FFmpeg
rational.h
Go to the documentation of this file.
1 /*
2  * rational numbers
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * @ingroup lavu_math_rational
25  * Utilties for rational number calculation.
26  * @author Michael Niedermayer <michaelni@gmx.at>
27  */
28 
29 #ifndef AVUTIL_RATIONAL_H
30 #define AVUTIL_RATIONAL_H
31 
32 #include <stdint.h>
33 #include <limits.h>
34 #include "attributes.h"
35 
36 /**
37  * @defgroup lavu_math_rational AVRational
38  * @ingroup lavu_math
39  * Rational number calculation.
40  *
41  * While rational numbers can be expressed as floating-point numbers, the
42  * conversion process is a lossy one, so are floating-point operations. On the
43  * other hand, the nature of FFmpeg demands highly accurate calculation of
44  * timestamps. This set of rational number utilities serves as a generic
45  * interface for manipulating rational numbers as pairs of numerators and
46  * denominators.
47  *
48  * Many of the functions that operate on AVRational's have the suffix `_q`, in
49  * reference to the mathematical symbol "ℚ" (Q) which denotes the set of all
50  * rational numbers.
51  *
52  * @{
53  */
54 
55 /**
56  * Rational number (pair of numerator and denominator).
57  */
58 typedef struct AVRational{
59  int num; ///< Numerator
60  int den; ///< Denominator
61 } AVRational;
62 
63 /**
64  * Create an AVRational.
65  *
66  * Useful for compilers that do not support compound literals.
67  *
68  * @note The return value is not reduced.
69  * @see av_reduce()
70  */
71 static inline AVRational av_make_q(int num, int den)
72 {
73  AVRational r = { num, den };
74  return r;
75 }
76 
77 /**
78  * Compare two rationals.
79  *
80  * @param a First rational
81  * @param b Second rational
82  *
83  * @return One of the following values:
84  * - 0 if `a == b`
85  * - 1 if `a > b`
86  * - -1 if `a < b`
87  * - `INT_MIN` if one of the values is of the form `0 / 0`
88  */
89 static inline int av_cmp_q(AVRational a, AVRational b){
90  const int64_t tmp= a.num * (int64_t)b.den - b.num * (int64_t)a.den;
91 
92  if(tmp) return (int)((tmp ^ a.den ^ b.den)>>63)|1;
93  else if(b.den && a.den) return 0;
94  else if(a.num && b.num) return (a.num>>31) - (b.num>>31);
95  else return INT_MIN;
96 }
97 
98 /**
99  * Convert an AVRational to a `double`.
100  * @param a AVRational to convert
101  * @return `a` in floating-point form
102  * @see av_d2q()
103  */
104 static inline double av_q2d(AVRational a){
105  return a.num / (double) a.den;
106 }
107 
108 /**
109  * Reduce a fraction.
110  *
111  * This is useful for framerate calculations.
112  *
113  * @param[out] dst_num Destination numerator
114  * @param[out] dst_den Destination denominator
115  * @param[in] num Source numerator
116  * @param[in] den Source denominator
117  * @param[in] max Maximum allowed values for `dst_num` & `dst_den`
118  * @return 1 if the operation is exact, 0 otherwise
119  */
120 int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max);
121 
122 /**
123  * Multiply two rationals.
124  * @param b First rational
125  * @param c Second rational
126  * @return b*c
127  */
129 
130 /**
131  * Divide one rational by another.
132  * @param b First rational
133  * @param c Second rational
134  * @return b/c
135  */
137 
138 /**
139  * Add two rationals.
140  * @param b First rational
141  * @param c Second rational
142  * @return b+c
143  */
145 
146 /**
147  * Subtract one rational from another.
148  * @param b First rational
149  * @param c Second rational
150  * @return b-c
151  */
153 
154 /**
155  * Invert a rational.
156  * @param q value
157  * @return 1 / q
158  */
160 {
161  AVRational r = { q.den, q.num };
162  return r;
163 }
164 
165 /**
166  * Convert a double precision floating point number to a rational.
167  *
168  * In case of infinity, the returned value is expressed as `{1, 0}` or
169  * `{-1, 0}` depending on the sign.
