp4_get_mb_count(s, gb);
723  for (i = 0; i < s->yuv_macroblock_count; i++) {
724  if (!s->superblock_coding[i]) {
725  if (!current_run) {
726  bit ^= 1;
727  current_run = vp4_get_mb_count(s, gb);
728  }
729  s->superblock_coding[i] = bit;
730  current_run--;
731  }
732  }
733  if (current_run) /* handle situation when vp4_get_mb_count() fails */
734  return -1;
735  }
736 
737  next_block_pattern_table = 0;
738  i = 0;
739  for (plane = 0; plane < 3; plane++) {
740  int sb_x, sb_y;
741  int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
742  int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
743  int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
744  int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
745  int fragment_width = s->fragment_width[!!plane];
746  int fragment_height = s->fragment_height[!!plane];
747 
748  for (sb_y = 0; sb_y < sb_height; sb_y++) {
749  for (sb_x = 0; sb_x < sb_width; sb_x++) {
750  for (j = 0; j < 4; j++) {
751  int mb_x = 2 * sb_x + (j >> 1);
752  int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
753  int mb_coded, pattern, coded;
754 
755  if (mb_x >= mb_width || mb_y >= mb_height)
756  continue;
757 
758  mb_coded = s->superblock_coding[i++];
759 
760  if (mb_coded == SB_FULLY_CODED)
761  pattern = 0xF;
762  else if (mb_coded == SB_PARTIALLY_CODED)
763  pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table);
764  else
765  pattern = 0;
766 
767  for (k = 0; k < 4; k++) {
768  if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
769  continue;
770  fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
771  coded = pattern & (8 >> k);
772  /* MODE_INTER_NO_MV is the default for coded fragments.
773  the actual method is decoded in the next phase. */
774  s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
775  }
776  }
777  }
778  }
779  }
780  return 0;
781 }
782 #endif
783 
784 /*
785  * This function unpacks all the coding mode data for individual macroblocks
786  * from the bitstream.
787  */
789 {
790  int i, j, k, sb_x, sb_y;
791  int scheme;
792  int current_macroblock;
793  int current_fragment;
794  int coding_mode;
795  int custom_mode_alphabet[CODING_MODE_COUNT];
796  const int *alphabet;
797  Vp3Fragment *frag;
798 
799  if (s->keyframe) {
800  for (i = 0; i < s->fragment_count; i++)
802  } else {
803  /* fetch the mode coding scheme for this frame */
804  scheme = get_bits(gb, 3);
805 
806  /* is it a custom coding scheme? */
807  if (scheme == 0) {
808  for (i = 0; i < 8; i++)
809  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
810  for (i = 0; i < 8; i++)
811  custom_mode_alphabet[get_bits(gb, 3)] = i;
812  alphabet = custom_mode_alphabet;
813  } else
814  alphabet = ModeAlphabet[scheme - 1];
815 
816  /* iterate through all of the macroblocks that contain 1 or more
817  * coded fragments */
818  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
819  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
820  if (get_bits_left(gb) <= 0)
821  return -1;
822 
823  for (j = 0; j < 4; j++) {
824  int mb_x = 2 * sb_x + (j >> 1);
825  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
826  current_macroblock = mb_y * s->macroblock_width + mb_x;
827 
828  if (mb_x >= s->macroblock_width ||
829  mb_y >= s->macroblock_height)
830  continue;
831 
832  /* coding modes are only stored if the macroblock has
833  * at least one luma block coded, otherwise it must be
834  * INTER_NO_MV */
835  for (k = 0; k < 4; k++) {
836  current_fragment = BLOCK_Y *
837  s->fragment_width[0] + BLOCK_X;
838  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
839  break;
840  }
841  if (k == 4) {
842  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
843  continue;
844  }
845 
846  /* mode 7 means get 3 bits for each coding mode */
847  if (scheme == 7)
848  coding_mode = get_bits(gb, 3);
849  else
850  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
851 
852  s->macroblock_coding[current_macroblock] = coding_mode;
853  for (k = 0; k < 4; k++) {
854  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
855  if (frag->coding_method != MODE_COPY)
856  frag->coding_method = coding_mode;
857  }
858 
859 #define SET_CHROMA_MODES \
860  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
861  frag[s->fragment_start[1]].coding_method = coding_mode; \
862  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
863  frag[s->fragment_start[2]].coding_method = coding_mode;
864 
865  if (s->chroma_y_shift) {
866  frag = s->all_fragments + mb_y *
867  s->fragment_width[1] + mb_x;
869  } else if (s->chroma_x_shift) {
870  frag = s->all_fragments +
871  2 * mb_y * s->fragment_width[1] + mb_x;
872  for (k = 0; k < 2; k++) {
874  frag += s->fragment_width[1];
875  }
876  } else {
877  for (k = 0; k < 4; k++) {
878  frag = s->all_fragments +
879  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
881  }
882  }
883  }
884  }
885  }
886  }
887 
888  return 0;
889 }
890 
891 static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
892 {
893  int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table,
894  VP4_MV_VLC_BITS, 2);
895  return last_motion < 0 ? -v : v;
896 }
897 
898 /*
899  * This function unpacks all the motion vectors for the individual
900  * macroblocks from the bitstream.
901  */
903 {
904  int j, k, sb_x, sb_y;
905  int coding_mode;
906  int motion_x[4];
907  int motion_y[4];
908  int last_motion_x = 0;
909  int last_motion_y = 0;
910  int prior_last_motion_x = 0;
911  int prior_last_motion_y = 0;
912  int last_gold_motion_x = 0;
913  int last_gold_motion_y = 0;
914  int current_macroblock;
915  int current_fragment;
916  int frag;
917 
918  if (s->keyframe)
919  return 0;
920 
921  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
922  coding_mode = s->version < 2 ? get_bits1(gb) : 2;
923 
924  /* iterate through all of the macroblocks that contain 1 or more
925  * coded fragments */
926  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
927  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
928  if (get_bits_left(gb) <= 0)
929  return -1;
930 
931  for (j = 0; j < 4; j++) {
932  int mb_x = 2 * sb_x + (j >> 1);
933  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
934  current_macroblock = mb_y * s->macroblock_width + mb_x;
935 
936  if (mb_x >= s->macroblock_width ||
937  mb_y >= s->macroblock_height ||
938  s->macroblock_coding[current_macroblock] == MODE_COPY)
939  continue;
940 
941  switch (s->macroblock_coding[current_macroblock]) {
942  case MODE_GOLDEN_MV:
943  if (coding_mode == 2) { /* VP4 */
944  last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x);
945  last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y);
946  break;
947  } /* otherwise fall through */
948  case MODE_INTER_PLUS_MV:
949  /* all 6 fragments use the same motion vector */
950  if (coding_mode == 0) {
951  motion_x[0] = get_vlc2(gb, s->motion_vector_vlc.table,
952  VP3_MV_VLC_BITS, 2);
953  motion_y[0] = get_vlc2(gb, s->motion_vector_vlc.table,
954  VP3_MV_VLC_BITS, 2);
955  } else if (coding_mode == 1) {
956  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
957  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
958  } else { /* VP4 */
959  motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x);
960  motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y);
961  }
962 
963  /* vector maintenance, only on MODE_INTER_PLUS_MV */
964  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
965  prior_last_motion_x = last_motion_x;
966  prior_last_motion_y = last_motion_y;
967  last_motion_x = motion_x[0];
968  last_motion_y = motion_y[0];
969  }
970  break;
971 
972  case MODE_INTER_FOURMV:
973  /* vector maintenance */
974  prior_last_motion_x = last_motion_x;
975  prior_last_motion_y = last_motion_y;
976 
977  /* fetch 4 vectors from the bitstream, one for each
978  * Y fragment, then average for the C fragment vectors */
979  for (k = 0; k < 4; k++) {
980  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
981  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
982  if (coding_mode == 0) {
983  motion_x[k] = get_vlc2(gb, s->motion_vector_vlc.table,
984  VP3_MV_VLC_BITS, 2);
985  motion_y[k] = get_vlc2(gb, s->motion_vector_vlc.table,
986  VP3_MV_VLC_BITS, 2);
987  } else if (coding_mode == 1) {
988  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
989  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
990  } else { /* VP4 */
991  motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x);
992  motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y);
993  }
994  last_motion_x = motion_x[k];
995  last_motion_y = motion_y[k];
996  } else {
997  motion_x[k] = 0;
998  motion_y[k] = 0;
999  }
1000  }
1001  break;
1002 
1003  case MODE_INTER_LAST_MV:
1004  /* all 6 fragments use the last motion vector */
1005  motion_x[0] = last_motion_x;
1006  motion_y[0] = last_motion_y;
1007 
1008  /* no vector maintenance (last vector remains the
1009  * last vector) */
1010  break;
1011 
1012  case MODE_INTER_PRIOR_LAST:
1013  /* all 6 fragments use the motion vector prior to the
1014  * last motion vector */
1015  motion_x[0] = prior_last_motion_x;
1016  motion_y[0] = prior_last_motion_y;
1017 
1018  /* vector maintenance */
1019  prior_last_motion_x = last_motion_x;
1020  prior_last_motion_y = last_motion_y;
1021  last_motion_x = motion_x[0];
1022  last_motion_y = motion_y[0];
1023  break;
1024 
1025  default:
1026  /* covers intra, inter without MV, golden without MV */
1027  motion_x[0] = 0;
1028  motion_y[0] = 0;
1029 
1030  /* no vector maintenance */
1031  break;
1032  }
1033 
1034  /* assign the motion vectors to the correct fragments */
1035  for (k = 0; k < 4; k++) {
1036  current_fragment =
1037  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
1038  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1039  s->motion_val[0][current_fragment][0] = motion_x[k];
1040  s->motion_val[0][current_fragment][1] = motion_y[k];
1041  } else {
1042  s->motion_val[0][current_fragment][0] = motion_x[0];
1043  s->motion_val[0][current_fragment][1] = motion_y[0];
1044  }
1045  }
1046 
1047  if (s->chroma_y_shift) {
1048  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1049  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
1050  motion_x[2] + motion_x[3], 2);
1051  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
1052  motion_y[2] + motion_y[3], 2);
1053  }
1054  if (s->version <= 2) {
1055  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1056  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
1057  }
1058  frag = mb_y * s->fragment_width[1] + mb_x;
1059  s->motion_val[1][frag][0] = motion_x[0];
1060  s->motion_val[1][frag][1] = motion_y[0];
1061  } else if (s->chroma_x_shift) {
1062  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1063  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
1064  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
1065  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
1066  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
1067  } else {
1068  motion_x[1] = motion_x[0];
1069  motion_y[1] = motion_y[0];
1070  }
1071  if (s->version <= 2) {
1072  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1073  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
1074  }
1075  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
1076  for (k = 0; k < 2; k++) {
1077  s->motion_val[1][frag][0] = motion_x[k];
1078  s->motion_val[1][frag][1] = motion_y[k];
1079  frag += s->fragment_width[1];
1080  }
1081  } else {
1082  for (k = 0; k < 4; k++) {
1083  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
1084  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1085  s->motion_val[1][frag][0] = motion_x[k];
1086  s->motion_val[1][frag][1] = motion_y[k];
1087  } else {
1088  s->motion_val[1][frag][0] = motion_x[0];
1089  s->motion_val[1][frag][1] = motion_y[0];
1090  }
1091  }
1092  }
1093  }
1094  }
1095  }
1096 
1097  return 0;
1098 }
1099 
1101 {
1102  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
1103  int num_blocks = s->total_num_coded_frags;
1104 
1105  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
1106  i = blocks_decoded = num_blocks_at_qpi = 0;
1107 
1108  bit = get_bits1(gb) ^ 1;
1109  run_length = 0;
1110 
1111  do {
1112  if (run_length == MAXIMUM_LONG_BIT_RUN)
1113  bit = get_bits1(gb);
1114  else
1115  bit ^= 1;
1116 
1117  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table,
1118  SUPERBLOCK_VLC_BITS, 2);
1119  if (run_length == 34)
1120  run_length += get_bits(gb, 12);
1121  blocks_decoded += run_length;
1122 
1123  if (!bit)
1124  num_blocks_at_qpi += run_length;
1125 
1126  for (j = 0; j < run_length; i++) {
1127  if (i >= s->total_num_coded_frags)
1128  return -1;
1129 
1130  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
1131  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
1132  j++;
1133  }
1134  }
1135  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
1136 
1137  num_blocks -= num_blocks_at_qpi;
1138  }
1139 
1140  return 0;
1141 }
1142 
1143 static inline int get_eob_run(GetBitContext *gb, int token)
1144 {
1145  int v = eob_run_table[token].base;
1146  if (eob_run_table[token].bits)
1147  v += get_bits(gb, eob_run_table[token].bits);
1148  return v;
1149 }
1150 
1151 static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
1152 {
1153  int bits_to_get, zero_run;
1154 
1155  bits_to_get = coeff_get_bits[token];
1156  if (bits_to_get)
1157  bits_to_get = get_bits(gb, bits_to_get);
1158  *coeff = coeff_tables[token][bits_to_get];
1159 
1160  zero_run = zero_run_base[token];
1161  if (zero_run_get_bits[token])
1162  zero_run += get_bits(gb, zero_run_get_bits[token]);
1163 
1164  return zero_run;
1165 }
1166 
1167 /*
1168  * This function is called by unpack_dct_coeffs() to extract the VLCs from
1169  * the bitstream. The VLCs encode tokens which are used to unpack DCT
1170  * data. This function unpacks all the VLCs for either the Y plane or both
1171  * C planes, and is called for DC coefficients or different AC coefficient
1172  * levels (since different coefficient types require different VLC tables.
