Go to the documentation of this file.
203 unsigned long dest_len = uncompressed_size;
205 if (uncompress(td->
tmp, &dest_len,
src, compressed_size) != Z_OK ||
206 dest_len != uncompressed_size)
211 s->dsp.predictor(td->
tmp, uncompressed_size);
218 int compressed_size,
int uncompressed_size)
221 const int8_t *
s =
src;
222 int ssize = compressed_size;
223 int dsize = uncompressed_size;
224 uint8_t *dend = d + dsize;
233 if ((dsize -= count) < 0 ||
234 (ssize -= count + 1) < 0)
242 if ((dsize -= count) < 0 ||
262 rle(td->
tmp,
src, compressed_size, uncompressed_size);
266 ctx->dsp.predictor(td->
tmp, uncompressed_size);
272 #define USHORT_RANGE (1 << 16)
273 #define BITMAP_SIZE (1 << 13)
280 if ((
i == 0) || (bitmap[
i >> 3] & (1 << (
i & 7))))
294 for (
i = 0;
i < dsize; ++
i)
298 #define HUF_ENCBITS 16 // literal (value) bit length
299 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
303 uint64_t
c, n[59] = { 0 };
310 for (
i = 58;
i > 0; --
i) {
311 uint64_t nc = ((
c + n[
i]) >> 1);
320 freq[
i] = l | (n[l]++ << 6);
324 #define SHORT_ZEROCODE_RUN 59
325 #define LONG_ZEROCODE_RUN 63
326 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
327 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
337 for (; im <= iM; im++) {
346 if (im + zerun > iM + 1)
356 if (im + zerun > iM + 1)
378 for (
int i = im;
i < iM;
i++) {
382 if (td->
he[j].
len > 32) {
386 if (td->
he[j].
len > 0)
404 if (td->
he[j].
len > 32) {
413 &td->
he[0].
len,
sizeof(td->
he[0]),
sizeof(td->
he[0].
len),
415 &td->
he[0].
sym,
sizeof(td->
he[0]),
sizeof(td->
he[0].
sym), 0);
419 int no, uint16_t *
out)
432 if (oe == 0 || oe +
run > no)
450 uint16_t *
dst,
int dst_size)
456 im = bytestream2_get_le32(gb);
457 iM = bytestream2_get_le32(gb);
459 nBits = bytestream2_get_le32(gb);
470 if (!td->
freq || !td->
he) {
489 static inline void wdec14(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
494 int ai = ls + (hi & 1) + (hi >> 1);
496 int16_t bs = ai - hi;
503 #define A_OFFSET (1 << (NBITS - 1))
504 #define MOD_MASK ((1 << NBITS) - 1)
506 static inline void wdec16(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
517 int ny,
int oy, uint16_t
mx)
519 int w14 = (
mx < (1 << 14));
520 int n = (nx > ny) ? ny : nx;
533 uint16_t *ey = in + oy * (ny - p2);
534 uint16_t i00, i01, i10, i11;
540 for (; py <= ey; py += oy2) {
542 uint16_t *ex = py + ox * (nx - p2);
544 for (; px <= ex; px += ox2) {
545 uint16_t *p01 = px + ox1;
546 uint16_t *p10 = px + oy1;
547 uint16_t *p11 = p10 + ox1;
550 wdec14(*px, *p10, &i00, &i10);
551 wdec14(*p01, *p11, &i01, &i11);
552 wdec14(i00, i01, px, p01);
553 wdec14(i10, i11, p10, p11);
555 wdec16(*px, *p10, &i00, &i10);
556 wdec16(*p01, *p11, &i01, &i11);
557 wdec16(i00, i01, px, p01);
558 wdec16(i10, i11, p10, p11);
563 uint16_t *p10 = px + oy1;
566 wdec14(*px, *p10, &i00, p10);
568 wdec16(*px, *p10, &i00, p10);
576 uint16_t *ex = py + ox * (nx - p2);
578 for (; px <= ex; px += ox2) {
579 uint16_t *p01 = px + ox1;
582 wdec14(*px, *p01, &i00, p01);
584 wdec16(*px, *p01, &i00, p01);
599 uint16_t maxval, min_non_zero, max_non_zero;
601 uint16_t *
tmp = (uint16_t *)td->
tmp;