170  *
171  * In general rational numbers with |num| <= 1<<26 && |den| <= 1<<26
172  * can be recovered exactly from their double representation.
173  * (no exceptions were found within 1B random ones)
174  *
175  * @param d `double` to convert
176  * @param max Maximum allowed numerator and denominator
177  * @return `d` in AVRational form
178  * @see av_q2d()
179  */
180 AVRational av_d2q(double d, int max) av_const;
181 
182 /**
183  * Find which of the two rationals is closer to another rational.
184  *
185  * @param q Rational to be compared against
186  * @param q1 Rational to be tested
187  * @param q2 Rational to be tested
188  * @return One of the following values:
189  * - 1 if `q1` is nearer to `q` than `q2`
190  * - -1 if `q2` is nearer to `q` than `q1`
191  * - 0 if they have the same distance
192  */
194 
195 /**
196  * Find the value in a list of rationals nearest a given reference rational.
197  *
198  * @param q Reference rational
199  * @param q_list Array of rationals terminated by `{0, 0}`
200  * @return Index of the nearest value found in the array
201  */
202 int av_find_nearest_q_idx(AVRational q, const AVRational* q_list);
203 
204 /**
205  * Convert an AVRational to a IEEE 32-bit `float` expressed in fixed-point
206  * format.
207  *
208  * @param q Rational to be converted
209  * @return Equivalent floating-point value, expressed as an unsigned 32-bit
210  * integer.
211  * @note The returned value is platform-indepedant.
212  */
213 uint32_t av_q2intfloat(AVRational q);
214 
215 /**
216  * Return the best rational so that a and b are multiple of it.
217  * If the resulting denominator is larger than max_den, return def.
218  */
220 
221 /**
222  * @}
223  */
224 
225 #endif /* AVUTIL_RATIONAL_H */
q1
static const uint8_t q1[256]
Definition: twofish.c:100
r
const char * r
Definition: vf_curves.c:127
av_div_q
AVRational av_div_q(AVRational b, AVRational c) av_const
Divide one rational by another.
Definition: rational.c:88
int64_t
long long int64_t
Definition: coverity.c:34
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:28
av_const
#define av_const
Definition: attributes.h:84
b
#define b
Definition: input.c:41
max
#define max(a, b)
Definition: cuda_runtime.h:33
av_sub_q
AVRational av_sub_q(AVRational b, AVRational c) av_const
Subtract one rational from another.
Definition: rational.c:101
av_q2intfloat
uint32_t av_q2intfloat(AVRational q)
Convert an AVRational to a IEEE 32-bit float expressed in fixed-point format.
Definition: rational.c:152
av_reduce
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
AVRational::num
int num
Numerator.
Definition: rational.h:59
av_q2d
static double av_q2d(AVRational a)
Convert an AVRational to a double.
Definition: rational.h:104
limits.h
AVRational
Rational number (pair of numerator and denominator).
Definition: rational.h:58
double
double
Definition: af_crystalizer.c:132
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
av_make_q
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
attributes.h
av_find_nearest_q_idx
int av_find_nearest_q_idx(AVRational q, const AVRational *q_list)
Find the value in a list of rationals nearest a given reference rational.
Definition: rational.c:142
av_gcd_q
AVRational av_gcd_q(AVRational a, AVRational b, int max_den, AVRational def)
Return the best rational so that a and b are multiple of it.
Definition: rational.c:186
av_always_inline
#define av_always_inline
Definition: attributes.h:49
av_d2q
AVRational av_d2q(double d, int max) av_const
Convert a double precision floating point number to a rational.
Definition: rational.c:106
av_inv_q
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
Definition: rational.h:159
av_cmp_q
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
AVRational::den
int den
Denominator.
Definition: rational.h:60
av_mul_q
AVRational av_mul_q(AVRational b, AVRational c) av_const
Multiply two rationals.
Definition: rational.c:80
av_nearer_q
int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
Find which of the two rationals is closer to another rational.
Definition: rational.c:127
av_add_q
AVRational av_add_q(AVRational b, AVRational c) av_const
Add two rationals.
Definition: rational.c:93