1173  *
1174  * This function returns a residual eob run. E.g, if a particular token gave
1175  * instructions to EOB the next 5 fragments and there were only 2 fragments
1176  * left in the current fragment range, 3 would be returned so that it could
1177  * be passed into the next call to this same function.
1178  */
1180  VLC *table, int coeff_index,
1181  int plane,
1182  int eob_run)
1183 {
1184  int i, j = 0;
1185  int token;
1186  int zero_run = 0;
1187  int16_t coeff = 0;
1188  int blocks_ended;
1189  int coeff_i = 0;
1190  int num_coeffs = s->num_coded_frags[plane][coeff_index];
1191  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
1192 
1193  /* local references to structure members to avoid repeated dereferences */
1194  int *coded_fragment_list = s->coded_fragment_list[plane];
1195  Vp3Fragment *all_fragments = s->all_fragments;
1196  VLC_TYPE(*vlc_table)[2] = table->table;
1197 
1198  if (num_coeffs < 0) {
1200  "Invalid number of coefficients at level %d\n", coeff_index);
1201  return AVERROR_INVALIDDATA;
1202  }
1203 
1204  if (eob_run > num_coeffs) {
1205  coeff_i =
1206  blocks_ended = num_coeffs;
1207  eob_run -= num_coeffs;
1208  } else {
1209  coeff_i =
1210  blocks_ended = eob_run;
1211  eob_run = 0;
1212  }
1213 
1214  // insert fake EOB token to cover the split between planes or zzi
1215  if (blocks_ended)
1216  dct_tokens[j++] = blocks_ended << 2;
1217 
1218  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
1219  /* decode a VLC into a token */
1220  token = get_vlc2(gb, vlc_table, 11, 3);
1221  /* use the token to get a zero run, a coefficient, and an eob run */
1222  if ((unsigned) token <= 6U) {
1223  eob_run = get_eob_run(gb, token);
1224  if (!eob_run)
1225  eob_run = INT_MAX;
1226 
1227  // record only the number of blocks ended in this plane,
1228  // any spill will be recorded in the next plane.
1229  if (eob_run > num_coeffs - coeff_i) {
1230  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
1231  blocks_ended += num_coeffs - coeff_i;
1232  eob_run -= num_coeffs - coeff_i;
1233  coeff_i = num_coeffs;
1234  } else {
1235  dct_tokens[j++] = TOKEN_EOB(eob_run);
1236  blocks_ended += eob_run;
1237  coeff_i += eob_run;
1238  eob_run = 0;
1239  }
1240  } else if (token >= 0) {
1241  zero_run = get_coeff(gb, token, &coeff);
1242 
1243  if (zero_run) {
1244  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1245  } else {
1246  // Save DC into the fragment structure. DC prediction is
1247  // done in raster order, so the actual DC can't be in with
1248  // other tokens. We still need the token in dct_tokens[]
1249  // however, or else the structure collapses on itself.
1250  if (!coeff_index)
1251  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1252 
1253  dct_tokens[j++] = TOKEN_COEFF(coeff);
1254  }
1255 
1256  if (coeff_index + zero_run > 64) {
1258  "Invalid zero run of %d with %d coeffs left\n",
1259  zero_run, 64 - coeff_index);
1260  zero_run = 64 - coeff_index;
1261  }
1262 
1263  // zero runs code multiple coefficients,
1264  // so don't try to decode coeffs for those higher levels
1265  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1266  s->num_coded_frags[plane][i]--;
1267  coeff_i++;
1268  } else {
1269  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1270  return -1;
1271  }
1272  }
1273 
1274  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1275  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1276 
1277  // decrement the number of blocks that have higher coefficients for each
1278  // EOB run at this level
1279  if (blocks_ended)
1280  for (i = coeff_index + 1; i < 64; i++)
1281  s->num_coded_frags[plane][i] -= blocks_ended;
1282 
1283  // setup the next buffer
1284  if (plane < 2)
1285  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1286  else if (coeff_index < 63)
1287  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1288 
1289  return eob_run;
1290 }
1291 
1293  int first_fragment,
1294  int fragment_width,
1295  int fragment_height);
1296 /*
1297  * This function unpacks all of the DCT coefficient data from the
1298  * bitstream.
1299  */
1301 {
1302  int i;
1303  int dc_y_table;
1304  int dc_c_table;
1305  int ac_y_table;
1306  int ac_c_table;
1307  int residual_eob_run = 0;
1308  VLC *y_tables[64];
1309  VLC *c_tables[64];
1310 
1311  s->dct_tokens[0][0] = s->dct_tokens_base;
1312 
1313  if (get_bits_left(gb) < 16)
1314  return AVERROR_INVALIDDATA;
1315 
1316  /* fetch the DC table indexes */
1317  dc_y_table = get_bits(gb, 4);
1318  dc_c_table = get_bits(gb, 4);
1319 
1320  /* unpack the Y plane DC coefficients */
1321  residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_y_table], 0,
1322  0, residual_eob_run);
1323  if (residual_eob_run < 0)
1324  return residual_eob_run;
1325  if (get_bits_left(gb) < 8)
1326  return AVERROR_INVALIDDATA;
1327 
1328  /* reverse prediction of the Y-plane DC coefficients */
1330 
1331  /* unpack the C plane DC coefficients */
1332  residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0,
1333  1, residual_eob_run);
1334  if (residual_eob_run < 0)
1335  return residual_eob_run;
1336  residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0,
1337  2, residual_eob_run);
1338  if (residual_eob_run < 0)
1339  return residual_eob_run;
1340 
1341  /* reverse prediction of the C-plane DC coefficients */
1342  if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
1344  s->fragment_width[1], s->fragment_height[1]);
1346  s->fragment_width[1], s->fragment_height[1]);
1347  }
1348 
1349  if (get_bits_left(gb) < 8)
1350  return AVERROR_INVALIDDATA;
1351  /* fetch the AC table indexes */
1352  ac_y_table = get_bits(gb, 4);
1353  ac_c_table = get_bits(gb, 4);
1354 
1355  /* build tables of AC VLC tables */
1356  for (i = 1; i <= 5; i++) {
1357  /* AC VLC table group 1 */
1358  y_tables[i] = &s->coeff_vlc[ac_y_table + 16];
1359  c_tables[i] = &s->coeff_vlc[ac_c_table + 16];
1360  }
1361  for (i = 6; i <= 14; i++) {
1362  /* AC VLC table group 2 */
1363  y_tables[i] = &s->coeff_vlc[ac_y_table + 32];
1364  c_tables[i] = &s->coeff_vlc[ac_c_table + 32];
1365  }
1366  for (i = 15; i <= 27; i++) {
1367  /* AC VLC table group 3 */
1368  y_tables[i] = &s->coeff_vlc[ac_y_table + 48];
1369  c_tables[i] = &s->coeff_vlc[ac_c_table + 48];
1370  }
1371  for (i = 28; i <= 63; i++) {
1372  /* AC VLC table group 4 */
1373  y_tables[i] = &s->coeff_vlc[ac_y_table + 64];
1374  c_tables[i] = &s->coeff_vlc[ac_c_table + 64];
1375  }
1376 
1377  /* decode all AC coefficients */
1378  for (i = 1; i <= 63; i++) {
1379  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1380  0, residual_eob_run);
1381  if (residual_eob_run < 0)
1382  return residual_eob_run;
1383 
1384  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1385  1, residual_eob_run);
1386  if (residual_eob_run < 0)
1387  return residual_eob_run;
1388  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1389  2, residual_eob_run);
1390  if (residual_eob_run < 0)
1391  return residual_eob_run;
1392  }
1393 
1394  return 0;
1395 }
1396 
1397 #if CONFIG_VP4_DECODER
1398 /**
1399  * eob_tracker[] is instead of TOKEN_EOB(value)
1400  * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
1401  *
1402  * @return < 0 on error
1403  */
1404 static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1405  VLC *vlc_tables[64],
1406  int plane, int eob_tracker[64], int fragment)
1407 {
1408  int token;
1409  int zero_run = 0;
1410  int16_t coeff = 0;
1411  int coeff_i = 0;
1412  int eob_run;
1413 
1414  while (!eob_tracker[coeff_i]) {
1415  if (get_bits_left(gb) < 1)
1416  return AVERROR_INVALIDDATA;
1417 
1418  token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3);
1419 
1420  /* use the token to get a zero run, a coefficient, and an eob run */
1421  if ((unsigned) token <= 6U) {
1422  eob_run = get_eob_run(gb, token);
1423  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1424  eob_tracker[coeff_i] = eob_run - 1;
1425  return 0;
1426  } else if (token >= 0) {
1427  zero_run = get_coeff(gb, token, &coeff);
1428 
1429  if (zero_run) {
1430  if (coeff_i + zero_run > 64) {
1432  "Invalid zero run of %d with %d coeffs left\n",
1433  zero_run, 64 - coeff_i);
1434  zero_run = 64 - coeff_i;
1435  }
1436  *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
1437  coeff_i += zero_run;
1438  } else {
1439  if (!coeff_i)
1440  s->all_fragments[fragment].dc = coeff;
1441 
1442  *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
1443  }
1444  coeff_i++;
1445  if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
1446  return 0; /* stop */
1447  } else {
1448  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1449  return -1;
1450  }
1451  }
1452  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1453  eob_tracker[coeff_i]--;
1454  return 0;
1455 }
1456 
1457 static void vp4_dc_predictor_reset(VP4Predictor *p)
1458 {
1459  p->dc = 0;
1460  p->type = VP4_DC_UNDEFINED;
1461 }
1462 
1463 static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1464 {
1465  int i, j;
1466 
1467  for (i = 0; i < 4; i++)
1468  dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];
1469 
1470  for (j = 1; j < 5; j++)
1471  for (i = 0; i < 4; i++)
1472  vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
1473 }
1474 
1475 static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1476 {
1477  int i;
1478 
1479  for (i = 0; i < 4; i++)
1480  s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];
1481 
1482  for (i = 1; i < 5; i++)
1483  dc_pred[i][0] = dc_pred[i][4];
1484 }
1485 
1486 /* note: dc_pred points to the current block */