620 min_non_zero = bytestream2_get_le16(&gb);
621 max_non_zero = bytestream2_get_le16(&gb);
627 if (min_non_zero <= max_non_zero)
629 max_non_zero - min_non_zero + 1);
640 for (
i = 0;
i <
s->nb_channels;
i++) {
648 for (j = 0; j < pixel_half_size; j++)
650 td->
xsize * pixel_half_size, maxval);
651 ptr += td->
xsize * td->
ysize * pixel_half_size;
659 for (j = 0; j <
s->nb_channels; j++) {
667 tmp_offset += pixel_half_size;
670 s->bbdsp.bswap16_buf(
out, in, td->
xsize * pixel_half_size);
672 memcpy(
out, in, td->
xsize * 2 * pixel_half_size);
682 int compressed_size,
int uncompressed_size,
685 unsigned long dest_len, expected_len = 0;
686 const uint8_t *in = td->
tmp;
690 for (
i = 0;
i <
s->nb_channels;
i++) {
693 }
else if (
s->channels[
i].pixel_type ==
EXR_HALF) {
700 dest_len = expected_len;
702 if (uncompress(td->
tmp, &dest_len,
src, compressed_size) != Z_OK) {
704 }
else if (dest_len != expected_len) {
710 for (
c = 0;
c <
s->nb_channels;
c++) {
712 const uint8_t *ptr[4];
718 ptr[1] = ptr[0] + td->
xsize;
719 ptr[2] = ptr[1] + td->
xsize;
720 in = ptr[2] + td->
xsize;
722 for (j = 0; j < td->
xsize; ++j) {
723 uint32_t
diff = ((unsigned)*(ptr[0]++) << 24) |
724 (*(ptr[1]++) << 16) |
732 ptr[1] = ptr[0] + td->
xsize;
733 in = ptr[1] + td->
xsize;
734 for (j = 0; j < td->
xsize; j++) {
735 uint32_t
diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
743 ptr[1] = ptr[0] +
s->xdelta;
744 ptr[2] = ptr[1] +
s->xdelta;
745 ptr[3] = ptr[2] +
s->xdelta;
746 in = ptr[3] +
s->xdelta;
748 for (j = 0; j <
s->xdelta; ++j) {
749 uint32_t
diff = ((uint32_t)*(ptr[0]++) << 24) |
750 (*(ptr[1]++) << 16) |
751 (*(ptr[2]++) << 8 ) |
767 uint16_t
shift = (
b[ 2] >> 2) & 15;
771 s[ 0] = (
b[0] << 8) |
b[1];
773 s[ 4] =
s[ 0] + ((((
b[ 2] << 4) | (
b[ 3] >> 4)) & 0x3f) <<
shift) -
bias;
774 s[ 8] =
s[ 4] + ((((
b[ 3] << 2) | (
b[ 4] >> 6)) & 0x3f) <<
shift) -
bias;
778 s[ 5] =
s[ 4] + ((((
b[ 5] << 4) | (
b[ 6] >> 4)) & 0x3f) <<
shift) -
bias;
779 s[ 9] =
s[ 8] + ((((
b[ 6] << 2) | (
b[ 7] >> 6)) & 0x3f) <<
shift) -
bias;
783 s[ 6] =
s[ 5] + ((((
b[ 8] << 4) | (
b[ 9] >> 4)) & 0x3f) <<
shift) -
bias;
784 s[10] =
s[ 9] + ((((
b[ 9] << 2) | (
b[10] >> 6)) & 0x3f) <<
shift) -
bias;
788 s[ 7] =
s[ 6] + ((((
b[11] << 4) | (
b[12] >> 4)) & 0x3f) <<
shift) -
bias;
789 s[11] =
s[10] + ((((
b[12] << 2) | (
b[13] >> 6)) & 0x3f) <<
shift) -
bias;
792 for (
i = 0;
i < 16; ++
i) {
804 s[0] = (
b[0] << 8) |
b[1];
811 for (
i = 1;
i < 16;
i++)
818 const int8_t *sr =
src;
819 int stay_to_uncompress = compressed_size;
820 int nb_b44_block_w, nb_b44_block_h;
821 int index_tl_x, index_tl_y, index_out, index_tmp;
822 uint16_t tmp_buffer[16];
824 int target_channel_offset = 0;
827 nb_b44_block_w = td->
xsize / 4;
828 if ((td->
xsize % 4) != 0)
831 nb_b44_block_h = td->
ysize / 4;
832 if ((td->
ysize % 4) != 0)
835 for (
c = 0;
c <
s->nb_channels;
c++) {
837 for (iY = 0; iY < nb_b44_block_h; iY++) {
838 for (iX = 0; iX < nb_b44_block_w; iX++) {
839 if (stay_to_uncompress < 3)
842 if (
src[compressed_size - stay_to_uncompress + 2] == 0xfc) {
845 stay_to_uncompress -= 3;
847 if (stay_to_uncompress < 14)
851 stay_to_uncompress -= 14;