1487 static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
1488 {
1489  int count = 0;
1490  int dc = 0;
1491 
1492  if (dc_pred[-6].type == type) {
1493  dc += dc_pred[-6].dc;
1494  count++;
1495  }
1496 
1497  if (dc_pred[6].type == type) {
1498  dc += dc_pred[6].dc;
1499  count++;
1500  }
1501 
1502  if (count != 2 && dc_pred[-1].type == type) {
1503  dc += dc_pred[-1].dc;
1504  count++;
1505  }
1506 
1507  if (count != 2 && dc_pred[1].type == type) {
1508  dc += dc_pred[1].dc;
1509  count++;
1510  }
1511 
1512  /* using division instead of shift to correctly handle negative values */
1513  return count == 2 ? dc / 2 : last_dc[type];
1514 }
1515 
1516 static void vp4_set_tokens_base(Vp3DecodeContext *s)
1517 {
1518  int plane, i;
1519  int16_t *base = s->dct_tokens_base;
1520  for (plane = 0; plane < 3; plane++) {
1521  for (i = 0; i < 64; i++) {
1522  s->dct_tokens[plane][i] = base;
1523  base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
1524  }
1525  }
1526 }
1527 
1528 static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1529 {
1530  int i, j;
1531  int dc_y_table;
1532  int dc_c_table;
1533  int ac_y_table;
1534  int ac_c_table;
1535  VLC *tables[2][64];
1536  int plane, sb_y, sb_x;
1537  int eob_tracker[64];
1538  VP4Predictor dc_pred[6][6];
1539  int last_dc[NB_VP4_DC_TYPES];
1540 
1541  if (get_bits_left(gb) < 16)
1542  return AVERROR_INVALIDDATA;
1543 
1544  /* fetch the DC table indexes */
1545  dc_y_table = get_bits(gb, 4);
1546  dc_c_table = get_bits(gb, 4);
1547 
1548  ac_y_table = get_bits(gb, 4);
1549  ac_c_table = get_bits(gb, 4);
1550 
1551  /* build tables of DC/AC VLC tables */
1552 
1553  /* DC table group */
1554  tables[0][0] = &s->coeff_vlc[dc_y_table];
1555  tables[1][0] = &s->coeff_vlc[dc_c_table];
1556  for (i = 1; i <= 5; i++) {
1557  /* AC VLC table group 1 */
1558  tables[0][i] = &s->coeff_vlc[ac_y_table + 16];
1559  tables[1][i] = &s->coeff_vlc[ac_c_table + 16];
1560  }
1561  for (i = 6; i <= 14; i++) {
1562  /* AC VLC table group 2 */
1563  tables[0][i] = &s->coeff_vlc[ac_y_table + 32];
1564  tables[1][i] = &s->coeff_vlc[ac_c_table + 32];
1565  }
1566  for (i = 15; i <= 27; i++) {
1567  /* AC VLC table group 3 */
1568  tables[0][i] = &s->coeff_vlc[ac_y_table + 48];
1569  tables[1][i] = &s->coeff_vlc[ac_c_table + 48];
1570  }
1571  for (i = 28; i <= 63; i++) {
1572  /* AC VLC table group 4 */
1573  tables[0][i] = &s->coeff_vlc[ac_y_table + 64];
1574  tables[1][i] = &s->coeff_vlc[ac_c_table + 64];
1575  }
1576 
1577  vp4_set_tokens_base(s);
1578 
1579  memset(last_dc, 0, sizeof(last_dc));
1580 
1581  for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
1582  memset(eob_tracker, 0, sizeof(eob_tracker));
1583 
1584  /* initialise dc prediction */
1585  for (i = 0; i < s->fragment_width[!!plane]; i++)
1586  vp4_dc_predictor_reset(&s->dc_pred_row[i]);
1587 
1588  for (j = 0; j < 6; j++)
1589  for (i = 0; i < 6; i++)
1590  vp4_dc_predictor_reset(&dc_pred[j][i]);
1591 
1592  for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
1593  for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
1594  vp4_dc_pred_before(s, dc_pred, sb_x);
1595  for (j = 0; j < 16; j++) {
1596  int hx = hilbert_offset[j][0];
1597  int hy = hilbert_offset[j][1];
1598  int x = 4 * sb_x + hx;
1599  int y = 4 * sb_y + hy;
1600  VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
1601  int fragment, dc_block_type;
1602 
1603  if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
1604  continue;
1605 
1606  fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;
1607 
1608  if (s->all_fragments[fragment].coding_method == MODE_COPY)
1609  continue;
1610 
1611  if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
1612  return -1;
1613 
1614  dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];
1615 
1616  s->all_fragments[fragment].dc +=
1617  vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);
1618 
1619  this_dc_pred->type = dc_block_type,
1620  this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
1621  }
1622  vp4_dc_pred_after(s, dc_pred, sb_x);
1623  }
1624  }
1625  }
1626 
1627  vp4_set_tokens_base(s);
1628 
1629  return 0;
1630 }
1631 #endif
1632 
1633 /*
1634  * This function reverses the DC prediction for each coded fragment in
1635  * the frame. Much of this function is adapted directly from the original
1636  * VP3 source code.
1637  */
1638 #define COMPATIBLE_FRAME(x) \
1639  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1640 #define DC_COEFF(u) s->all_fragments[u].dc
1641 
1643  int first_fragment,
1644  int fragment_width,
1645  int fragment_height)
1646 {
1647 #define PUL 8
1648 #define PU 4
1649 #define PUR 2
1650 #define PL 1
1651 
1652  int x, y;
1653  int i = first_fragment;
1654 
1655  int predicted_dc;
1656 
1657  /* DC values for the left, up-left, up, and up-right fragments */
1658  int vl, vul, vu, vur;
1659 
1660  /* indexes for the left, up-left, up, and up-right fragments */
1661  int l, ul, u, ur;
1662 
1663  /*
1664  * The 6 fields mean:
1665  * 0: up-left multiplier
1666  * 1: up multiplier
1667  * 2: up-right multiplier
1668  * 3: left multiplier
1669  */
1670  static const int predictor_transform[16][4] = {
1671  { 0, 0, 0, 0 },
1672  { 0, 0, 0, 128 }, // PL
1673  { 0, 0, 128, 0 }, // PUR
1674  { 0, 0, 53, 75 }, // PUR|PL
1675  { 0, 128, 0, 0 }, // PU
1676  { 0, 64, 0, 64 }, // PU |PL
1677  { 0, 128, 0, 0 }, // PU |PUR
1678  { 0, 0, 53, 75 }, // PU |PUR|PL
1679  { 128, 0, 0, 0 }, // PUL
1680  { 0, 0, 0, 128 }, // PUL|PL
1681  { 64, 0, 64, 0 }, // PUL|PUR
1682  { 0, 0, 53, 75 }, // PUL|PUR|PL
1683  { 0, 128, 0, 0 }, // PUL|PU
1684  { -104, 116, 0, 116 }, // PUL|PU |PL
1685  { 24, 80, 24, 0 }, // PUL|PU |PUR
1686  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1687  };
1688 
1689  /* This table shows which types of blocks can use other blocks for
1690  * prediction. For example, INTRA is the only mode in this table to
1691  * have a frame number of 0. That means INTRA blocks can only predict
1692  * from other INTRA blocks. There are 2 golden frame coding types;
1693  * blocks encoding in these modes can only predict from other blocks
1694  * that were encoded with these 1 of these 2 modes. */
1695  static const unsigned char compatible_frame[9] = {
1696  1, /* MODE_INTER_NO_MV */
1697  0, /* MODE_INTRA */
1698  1, /* MODE_INTER_PLUS_MV */
1699  1, /* MODE_INTER_LAST_MV */
1700  1, /* MODE_INTER_PRIOR_MV */
1701  2, /* MODE_USING_GOLDEN */
1702  2, /* MODE_GOLDEN_MV */
1703  1, /* MODE_INTER_FOUR_MV */
1704  3 /* MODE_COPY */
1705  };
1706  int current_frame_type;
1707 
1708  /* there is a last DC predictor for each of the 3 frame types */
1709  short last_dc[3];
1710 
1711  int transform = 0;
1712 
1713  vul =
1714  vu =
1715  vur =
1716  vl = 0;
1717  last_dc[0] =
1718  last_dc[1] =
1719  last_dc[2] = 0;
1720 
1721  /* for each fragment row... */
1722  for (y = 0; y < fragment_height; y++) {
1723  /* for each fragment in a row... */
1724  for (x = 0; x < fragment_width; x++, i++) {
1725 
1726  /* reverse prediction if this block was coded */
1727  if (s->all_fragments[i].coding_method != MODE_COPY) {
1728  current_frame_type =
1729  compatible_frame[s->all_fragments[i].coding_method];
1730 
1731  transform = 0;
1732  if (x) {
1733  l = i - 1;
1734  vl = DC_COEFF(l);
1735  if (COMPATIBLE_FRAME(l))
1736  transform |= PL;
1737  }
1738  if (y) {
1739  u = i - fragment_width;
1740  vu = DC_COEFF(u);
1741  if (COMPATIBLE_FRAME(u))
1742  transform |= PU;
1743  if (x) {
1744  ul = i - fragment_width - 1;
1745  vul = DC_COEFF(ul);
1746  if (COMPATIBLE_FRAME(ul))
1747  transform |= PUL;
1748  }
1749  if (x + 1 < fragment_width) {
1750  ur = i - fragment_width + 1;
1751  vur = DC_COEFF(ur);
1752  if (COMPATIBLE_FRAME(ur))
1753  transform |= PUR;
1754  }
1755  }
1756 
1757  if (transform == 0) {
1758  /* if there were no fragments to predict from, use last
1759  * DC saved */
1760  predicted_dc = last_dc[current_frame_type];
1761  } else {
1762  /* apply the appropriate predictor transform */
1763  predicted_dc =
1764  (predictor_transform[transform][0] * vul) +
1765  (predictor_transform[transform][1] * vu) +
1766  (predictor_transform[transform][2] * vur) +
1767  (predictor_transform[transform][3] * vl);
1768 
1769  predicted_dc /= 128;
1770 
1771  /* check for outranging on the [ul u l] and
1772  * [ul u ur l] predictors */
1773  if ((transform == 15) || (transform == 13)) {
1774  if (FFABS(predicted_dc - vu) > 128)
1775  predicted_dc = vu;
1776  else if (FFABS(predicted_dc - vl) > 128)
1777  predicted_dc = vl;
1778  else if (FFABS(predicted_dc - vul) > 128)
1779  predicted_dc = vul;
1780  }
1781  }
1782 
1783  /* at long last, apply the predictor */
1784  DC_COEFF(i) += predicted_dc;
1785  /* save the DC */
1786  last_dc[current_frame_type] = DC_COEFF(i);
1787  }
1788  }
1789  }
1790 }
1791 
1792 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1793  int ystart, int yend)
1794 {
1795  int x, y;
1796  int *bounding_values = s->bounding_values_array + 127;
1797 
1798  int width = s->fragment_width[!!plane];
1799  int height = s->fragment_height[!!plane];
1800  int fragment = s->fragment_start[plane] + ystart * width;
1801  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1802  uint8_t *plane_data = s->current_frame.f->data[plane];
1803  if (!s->flipped_image)
1804  stride = -stride;
1805  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1806 
1807  for (y = ystart; y < yend; y++) {
1808  for (x = 0; x < width; x++) {
1809  /* This code basically just deblocks on the edges of coded blocks.
1810  * However, it has to be much more complicated because of the
1811  * brain damaged deblock ordering used in VP3/Theora. Order matters
1812  * because some pixels get filtered twice. */
1813  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1814  /* do not perform left edge filter for left columns frags */
1815  if (x > 0) {
1816  s->vp3dsp.h_loop_filter(
1817  plane_data + 8 * x,
1818  stride, bounding_values);
1819  }
1820 
1821  /* do not perform top edge filter for top row fragments */
1822  if (y > 0) {
1823  s->vp3dsp.v_loop_filter(
1824  plane_data + 8 * x,
1825  stride, bounding_values);
1826  }
1827 
1828  /* do not perform right edge filter for right column
1829  * fragments or if right fragment neighbor is also coded
1830  * in this frame (it will be filtered in next iteration) */
1831  if ((x < width - 1) &&
1832  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1833  s->vp3dsp.h_loop_filter(
1834  plane_data + 8 * x + 8,
1835  stride, bounding_values);
1836  }
1837 
1838  /* do not perform bottom edge filter for bottom row
1839  * fragments or if bottom fragment neighbor is also coded
1840  * in this frame (it will be filtered in the next row) */
1841  if ((y < height - 1) &&
1842  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1843  s->vp3dsp.v_loop_filter(
1844  plane_data + 8 * x + 8 * stride,
1845  stride, bounding_values);
1846  }
1847  }
1848 
1849  fragment++;
1850  }
1851  plane_data += 8 * stride;
1852  }
1853 }
1854 
1855 /**
1856  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1857  * for the next block in coding order
1858  */
1859 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1860  int plane, int inter, int16_t block[64])
1861 {
1862  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1863  uint8_t *perm = s->idct_scantable;
1864  int i = 0;
1865 
1866  do {
1867  int token = *s->dct_tokens[plane][i];
1868  switch (token & 3) {
1869  case 0: // EOB
1870  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1871  s->dct_tokens[plane][i]++;
1872  else
1873  *s->dct_tokens[plane][i] = token & ~3;
1874  goto end;
1875  case 1: // zero run
1876  s->dct_tokens[plane][i]++;
1877  i += (token >> 2) & 0x7f;
1878  if (i > 63) {
1879  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1880  return i;
1881  }
1882  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1883  i++;
1884  break;
1885  case 2: // coeff
1886  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1887  s->dct_tokens[plane][i++]++;
1888  break;
1889  default: // shouldn't happen
1890  return i;
1891  }
1892  } while (i < 64);
1893  // return value is expected to be a valid level
1894  i--;
1895 end:
1896  // the actual DC+prediction is in the fragment structure
1897  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1898  return i;
1899 }
1900 
1901 /**
1902  * called when all pixels up to row y are complete
1903  */
1905 {
1906  int h, cy, i;
1908 
1909  if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1910  int y_flipped = s->flipped_image ? s->height - y : y;
1911 
1912  /* At the end of the frame, report INT_MAX instead of the height of
1913  * the frame. This makes the other threads' ff_thread_await_progress()
1914  * calls cheaper, because they don't have to clip their values. */
1916  y_flipped == s->height ? INT_MAX
1917  : y_flipped - 1,
1918  0);
1919  }
1920 
1921  if (!s->avctx->draw_horiz_band)
1922  return;
1923 
1924  h = y - s->last_slice_end;
1925  s->last_slice_end = y;
1926  y -= h;
1927 
1928  if (!s->flipped_image)
1929  y = s->height - y - h;
1930 
1931  cy = y >> s->chroma_y_shift;
1932  offset[0] = s->current_frame.f->linesize[0] * y;
1933  offset[1] = s->current_frame.f->linesize[1] * cy;
1934  offset[2] = s->current_frame.f->linesize[2] * cy;
1935  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1936  offset[i] = 0;
1937 
1938  emms_c();
1939  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1940 }
1941 
1942 /**
1943  * Wait for the reference frame of the current fragment.
1944  * The progress value is in luma pixel rows.
1945  */
1947  int motion_y, int y)
1948 {
1949  ThreadFrame *ref_frame;
1950  int ref_row;
1951  int border = motion_y & 1;
1952 
1953  if (fragment->coding_method == MODE_USING_GOLDEN ||
1954  fragment->coding_method == MODE_GOLDEN_MV)
1955  ref_frame = &s->golden_frame;
1956  else
1957  ref_frame = &s->last_frame;
1958 
1959  ref_row = y + (motion_y >> 1);
1960  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1961 
1962  ff_thread_await_progress(ref_frame, ref_row, 0);
1963 }
1964 
1965 #if CONFIG_VP4_DECODER
1966 /**
1967  * @return non-zero if temp (edge_emu_buffer) was populated
1968  */
1969 static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
1970  uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp)
1971 {
1972  int motion_shift = plane ? 4 : 2;
1973  int subpel_mask = plane ? 3 : 1;
1974  int *bounding_values = s->bounding_values_array + 127;
1975 
1976  int i;
1977  int x, y;
1978  int x2, y2;
1979  int x_subpel, y_subpel;
1980  int x_offset, y_offset;
1981 
1982  int block_width = plane ? 8 : 16;
1983  int plane_width = s->width >> (plane && s->chroma_x_shift);
1984  int plane_height = s->height >> (plane && s->chroma_y_shift);
1985 
1986 #define loop_stride 12
1987  uint8_t loop[12 * loop_stride];
1988 
1989  /* using division instead of shift to correctly handle negative values */
1990  x = 8 * bx + motion_x / motion_shift;
1991  y = 8 * by + motion_y / motion_shift;
1992 
1993  x_subpel = motion_x & subpel_mask;
1994  y_subpel = motion_y & subpel_mask;
1995 
1996  if (x_subpel || y_subpel) {
1997  x--;
1998  y--;
1999 
2000  if (x_subpel)
2001  x = FFMIN(x, x + FFSIGN(motion_x));
2002 
2003  if (y_subpel)
2004  y = FFMIN(y, y + FFSIGN(motion_y));
2005 
2006  x2 = x + block_width;
2007  y2 = y + block_width;
2008 
2009  if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
2010  return 0;
2011 
2012  x_offset = (-(x + 2) & 7) + 2;
2013  y_offset = (-(y + 2) & 7) + 2;
2014 
2015  if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel)
2016  return 0;
2017 
2018  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2019  loop_stride, stride,
2020  12, 12, src_x - 1, src_y - 1,
2021  plane_width,
2022  plane_height);
2023 
2024  if (x_offset <= 8 + x_subpel)
2025  ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);
2026 
2027  if (y_offset <= 8 + y_subpel)
2028  ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);
2029 
2030  } else {
2031 
2032  x_offset = -x & 7;
2033  y_offset = -y & 7;
2034 
2035  if (!x_offset && !y_offset)
2036  return 0;
2037 
2038  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2039  loop_stride, stride,
2040  12, 12, src_x - 1, src_y - 1,
2041  plane_width,
2042  plane_height);
2043 
2044 #define safe_loop_filter(name, ptr, stride, bounding_values) \
2045  if ((uintptr_t)(ptr) & 7) \
2046  s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
2047  else \
2048  s->vp3dsp.name(ptr, stride, bounding_values);
2049 
2050  if (x_offset)
2051  safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
2052 
2053  if (y_offset)
2054  safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
2055  }
2056 
2057  for (i = 0; i < 9; i++)
2058  memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);
2059 
2060  return 1;
2061 }
2062 #endif
2063 
2064 /*
2065  * Perform the final rendering for a particular slice of data.
2066  * The slice number ranges from 0..(c_superblock_height - 1).
2067  */
2068 static void render_slice(Vp3DecodeContext *s, int slice)
2069 {
2070  int x, y, i, j, fragment;
2071  int16_t *block = s->block;
2072  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2073  int motion_halfpel_index;
2074  uint8_t *motion_source;
2075  int plane, first_pixel;
2076 
2077  if (slice >= s->c_superblock_height)
2078  return;
2079 
2080  for (plane = 0; plane < 3; plane++) {
2081  uint8_t *output_plane = s->current_frame.f->data[plane] +
2082  s->data_offset[plane];
2083  uint8_t *last_plane = s->last_frame.f->data[plane] +
2084  s->data_offset[plane];
2085  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
2086  s->data_offset[plane];
2087  ptrdiff_t stride = s->current_frame.f->linesize[plane];
2088  int plane_width = s->width >> (plane && s->chroma_x_shift);
2089  int plane_height = s->height >> (plane && s->chroma_y_shift);
2090  int8_t(*motion_val)[2] = s->motion_val[!!plane];
2091 
2092  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
2093  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
2094  int slice_width = plane ? s->c_superblock_width
2095  : s->y_superblock_width;
2096 
2097  int fragment_width = s->fragment_width[!!plane];
2098  int fragment_height = s->fragment_height[!!plane];
2099  int fragment_start = s->fragment_start[plane];
2100 
2101  int do_await = !plane && HAVE_THREADS &&
2103 
2104  if (!s->flipped_image)
2105  stride = -stride;
2106  if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2107  continue;
2108 
2109  /* for each superblock row in the slice (both of them)... */
2110  for (; sb_y < slice_height; sb_y++) {
2111  /* for each superblock in a row... */
2112  for (sb_x = 0; sb_x < slice_width; sb_x++) {
2113  /* for each block in a superblock... */
2114  for (j = 0; j < 16; j++) {
2115  x = 4 * sb_x + hilbert_offset[j][0];
2116  y = 4 * sb_y + hilbert_offset[j][1];
2117  fragment = y * fragment_width + x;
2118 
2119  i = fragment_start + fragment;
2120 
2121  // bounds check
2122  if (x >= fragment_width || y >= fragment_height)
2123  continue;
2124 
2125  first_pixel = 8 * y * stride + 8 * x;
2126 
2127  if (do_await &&
2130  motion_val[fragment][1],
2131  (16 * y) >> s->chroma_y_shift);
2132 
2133  /* transform if this block was coded */
2134  if (s->all_fragments[i].coding_method != MODE_COPY) {
2137  motion_source = golden_plane;
2138  else
2139  motion_source = last_plane;
2140 
2141  motion_source += first_pixel;
2142  motion_halfpel_index = 0;
2143 
2144  /* sort out the motion vector if this fragment is coded
2145  * using a motion vector method */
2146  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
2148  int src_x, src_y;
2149  int standard_mc = 1;
2150  motion_x = motion_val[fragment][0];
2151  motion_y = motion_val[fragment][1];
2152 #if CONFIG_VP4_DECODER
2153  if (plane && s->version >= 2) {
2154  motion_x = (motion_x >> 1) | (motion_x & 1);
2155  motion_y = (motion_y >> 1) | (motion_y & 1);
2156  }
2157 #endif
2158 
2159  src_x = (motion_x >> 1) + 8 * x;
2160  src_y = (motion_y >> 1) + 8 * y;
2161 
2162  motion_halfpel_index = motion_x & 0x01;
2163  motion_source += (motion_x >> 1);
2164 
2165  motion_halfpel_index |= (motion_y & 0x01) << 1;
2166  motion_source += ((motion_y >> 1) * stride);
2167 
2168 #if CONFIG_VP4_DECODER
2169  if (s->version >= 2) {
2171  if (stride < 0)
2172  temp -= 8 * stride;
2173  if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
2174  motion_source = temp;
2175  standard_mc = 0;
2176  }
2177  }
2178 #endif
2179 
2180  if (standard_mc && (
2181  src_x < 0 || src_y < 0 ||
2182  src_x + 9 >= plane_width ||
2183  src_y + 9 >= plane_height)) {
2185  if (stride < 0)
2186  temp -= 8 * stride;
2187 
2188  s->vdsp.emulated_edge_mc(temp, motion_source,
2189  stride, stride,
2190  9, 9, src_x, src_y,
2191  plane_width,
2192  plane_height);
2193  motion_source = temp;
2194  }
2195  }
2196 
2197  /* first, take care of copying a block from either the
2198  * previous or the golden frame */
2199  if (s->all_fragments[i].coding_method != MODE_INTRA) {
2200  /* Note, it is possible to implement all MC cases
2201  * with put_no_rnd_pixels_l2 which would look more
2202  * like the VP3 source but this would be slower as
2203  * put_no_rnd_pixels_tab is better optimized */
2204  if (motion_halfpel_index != 3) {
2205  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2206  output_plane + first_pixel,
2207  motion_source, stride, 8);
2208  } else {
2209  /* d is 0 if motion_x and _y have the same sign,
2210  * else -1 */
2211  int d = (motion_x ^ motion_y) >> 31;
2212  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
2213  motion_source - d,
2214  motion_source + stride + 1 + d,
2215  stride, 8);
2216  }
2217  }
2218 
2219  /* invert DCT and place (or add) in final output */
2220 
2221  if (s->all_fragments[i].coding_method == MODE_INTRA) {
2222  vp3_dequant(s, s->all_fragments + i,
2223  plane, 0, block);
2224  s->vp3dsp.idct_put(output_plane + first_pixel,
2225  stride,
2226  block);
2227  } else {
2228  if (vp3_dequant(s, s->all_fragments + i,
2229  plane, 1, block)) {
2230  s->vp3dsp.idct_add(output_plane + first_pixel,
2231  stride,
2232  block);
2233  } else {
2234  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
2235  stride, block);
2236  }
2237  }
2238  } else {
2239  /* copy directly from the previous frame */
2240  s->hdsp.put_pixels_tab[1][0](
2241  output_plane + first_pixel,
2242  last_plane + first_pixel,
2243  stride, 8);
2244  }
2245  }
2246  }
2247 
2248  // Filter up to the last row in the superblock row
2249  if (s->version < 2 && !s->skip_loop_filter)
2250  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
2251  FFMIN(4 * sb_y + 3, fragment_height - 1));
2252  }
2253  }
2254 
2255  /* this looks like a good place for slice dispatch... */
2256  /* algorithm:
2257  * if (slice == s->macroblock_height - 1)
2258  * dispatch (both last slice & 2nd-to-last slice);
2259  * else if (slice > 0)
2260  * dispatch (slice - 1);
2261  */
2262 
2263  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
2264  s->height - 16));
2265 }
2266 
2267 /// Allocate tables for per-frame data in Vp3DecodeContext
2269 {
2270  Vp3DecodeContext *s = avctx->priv_data;
2271  int y_fragment_count, c_fragment_count;
2272 
2273  free_tables(avctx);
2274 
2275  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2276  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2277 
2278  /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
2281 
2282  s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
2284  memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
2285 
2287  64 * sizeof(*s->dct_tokens_base));
2288  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
2289  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
2290 
2291  /* work out the block mapping tables */
2292  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
2294 
2295  s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));
2296 
2297  if (!s->superblock_coding || !s->all_fragments ||
2301  !s->dc_pred_row ||
2302  !s->motion_val[0] || !s->motion_val[1]) {
2303  return -1;
2304  }
2305 
2306  init_block_mapping(s);
2307 
2308  return 0;
2309 }
2310 
2312 {
2314  s->last_frame.f = av_frame_alloc();
2315  s->golden_frame.f = av_frame_alloc();
2316 
2317  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f)
2318  return AVERROR(ENOMEM);
2319 
2320  return 0;
2321 }
2322 
2324 {
2325  Vp3DecodeContext *s = avctx->priv_data;
2326  int i, inter, plane, ret;
2327  int c_width;
2328  int c_height;
2329  int y_fragment_count, c_fragment_count;
2330 #if CONFIG_VP4_DECODER
2331  int j;
2332 #endif
2333 
2334  ret = init_frames(s);
2335  if (ret < 0)
2336  return ret;
2337 
2338  if (avctx->codec_tag == MKTAG('V', 'P', '4', '0'))
2339  s->version = 3;
2340  else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
2341  s->version = 0;
2342  else
2343  s->version = 1;
2344 
2345  s->avctx = avctx;
2346  s->width = FFALIGN(avctx->coded_width, 16);
2347  s->height = FFALIGN(avctx->coded_height, 16);
2348  if (avctx->codec_id != AV_CODEC_ID_THEORA)
2349  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2352  ff_videodsp_init(&s->vdsp, 8);
2353  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
2354 
2355  for (i = 0; i < 64; i++) {
2356 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
2357  s->idct_permutation[i] = TRANSPOSE(i);
2359 #undef TRANSPOSE
2360  }
2361 
2362  /* initialize to an impossible value which will force a recalculation
2363  * in the first frame decode */
2364  for (i = 0; i < 3; i++)
2365  s->qps[i] = -1;
2366 
2368  if (ret)
2369  return ret;
2370 
2371  s->y_superblock_width = (s->width + 31) / 32;
2372  s->y_superblock_height = (s->height + 31) / 32;
2374 
2375  /* work out the dimensions for the C planes */
2376  c_width = s->width >> s->chroma_x_shift;
2377  c_height = s->height >> s->chroma_y_shift;
2378  s->c_superblock_width = (c_width + 31) / 32;
2379  s->c_superblock_height = (c_height + 31) / 32;
2381 
2385 
2386  s->macroblock_width = (s->width + 15) / 16;
2387  s->macroblock_height = (s->height + 15) / 16;
2389  s->c_macroblock_width = (c_width + 15) / 16;
2390  s->c_macroblock_height = (c_height + 15) / 16;
2393 
2394  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
2395  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
2396  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
2397  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
2398 
2399  /* fragment count covers all 8x8 blocks for all 3 planes */
2400  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2401  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2402  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
2403  s->fragment_start[1] = y_fragment_count;
2404  s->fragment_start[2] = y_fragment_count + c_fragment_count;
2405 
2406  if (!s->theora_tables) {
2407  for (i = 0; i < 64; i++) {
2415  }
2416 
2417  for (inter = 0; inter < 2; inter++) {
2418  for (plane = 0; plane < 3; plane++) {
2419  s->qr_count[inter][plane] = 1;
2420  s->qr_size[inter][plane][0] = 63;
2421  s->qr_base[inter][plane][0] =
2422  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
2423  }
2424  }
2425 
2426  /* init VLC tables */
2427  if (s->version < 2) {
2428  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
2429  ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32,
2430  &vp3_bias[i][0][1], 2,
2431  &vp3_bias[i][0][0], 2, 1,
2432  0, 0, avctx);
2433  if (ret < 0)
2434  return ret;
2435  }
2436 #if CONFIG_VP4_DECODER
2437  } else { /* version >= 2 */
2438  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
2439  ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32,
2440  &vp4_bias[i][0][1], 2,
2441  &vp4_bias[i][0][0], 2, 1,
2442  0, 0, avctx);
2443  if (ret < 0)
2444  return ret;
2445  }
2446 #endif
2447  }
2448  } else {
2449  for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) {
2450  const HuffTable *tab = &s->huffman_table[i];
2451 
2452  ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, tab->nb_entries,
2453  &tab->entries[0].len, sizeof(*tab->entries),
2454  &tab->entries[0].sym, sizeof(*tab->entries), 1,
2455  0, 0, avctx);
2456  if (ret < 0)
2457  return ret;
2458  }
2459  }
2460 
2463  NULL, 0, 0, 1, 0, avctx);
2464  if (ret < 0)
2465  return ret;
2466 
2469  NULL, 0, 0, 0, 0, avctx);
2470  if (ret < 0)
2471  return ret;
2472 
2473  ret = ff_init_vlc_from_lengths(&s->mode_code_vlc, 3, 8,
2474  mode_code_vlc_len, 1,
2475  NULL, 0, 0, 0, 0, avctx);
2476  if (ret < 0)
2477  return ret;
2478 
2480  &motion_vector_vlc_table[0][1], 2,
2481  &motion_vector_vlc_table[0][0], 2, 1,
2482  -31, 0, avctx);
2483  if (ret < 0)
2484  return ret;
2485 
2486 #if CONFIG_VP4_DECODER
2487  for (j = 0; j < 2; j++)
2488  for (i = 0; i < 7; i++) {
2490  &vp4_mv_vlc[j][i][0][1], 2,
2491  &vp4_mv_vlc[j][i][0][0], 2, 1, -31,
2492  0, avctx);
2493  if (ret < 0)
2494  return ret;
2495  }
2496 
2497  /* version >= 2 */
2498  for (i = 0; i < 2; i++)
2499  if ((ret = init_vlc(&s->block_pattern_vlc[i], 3, 14,
2500  &vp4_block_pattern_vlc[i][0][1], 2, 1,
2501  &vp4_block_pattern_vlc[i][0][0], 2, 1, 0)) < 0)
2502  return ret;
2503 #endif
2504 
2505  return allocate_tables(avctx);
2506 }
2507 
2508 /// Release and shuffle frames after decode finishes
2509 static int update_frames(AVCodecContext *avctx)
2510 {
2511  Vp3DecodeContext *s = avctx->priv_data;
2512  int ret = 0;
2513 
2514  /* shuffle frames (last = current) */
2517  if (ret < 0)
2518  goto fail;
2519 
2520  if (s->keyframe) {
2523  }
2524 
2525 fail:
2527  return ret;
2528 }
2529 
2530 #if HAVE_THREADS
2531 static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
2532 {
2534  if (src->f->data[0])
2535  return ff_thread_ref_frame(dst, src);
2536  return 0;
2537 }
2538 
2539 static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
2540 {
2541  int ret;
2542  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
2543  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
2544  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
2545  return ret;
2546  return 0;
2547 }
2548 
2549 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
2550 {
2551  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
2552  int qps_changed = 0, i, err;
2553 
2554  if (!s1->current_frame.f->data[0] ||
2555  s->width != s1->width || s->height != s1->height) {
2556  if (s != s1)
2557  ref_frames(s, s1);
2558  return -1;
2559  }
2560 
2561  if (s != s1) {
2562  // copy previous frame data
2563  if ((err = ref_frames(s, s1)) < 0)
2564  return err;
2565 
2566  s->keyframe = s1->keyframe;
2567 
2568  // copy qscale data if necessary
2569  for (i = 0; i < 3; i++) {
2570  if (s->qps[i] != s1->qps[1]) {
2571  qps_changed = 1;
2572  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
2573  }
2574  }
2575 
2576  if (s->qps[0] != s1->qps[0])
2577  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
2578  sizeof(s->bounding_values_array));
2579 
2580  if (qps_changed) {
2581  memcpy(s->qps, s1->qps, sizeof(s->qps));
2582  memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps));
2583  s->nqps = s1->nqps;
2584  }
2585  }
2586 
2587  return update_frames(dst);
2588 }
2589 #endif
2590 
2592  void *data, int *got_frame,
2593  AVPacket *avpkt)
2594 {
2595  AVFrame *frame = data;
2596  const uint8_t *buf = avpkt->data;
2597  int buf_size = avpkt->size;
2598  Vp3DecodeContext *s = avctx->priv_data;
2599  GetBitContext gb;
2600  int i, ret;
2601 
2602  if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
2603  return ret;
2604 
2605 #if CONFIG_THEORA_DECODER
2606  if (s->theora && get_bits1(&gb)) {
2607  int type = get_bits(&gb, 7);
2608  skip_bits_long(&gb, 6*8); /* "theora" */
2609 
2611  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2612  return AVERROR_PATCHWELCOME;
2613  }
2614  if (type == 0) {
2615  vp3_decode_end(avctx);
2616  ret = theora_decode_header(avctx, &gb);
2617 
2618  if (ret >= 0)
2619  ret = vp3_decode_init(avctx);
2620  if (ret < 0) {
2621  vp3_decode_end(avctx);
2622  return ret;
2623  }
2624  return buf_size;
2625  } else if (type == 2) {
2626  vp3_decode_end(avctx);
2627  ret = theora_decode_tables(avctx, &gb);
2628  if (ret >= 0)
2629  ret = vp3_decode_init(avctx);
2630  if (ret < 0) {
2631  vp3_decode_end(avctx);
2632  return ret;
2633  }
2634  return buf_size;
2635  }
2636 
2637  av_log(avctx, AV_LOG_ERROR,
2638  "Header packet passed to frame decoder, skipping\n");
2639  return -1;
2640  }
2641 #endif
2642 
2643  s->keyframe = !get_bits1(&gb);
2644  if (!s->all_fragments) {
2645  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2646  return -1;
2647  }
2648  if (!s->theora)
2649  skip_bits(&gb, 1);
2650  for (i = 0; i < 3; i++)
2651  s->last_qps[i] = s->qps[i];
2652 
2653  s->nqps = 0;
2654  do {
2655  s->qps[s->nqps++] = get_bits(&gb, 6);
2656  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2657  for (i = s->nqps; i < 3; i++)
2658  s->qps[i] = -1;
2659 
2660  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2661  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2662  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2663 
2664  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2665  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2666  : AVDISCARD_NONKEY);
2667 
2668  if (s->qps[0] != s->last_qps[0])
2669  init_loop_filter(s);
2670 
2671  for (i = 0; i < s->nqps; i++)
2672  // reinit all dequantizers if the first one changed, because
2673  // the DC of the first quantizer must be used for all matrices
2674  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2675  init_dequantizer(s, i);
2676 
2677  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2678  return buf_size;
2679 
2682  s->current_frame.f->key_frame = s->keyframe;
2684  goto error;
2685 
2686  if (!s->edge_emu_buffer)
2688 
2689  if (s->keyframe) {
2690  if (!s->theora) {
2691  skip_bits(&gb, 4); /* width code */
2692  skip_bits(&gb, 4); /* height code */
2693  if (s->version) {
2694  s->version = get_bits(&gb, 5);
2695  if (avctx->frame_number == 0)
2697  "VP version: %d\n", s->version);
2698  }
2699  }
2700  if (s->version || s->theora) {
2701  if (get_bits1(&gb))
2703  "Warning, unsupported keyframe coding type?!\n");
2704  skip_bits(&gb, 2); /* reserved? */
2705 
2706 #if CONFIG_VP4_DECODER
2707  if (s->version >= 2) {
2708  int mb_height, mb_width;
2709  int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
2710 
2711  mb_height = get_bits(&gb, 8);
2712  mb_width = get_bits(&gb, 8);
2713  if (mb_height != s->macroblock_height ||
2714  mb_width != s->macroblock_width)
2715  avpriv_request_sample(s->avctx, "macroblock dimension mismatch");
2716 
2717  mb_width_mul = get_bits(&gb, 5);
2718  mb_width_div = get_bits(&gb, 3);
2719  mb_height_mul = get_bits(&gb, 5);
2720  mb_height_div = get_bits(&gb, 3);
2721  if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
2722  avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");
2723 
2724  if (get_bits(&gb, 2))
2725  avpriv_request_sample(s->avctx, "unknown bits");
2726  }
2727 #endif
2728  }
2729  } else {
2730  if (!s->golden_frame.f->data[0]) {
2732  "vp3: first frame not a keyframe\n");
2733 
2735  if ((ret = ff_thread_get_buffer(avctx, &s->golden_frame,
2736  AV_GET_BUFFER_FLAG_REF)) < 0)
2737  goto error;
2739  if ((ret = ff_thread_ref_frame(&s->last_frame,
2740  &s->golden_frame)) < 0)
2741  goto error;
2742  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2743  }
2744  }
2745 
2746  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2747  ff_thread_finish_setup(avctx);
2748 
2749  if (s->version < 2) {
2750  if ((ret = unpack_superblocks(s, &gb)) < 0) {
2751  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2752  goto error;
2753  }
2754 #if CONFIG_VP4_DECODER
2755  } else {
2756  if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) {
2757  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
2758  goto error;
2759  }
2760 #endif
2761  }
2762  if ((ret = unpack_modes(s, &gb)) < 0) {
2763  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2764  goto error;
2765  }
2766  if (ret = unpack_vectors(s, &gb)) {
2767  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2768  goto error;
2769  }
2770  if ((ret = unpack_block_qpis(s, &gb)) < 0) {
2771  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2772  goto error;
2773  }
2774 
2775  if (s->version < 2) {
2776  if ((ret = unpack_dct_coeffs(s, &gb)) < 0) {
2777  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2778  goto error;
2779  }
2780 #if CONFIG_VP4_DECODER
2781  } else {
2782  if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) {
2783  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
2784  goto error;
2785  }
2786 #endif
2787  }
2788 
2789  for (i = 0; i < 3; i++) {
2790  int height = s->height >> (i && s->chroma_y_shift);
2791  if (s->flipped_image)
2792  s->data_offset[i] = 0;
2793  else
2794  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2795  }
2796 
2797  s->last_slice_end = 0;
2798  for (i = 0; i < s->c_superblock_height; i++)
2799  render_slice(s, i);
2800 
2801  // filter the last row
2802  if (s->version < 2)
2803  for (i = 0; i < 3; i++) {
2804  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2805  apply_loop_filter(s, i, row, row + 1);
2806  }
2807  vp3_draw_horiz_band(s, s->height);
2808 
2809  /* output frame, offset as needed */
2810  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2811  return ret;
2812 
2813  frame->crop_left = s->offset_x;
2814  frame->crop_right = avctx->coded_width - avctx->width - s->offset_x;
2815  frame->crop_top = s->offset_y;
2816  frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
2817 
2818  *got_frame = 1;
2819 
2820  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2821  ret = update_frames(avctx);
2822  if (ret < 0)
2823  return ret;
2824  }
2825 
2826  return buf_size;
2827 
2828 error:
2829  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2830 
2831  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2833 
2834  return ret;
2835 }
2836 
2838  AVCodecContext *avctx)
2839 {
2840  if (get_bits1(gb)) {
2841  int token;
2842  if (huff->nb_entries >= 32) { /* overflow */
2843  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2844  return -1;
2845  }
2846  token = get_bits(gb, 5);
2847  ff_dlog(avctx, "code length %d, curr entry %d, token %d\n",
2848  length, huff->nb_entries, token);
2849  huff->entries[huff->nb_entries++] = (HuffEntry){ length, token };
2850  } else {
2851  /* The following bound follows from the fact that nb_entries <= 32. */
2852  if (length >= 31) { /* overflow */
2853  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2854  return -1;
2855  }
2856  length++;
2857  if (read_huffman_tree(huff, gb, length, avctx))
2858  return -1;
2859  if (read_huffman_tree(huff, gb, length, avctx))
2860  return -1;
2861  }
2862  return 0;
2863 }
2864 
2865 #if CONFIG_THEORA_DECODER
2866 static const enum AVPixelFormat theora_pix_fmts[4] = {
2868 };
2869 
2870 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2871 {
2872  Vp3DecodeContext *s = avctx->priv_data;
2873  int visible_width, visible_height, colorspace;
2874  uint8_t offset_x = 0, offset_y = 0;
2875  int ret;
2876  AVRational fps, aspect;
2877 
2878  s->theora_header = 0;
2879  s->theora = get_bits(gb, 24);
2880  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2881  if (!s->theora) {
2882  s->theora = 1;
2883  avpriv_request_sample(s->avctx, "theora 0");
2884  }
2885 
2886  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2887  * but previous versions have the image flipped relative to vp3 */
2888  if (s->theora < 0x030200) {
2889  s->flipped_image = 1;
2890  av_log(avctx, AV_LOG_DEBUG,
2891  "Old (<alpha3) Theora bitstream, flipped image\n");
2892  }
2893 
2894  visible_width =
2895  s->width = get_bits(gb, 16) << 4;
2896  visible_height =
2897  s->height = get_bits(gb, 16) << 4;
2898 
2899  if (s->theora >= 0x030200) {
2900  visible_width = get_bits(gb, 24);
2901  visible_height = get_bits(gb, 24);
2902 
2903  offset_x = get_bits(gb, 8); /* offset x */
2904  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2905  }
2906 
2907  /* sanity check */
2908  if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2909  visible_width + offset_x > s->width ||
2910  visible_height + offset_y > s->height) {
2911  av_log(avctx, AV_LOG_ERROR,
2912  "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2913  visible_width, visible_height, offset_x, offset_y,
2914  s->width, s->height);
2915  return AVERROR_INVALIDDATA;
2916  }
2917 
2918  fps.num = get_bits_long(gb, 32);
2919  fps.den = get_bits_long(gb, 32);
2920  if (fps.num && fps.den) {
2921  if (fps.num < 0 || fps.den < 0) {
2922  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2923  return AVERROR_INVALIDDATA;
2924  }
2925  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2926  fps.den, fps.num, 1 << 30);
2927  }
2928 
2929  aspect.num = get_bits(gb, 24);
2930  aspect.den = get_bits(gb, 24);
2931  if (aspect.num && aspect.den) {
2933  &avctx->sample_aspect_ratio.den,
2934  aspect.num, aspect.den, 1 << 30);
2935  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2936  }
2937 
2938  if (s->theora < 0x030200)
2939  skip_bits(gb, 5); /* keyframe frequency force */
2940  colorspace = get_bits(gb, 8);
2941  skip_bits(gb, 24); /* bitrate */
2942 
2943  skip_bits(gb, 6); /* quality hint */
2944 
2945  if (s->theora >= 0x030200) {
2946  skip_bits(gb, 5); /* keyframe frequency force */
2947  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2948  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2949  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2950  return AVERROR_INVALIDDATA;
2951  }
2952  skip_bits(gb, 3); /* reserved */
2953  } else
2954  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2955 
2956  ret = ff_set_dimensions(avctx, s->width, s->height);
2957  if (ret < 0)
2958  return ret;
2959  if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
2960  avctx->width = visible_width;
2961  avctx->height = visible_height;
2962  // translate offsets from theora axis ([0,0] lower left)
2963  // to normal axis ([0,0] upper left)
2964  s->offset_x = offset_x;
2965  s->offset_y = s->height - visible_height - offset_y;
2966  }
2967 
2968  if (colorspace == 1)
2970  else if (colorspace == 2)
2972 
2973  if (colorspace == 1 || colorspace == 2) {
2974  avctx->colorspace = AVCOL_SPC_BT470BG;
2975  avctx->color_trc = AVCOL_TRC_BT709;
2976  }
2977 
2978  s->theora_header = 1;
2979  return 0;
2980 }
2981 
2982 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2983 {
2984  Vp3DecodeContext *s = avctx->priv_data;
2985  int i, n, matrices, inter, plane, ret;
2986 
2987  if (!s->theora_header)
2988  return AVERROR_INVALIDDATA;
2989 
2990  if (s->theora >= 0x030200) {
2991  n = get_bits(gb, 3);
2992  /* loop filter limit values table */
2993  if (n)
2994  for (i = 0; i < 64; i++)
2995  s->filter_limit_values[i] = get_bits(gb, n);
2996  }
2997 
2998  if (s->theora >= 0x030200)
2999  n = get_bits(gb, 4) + 1;
3000  else
3001  n = 16;
3002  /* quality threshold table */
3003  for (i = 0; i < 64; i++)
3004  s->coded_ac_scale_factor[i] = get_bits(gb, n);
3005 
3006  if (s->theora >= 0x030200)
3007  n = get_bits(gb, 4) + 1;
3008  else
3009  n = 16;
3010  /* dc scale factor table */
3011  for (i = 0; i < 64; i++)
3012  s->coded_dc_scale_factor[0][i] =
3013  s->coded_dc_scale_factor[1][i] = get_bits(gb, n);
3014 
3015  if (s->theora >= 0x030200)
3016  matrices = get_bits(gb, 9) + 1;
3017  else
3018  matrices = 3;
3019 
3020  if (matrices > 384) {
3021  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
3022  return -1;
3023  }
3024 
3025  for (n = 0; n < matrices; n++)
3026  for (i = 0; i < 64; i++)
3027  s->base_matrix[n][i] = get_bits(gb, 8);
3028 
3029  for (inter = 0; inter <= 1; inter++) {
3030  for (plane = 0; plane <= 2; plane++) {
3031  int newqr = 1;
3032  if (inter || plane > 0)
3033  newqr = get_bits1(gb);
3034  if (!newqr) {
3035  int qtj, plj;
3036  if (inter && get_bits1(gb)) {
3037  qtj = 0;
3038  plj = plane;
3039  } else {
3040  qtj = (3 * inter + plane - 1) / 3;
3041  plj = (plane + 2) % 3;
3042  }
3043  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
3044  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
3045  sizeof(s->qr_size[0][0]));
3046  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
3047  sizeof(s->qr_base[0][0]));
3048  } else {
3049  int qri = 0;
3050  int qi = 0;
3051 
3052  for (;;) {
3053  i = get_bits(gb, av_log2(matrices - 1) + 1);
3054  if (i >= matrices) {
3055  av_log(avctx, AV_LOG_ERROR,
3056  "invalid base matrix index\n");
3057  return -1;
3058  }
3059  s->qr_base[inter][plane][qri] = i;
3060  if (qi >= 63)
3061  break;
3062  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
3063  s->qr_size[inter][plane][qri++] = i;
3064  qi += i;
3065  }
3066 
3067  if (qi > 63) {
3068  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
3069  return -1;
3070  }
3071  s->qr_count[inter][plane] = qri;
3072  }
3073  }
3074  }
3075 
3076  /* Huffman tables */
3077  for (int i = 0; i < FF_ARRAY_ELEMS(s->huffman_table); i++) {
3078  s->huffman_table[i].nb_entries = 0;
3079  if ((ret = read_huffman_tree(&s->huffman_table[i], gb, 0, avctx)) < 0)
3080  return ret;
3081  }
3082 
3083  s->theora_tables = 1;
3084 
3085  return 0;
3086 }
3087 
3088 static av_cold int theora_decode_init(AVCodecContext *avctx)
3089 {
3090  Vp3DecodeContext *s = avctx->priv_data;
3091  GetBitContext gb;
3092  int ptype;
3093  const uint8_t *header_start[3];
3094  int header_len[3];
3095  int i;
3096  int ret;
3097 
3098  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
3099 
3100  s->theora = 1;
3101 
3102  if (!avctx->extradata_size) {
3103  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
3104  return -1;
3105  }
3106 
3108  42, header_start, header_len) < 0) {
3109  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
3110  return -1;
3111  }
3112 
3113  for (i = 0; i < 3; i++) {
3114  if (header_len[i] <= 0)
3115  continue;
3116  ret = init_get_bits8(&gb, header_start[i], header_len[i]);
3117  if (ret < 0)
3118  return ret;
3119 
3120  ptype = get_bits(&gb, 8);
3121 
3122  if (!(ptype & 0x80)) {
3123  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
3124 // return -1;
3125  }
3126 
3127  // FIXME: Check for this as well.
3128  skip_bits_long(&gb, 6 * 8); /* "theora" */
3129 
3130  switch (ptype) {
3131  case 0x80:
3132  if (theora_decode_header(avctx, &gb) < 0)
3133  return -1;
3134  break;
3135  case 0x81:
3136 // FIXME: is this needed? it breaks sometimes
3137 // theora_decode_comments(avctx, gb);
3138  break;
3139  case 0x82:
3140  if (theora_decode_tables(avctx, &gb))
3141  return -1;
3142  break;
3143  default:
3144  av_log(avctx, AV_LOG_ERROR,
3145  "Unknown Theora config packet: %d\n", ptype & ~0x80);
3146  break;
3147  }
3148  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
3149  av_log(avctx, AV_LOG_WARNING,
3150  "%d bits left in packet %X\n",
3151  8 * header_len[i] - get_bits_count(&gb), ptype);
3152  if (s->theora < 0x030200)
3153  break;
3154  }
3155 
3156  return vp3_decode_init(avctx);
3157 }
3158 
3160  .name = "theora",
3161  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
3162  .type = AVMEDIA_TYPE_VIDEO,
3163  .id = AV_CODEC_ID_THEORA,
3164  .priv_data_size = sizeof(Vp3DecodeContext),
3165  .init = theora_decode_init,
3166  .close = vp3_decode_end,
3171  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3174 };
3175 #endif
3176 
3178  .name = "vp3",
3179  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
3180  .type = AVMEDIA_TYPE_VIDEO,
3181  .id = AV_CODEC_ID_VP3,
3182  .priv_data_size = sizeof(Vp3DecodeContext),
3183  .init = vp3_decode_init,
3184  .close = vp3_decode_end,
3189  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3191 };
3192 
3193 #if CONFIG_VP4_DECODER
3195  .name = "vp4",
3196  .long_name = NULL_IF_CONFIG_SMALL("On2 VP4"),
3197  .type = AVMEDIA_TYPE_VIDEO,
3198  .id = AV_CODEC_ID_VP4,
3199  .priv_data_size = sizeof(Vp3DecodeContext),
3200  .init = vp3_decode_init,
3201  .close = vp3_decode_end,
3206  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3208 };
3209 #endif
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define BLOCK_Y
Definition: vp3.c:644
AVCodec ff_vp4_decoder
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
int last_slice_end
Definition: vp3.c:189
#define NULL
Definition: coverity.c:32
uint8_t idct_scantable[64]
Definition: vp3.c:183
AVRational framerate
Definition: avcodec.h:2084
discard all frames except keyframes
Definition: avcodec.h:235
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AV_NUM_DATA_POINTERS
Definition: frame.h:315
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
Definition: vp3.c:287
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments, macroblocks <-> fragments, superblocks <-> macroblocks.
Definition: vp3.c:382
#define SB_NOT_CODED
Definition: vp3.c:65
This structure describes decoded (raw) audio or video data.
Definition: frame.h:314
#define TOKEN_EOB(eob_run)
Definition: vp3.c:255
HuffTable huffman_table[5 *16]
Definition: vp3.c:302
static void render_slice(Vp3DecodeContext *s, int slice)
Definition: vp3.c:2068
static const uint8_t mode_code_vlc_len[8]
Definition: vp3data.h:110
#define PUR
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:100
int y_superblock_count
Definition: vp3.c:199
static void flush(AVCodecContext *avctx)
int bounding_values_array[256+2]
Definition: vp3.c:305
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:719
void(* put_no_rnd_pixels_l2)(uint8_t *dst, const uint8_t *a, const uint8_t *b, ptrdiff_t stride, int h)
Copy 8xH pixels from source to destination buffer using a bilinear filter with no rounding (i...
Definition: vp3dsp.h:36
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
static int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
Definition: vp3.c:1151
uint16_t qr_base[2][3][64]
Definition: vp3.c:234
AVFrame * f
Definition: thread.h:35
else temp
Definition: vf_mcdeint.c:256
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:106
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
VLC mode_code_vlc
Definition: vp3.c:281
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
int y_superblock_width
Definition: vp3.c:197
HpelDSPContext hdsp
Definition: vp3.c:184
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Definition: pixfmt.h:518
#define avpriv_request_sample(...)
#define MODE_INTER_PLUS_MV
Definition: vp3.c:76
int num
Numerator.
Definition: rational.h:59
int size
Definition: packet.h:364
static av_cold int init_frames(Vp3DecodeContext *s)
Definition: vp3.c:2311
int u_superblock_start
Definition: vp3.c:203
#define BLOCK_X
Definition: vp3.c:643
int av_log2(unsigned v)
Definition: intmath.c:26
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:910
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:788
static const uint8_t zero_run_base[32]
Definition: vp3data.h:146
void(* v_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:44
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:741
uint8_t coding_method
Definition: vp3.c:61
static av_cold int vp3_decode_init(AVCodecContext *avctx)
Definition: vp3.c:2323
GLint GLenum type
Definition: opengl_enc.c:104
static const uint8_t coeff_get_bits[32]
Definition: vp3data.h:161
int num_kf_coded_fragment[3]
Definition: vp3.c:272
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:468
#define VP3_MV_VLC_BITS
Definition: vp3.c:52
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
static const uint16_t vp4_ac_scale_factor[64]
Definition: vp4data.h:64
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
Definition: vp3.c:1642
discard all
Definition: avcodec.h:236
VLC motion_vector_vlc
Definition: vp3.c:282
static av_cold int vp3_decode_end(AVCodecContext *avctx)
Definition: vp3.c:342
static void error(const char *err)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them.reget_buffer() and buffer age optimizations no longer work.*The contents of buffers must not be written to after ff_thread_report_progress() has been called on them.This includes draw_edges().Porting codecs to frame threading
int * superblock_fragments
Definition: vp3.c:293
VLC superblock_run_length_vlc
Definition: vp3.c:278
AVCodec.
Definition: codec.h:190
#define MAXIMUM_LONG_BIT_RUN
Definition: vp3.c:72
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
void(* draw_horiz_band)(struct AVCodecContext *s, const AVFrame *src, int offset[AV_NUM_DATA_POINTERS], int y, int type, int height)
If non NULL, &#39;draw_horiz_band&#39; is called by the libavcodec decoder to draw a horizontal band...
Definition: avcodec.h:766
Vp3Fragment * all_fragments
Definition: vp3.c:219
static void init_loop_filter(Vp3DecodeContext *s)
Definition: vp3.c:459
uint8_t base
Definition: vp3data.h:141
#define COMPATIBLE_FRAME(x)
Definition: vp3.c:1638
int dc
Definition: vp3.c:157
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t offset_y
Definition: vp3.c:223
int y_superblock_height
Definition: vp3.c:198
#define TRANSPOSE(x)
The exact code depends on how similar the blocks are and how related they are to the block
uint8_t
#define av_cold
Definition: attributes.h:88
uint8_t nb_entries
Definition: vp3.c:169
#define av_malloc(s)
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:902
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
#define TOKEN_ZERO_RUN(coeff, zero_run)
Definition: vp3.c:256
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1617
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
Definition: vp3.c:1859
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
static int FUNC() huffman_table(CodedBitstreamContext *ctx, RWContext *rw, JPEGRawHuffmanTable *current)
Multithreading support functions.
int macroblock_width
Definition: vp3.c:208
uint8_t idct_permutation[64]
Definition: vp3.c:182
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
Definition: vp3.c:416
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:632
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1025
uint8_t qpi
Definition: vp3.c:62
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
static void vp3_decode_flush(AVCodecContext *avctx)
Definition: vp3.c:330
#define DC_COEFF(u)
Definition: vp3.c:1640
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:117
#define height
uint8_t * data
Definition: packet.h:363
uint8_t filter_limit_values[64]
Definition: vp3.c:304
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:121
#define ff_dlog(a,...)
bitstream reader API header.
static const uint8_t vp4_bias[5 *16][32][2]
Definition: vp4data.h:329
static const uint8_t vp31_intra_c_dequant[64]
Definition: vp3data.h:42
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:308
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:1173
#define FFALIGN(x, a)
Definition: macros.h:48
#define MODE_INTRA
Definition: vp3.c:75
#define av_log(a,...)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1300
static const uint16_t table[]
Definition: prosumer.c:206
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
Definition: internal.h:75
static void body(uint32_t ABCD[4], const uint8_t *src, int nblocks)
Definition: md5.c:101
int height
Definition: vp3.c:176
static const uint8_t vp4_pred_block_type_map[8]
Definition: vp3.c:145
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:255
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: vp3.c:2591
static const uint8_t motion_vector_vlc_table[63][2]
Definition: vp3data.h:114
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
Definition: pixfmt.h:463
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
static const uint8_t vp4_mv_vlc[2][7][63][2]
Definition: vp4data.h:112
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
Definition: avcodec.h:371
VP3DSPContext vp3dsp
Definition: vp3.c:186
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
int c_superblock_width
Definition: vp3.c:200
uint8_t qr_count[2][3]
Definition: vp3.c:232
int fragment_height[2]
Definition: vp3.c:217
#define init_vlc(vlc, nb_bits, nb_codes,bits, bits_wrap, bits_size,codes, codes_wrap, codes_size,flags)
Definition: vlc.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
uint8_t sym
Definition: vp3.c:164
#define CODING_MODE_COUNT
Definition: vp3.c:82
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2601
void(* idct_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:42
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:115
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:1809
static const int8_t fixed_motion_vector_table[64]
Definition: vp3data.h:128
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:611
void(* h_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:45
AVCodec ff_theora_decoder
int theora
Definition: vp3.c:174
static av_cold void free_tables(AVCodecContext *avctx)
Definition: vp3.c:314
GLsizei GLsizei * length
Definition: opengl_enc.c:114
const char * name
Name of the codec implementation.
Definition: codec.h:197
uint8_t bits
Definition: vp3data.h:141
int theora_header
Definition: vp3.c:174
static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length, AVCodecContext *avctx)
Definition: vp3.c:2837
GLsizei count
Definition: opengl_enc.c:108
#define FFMAX(a, b)
Definition: common.h:94
uint16_t coded_dc_scale_factor[2][64]
Definition: vp3.c:229
int qps[3]
Definition: vp3.c:192
#define fail()
Definition: checkasm.h:123
static const int ModeAlphabet[6][CODING_MODE_COUNT]
Definition: vp3.c:92
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:106
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
Definition: internal.h:66
Definition: vlc.h:26
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:154
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames.The frames must then be freed with ff_thread_release_buffer().Otherwise decode directly into the user-supplied frames.Call ff_thread_report_progress() after some part of the current picture has decoded.A good place to put this is where draw_horiz_band() is called-add this if it isn't called anywhere
static const int16_t *const coeff_tables[32]
Definition: vp3data.h:345
int chroma_y_shift
Definition: vp3.c:177
int flipped_image
Definition: vp3.c:188
static const struct @172 eob_run_table[7]
unsigned char * macroblock_coding
Definition: vp3.c:297
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:317
Half-pel DSP context.
Definition: hpeldsp.h:45
int fragment_width[2]
Definition: vp3.c:216
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
Definition: codec.h:44
int type
Definition: vp3.c:158
#define SET_CHROMA_MODES
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:397
static const uint8_t vp31_intra_y_dequant[64]
Definition: vp3data.h:29
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:333
VLC block_pattern_vlc[2]
Definition: vp3.c:280
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:1801
#define FFMIN(a, b)
Definition: common.h:96
#define VP4_MV_VLC_BITS
Definition: vp3.c:53
VLC fragment_run_length_vlc
Definition: vp3.c:279
VLC vp4_mv_vlc[2][7]
Definition: vp3.c:283
#define PU
#define width
static const uint8_t fragment_run_length_vlc_len[30]
Definition: vp3data.h:105
#define FFSIGN(a)
Definition: common.h:73
int macroblock_height
Definition: vp3.c:209
int width
picture width / height.
Definition: avcodec.h:704
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards.If some code can't be moved
static VLC coeff_vlc[2][8][4]
Definition: atrac9dec.c:106
#define SB_PARTIALLY_CODED
Definition: vp3.c:66
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run)
Definition: vp3.c:1179
int yuv_macroblock_count
Definition: vp3.c:213
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:465
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
uint8_t * edge_emu_buffer
Definition: vp3.c:299
static const uint8_t vp4_mv_table_selector[32]
Definition: vp4data.h:105
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1145
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
static const uint16_t vp31_ac_scale_factor[64]
Definition: vp3data.h:76
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
perm
Definition: f_perms.c:74
#define MODE_COPY
Definition: vp3.c:85
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use. ...
Definition: xiph.c:24
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static const uint8_t hilbert_offset[16][2]
Definition: vp3.c:130
static const uint8_t vp4_y_dc_scale_factor[64]
Definition: vp4data.h:42
int macroblock_count
Definition: vp3.c:207
int c_superblock_height
Definition: vp3.c:201
void ff_vp3dsp_h_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
int offset_x_warned
Definition: vp3.c:224
#define FF_ARRAY_ELEMS(a)
int total_num_coded_frags
Definition: vp3.c:264
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
Definition: utils.c:1893
void(* idct_dc_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:43
int c_superblock_count
Definition: vp3.c:202
if(ret)
AVCodec ff_vp3_decoder
Definition: vp3.c:3177
VP4 video decoder.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1792
static const int8_t transform[32][32]
Definition: hevcdsp.c:27
also ITU-R BT1361
Definition: pixfmt.h:485
static const uint8_t vp4_filter_limit_values[64]
Definition: vp4data.h:75
Half-pel DSP functions.
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
int superblock_count
Definition: vp3.c:196
Used to store optimal huffman encoding results.
uint8_t len
Definition: magicyuv.c:49
static const uint8_t vp4_block_pattern_table_selector[14]
Definition: vp4data.h:86
Libavcodec external API header.
HuffEntry entries[32]
Definition: vp3.c:168
enum AVCodecID codec_id
Definition: avcodec.h:541
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:345
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
Definition: vp3.c:253
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
int skip_loop_filter
Definition: vp3.c:190
static int loop
Definition: ffplay.c:341
int debug
debug
Definition: avcodec.h:1616
ThreadFrame current_frame
Definition: vp3.c:180
main external API structure.
Definition: avcodec.h:531
#define RSHIFT(a, b)
Definition: common.h:54
int last_qps[3]
Definition: vp3.c:194
static const uint8_t vp4_generic_dequant[64]
Definition: vp4data.h:31
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> (&#39;D&#39;<<24) + (&#39;C&#39;<<16) + (&#39;B&#39;<<8) + &#39;A&#39;).
Definition: avcodec.h:556
uint8_t qr_size[2][3][64]
Definition: vp3.c:233
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
Definition: hpeldsp.h:56
static const uint8_t superblock_run_length_vlc_lens[34]
Definition: vp3data.h:98
#define PUL
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
Definition: vp3.c:2268
int data_offset[3]
Definition: vp3.c:221
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread.Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities.There will be very little speed gain at this point but it should work.If there are inter-frame dependencies
int extradata_size
Definition: avcodec.h:633
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
int coded_height
Definition: avcodec.h:719
op_pixels_func put_no_rnd_pixels_tab[4][4]
Halfpel motion compensation with no rounding (a+b)>>1.
Definition: hpeldsp.h:82
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
#define SB_FULLY_CODED
Definition: vp3.c:67
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1159
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1152
int ff_init_vlc_from_lengths(VLC *vlc_arg, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
Definition: bitstream.c:381
int * nkf_coded_fragment_list
Definition: vp3.c:271
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
Definition: vp3.c:263
int keyframe
Definition: vp3.c:181
#define TOKEN_COEFF(coeff)
Definition: vp3.c:257
#define s1
Definition: regdef.h:38
static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
Definition: vp3.c:891
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]
Definition: imc.c:119
#define MODE_GOLDEN_MV
Definition: vp3.c:80
static const uint8_t vp31_dc_scale_factor[64]
Definition: vp3data.h:65
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
#define FRAGMENT_PIXELS
Definition: vp3.c:56
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
Definition: vp3.c:2509
Writing a table generator This documentation is preliminary Parts of the API are not good and should be changed Basic concepts A table generator consists of two *_tablegen c and *_tablegen h The h file will provide the variable declarations and initialization code for the tables
Definition: tablegen.txt:8
#define MODE_USING_GOLDEN
Definition: vp3.c:79
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
#define MODE_INTER_FOURMV
Definition: vp3.c:81
static const uint8_t vp4_uv_dc_scale_factor[64]
Definition: vp4data.h:53
int16_t block[64]
Definition: vp3.c:187
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:328
int v_superblock_start
Definition: vp3.c:204
static const uint8_t vp4_block_pattern_vlc[2][14][2]
Definition: vp4data.h:90
static int theora_header(AVFormatContext *s, int idx)
int version
Definition: vp3.c:175
void ff_vp3dsp_v_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
int * coded_fragment_list[3]
Definition: vp3.c:268
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:104
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
static const uint8_t vp31_inter_dequant[64]
Definition: vp3data.h:54
unsigned char * superblock_coding
Definition: vp3.c:205
VLC coeff_vlc[5 *16]
Definition: vp3.c:276
common internal api header.
ThreadFrame last_frame
Definition: vp3.c:179
int16_t * dct_tokens_base
Definition: vp3.c:254
AVCodecContext * avctx
Definition: vp3.c:173
#define bit(string, value)
Definition: cbs_mpeg2.c:58
static int get_eob_run(GetBitContext *gb, int token)
Definition: vp3.c:1143
VideoDSPContext vdsp
Definition: vp3.c:185
uint16_t sym
Definition: magicyuv.c:50
int c_macroblock_width
Definition: vp3.c:211
int den
Denominator.
Definition: rational.h:60
int c_macroblock_count
Definition: vp3.c:210
Core video DSP helper functions.
static const uint8_t vp3_bias[5 *16][32][2]
Definition: vp3data.h:383
uint8_t base_matrix[384][64]
Definition: vp3.c:231
void ff_vp3dsp_set_bounding_values(int *bounding_values_array, int filter_limit)
Definition: vp3dsp.c:473
int fragment_count
Definition: vp3.c:215
void * priv_data
Definition: avcodec.h:558
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1100
int * kf_coded_fragment_list
Definition: vp3.c:270
#define SUPERBLOCK_VLC_BITS
Definition: vp3.c:54
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
Definition: vp3.c:1946
int len
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:392
static const double coeff[2][5]
Definition: vf_owdenoise.c:73
int c_macroblock_height
Definition: vp3.c:212
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:618
static const struct twinvq_data tab
#define MODE_INTER_PRIOR_LAST
Definition: vp3.c:78
#define MODE_INTER_NO_MV
Definition: vp3.c:74
VP4Predictor * dc_pred_row
Definition: vp3.c:307
int fragment_start[3]
Definition: vp3.c:220
int theora_tables
Definition: vp3.c:174
#define av_freep(p)
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
Definition: pixfmt.h:608
#define VLC_TYPE
Definition: vlc.h:24
#define MODE_INTER_LAST_MV
Definition: vp3.c:77
#define av_malloc_array(a, b)
ThreadFrame golden_frame
Definition: vp3.c:178
int chroma_x_shift
Definition: vp3.c:177
void(* idct_put)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:41
#define stride
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
Definition: vp3dsp.c:445
static const uint8_t vp31_filter_limit_values[64]
Definition: vp3data.h:87
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
#define MKTAG(a, b, c, d)
Definition: common.h:405
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
This structure stores compressed data.
Definition: packet.h:340
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
Definition: vp3.c:1904
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:431
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:514
int16_t dc
Definition: vp3.c:60
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
uint8_t offset_x
Definition: vp3.c:222
for(j=16;j >0;--j)
uint32_t coded_ac_scale_factor[64]
Definition: vp3.c:230
static const uint8_t zero_run_get_bits[32]
Definition: vp3data.h:153
int i
Definition: input.c:407
Predicted.
Definition: avutil.h:275
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:190
#define PL
int8_t(*[2] motion_val)[2]
Definition: vp3.c:226