858 for (y = index_tl_y; y <
FFMIN(index_tl_y + 4, td->
ysize); y++) {
859 for (x = index_tl_x; x <
FFMIN(index_tl_x + 4, td->
xsize); x++) {
861 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
868 target_channel_offset += 2;
870 if (stay_to_uncompress < td->ysize * td->
xsize * 4)
873 for (y = 0; y < td->
ysize; y++) {
878 target_channel_offset += 4;
880 stay_to_uncompress -= td->
ysize * td->
xsize * 4;
896 }
else if ((
val >> 8) == 0xff) {
918 float alpha[4], beta[4], theta[4], gamma[4];
936 gamma[0] = theta[0] + theta[1];
937 gamma[1] = theta[3] + theta[2];
938 gamma[2] = theta[3] - theta[2];
939 gamma[3] = theta[0] - theta[1];
941 blk[0 *
step] = gamma[0] + beta[0];
942 blk[1 *
step] = gamma[1] + beta[1];
943 blk[2 *
step] = gamma[2] + beta[2];
944 blk[3 *
step] = gamma[3] + beta[3];
946 blk[4 *
step] = gamma[3] - beta[3];
947 blk[5 *
step] = gamma[2] - beta[2];
948 blk[6 *
step] = gamma[1] - beta[1];
949 blk[7 *
step] = gamma[0] - beta[0];
954 for (
int i = 0;
i < 8;
i++)
957 for (
int i = 0;
i < 8;
i++) {
964 float *
b,
float *
g,
float *
r)
966 *
r = y + 1.5747f * v;
967 *
g = y - 0.1873f *
u - 0.4682f * v;
968 *
b = y + 1.8556f *
u;
988 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
989 int64_t ac_count, dc_count, ac_compression;
990 const int dc_w = td->
xsize >> 3;
991 const int dc_h = td->
ysize >> 3;
995 if (compressed_size <= 88)
1013 if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1014 || ac_count > (uint64_t)INT_MAX/2
1019 skip = bytestream2_get_le16(&gb);
1026 if (lo_usize > uncompressed_size)
1032 unsigned long dest_len;
1035 if (ac_count > 3LL * td->
xsize *
s->scan_lines_per_block)
1038 dest_len = ac_count * 2LL;
1044 switch (ac_compression) {
1051 if (uncompress(td->
ac_data, &dest_len, agb.
buffer, ac_size) != Z_OK ||
1052 dest_len != ac_count * 2LL)
1063 unsigned long dest_len;
1066 if (dc_count != dc_w * dc_h * 3)
1069 dest_len = dc_count * 2LL;
1076 (dest_len != dc_count * 2LL))
1085 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1086 unsigned long dest_len = rle_usize;
1096 if (uncompress(td->
rle_data, &dest_len, gb.
buffer, rle_csize) != Z_OK ||
1097 (dest_len != rle_usize))
1108 for (
int y = 0; y < td->
ysize; y += 8) {
1109 for (
int x = 0; x < td->
xsize; x += 8) {
1112 for (
int j = 0; j < 3; j++) {
1114 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1120 block[0] = dc_val.f;
1126 const int o =
s->nb_channels == 4;
1128 y * td->
xsize *
s->nb_channels + td->
xsize * (o + 0) + x;
1130 y * td->
xsize *
s->nb_channels + td->
xsize * (o + 1) + x;
1132 y * td->
xsize *
s->nb_channels + td->
xsize * (o + 2) + x;
1133 float *yb = td->
block[0];
1135 float *vb = td->
block[2];
1137 for (
int yy = 0; yy < 8; yy++) {
1138 for (
int xx = 0; xx < 8; xx++) {
1139 const int idx = xx + yy * 8;
1141 convert(yb[idx],
ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1148 bo += td->
xsize *
s->nb_channels;
1149 go += td->
xsize *
s->nb_channels;
1150 ro += td->
xsize *
s->nb_channels;
1156 if (
s->nb_channels < 4)
1164 for (
int x = 0; x < td->
xsize; x++) {
1165 uint16_t ha = ai0[x] | (ai1[x] << 8);
1175 int jobnr,
int threadnr)
1180 const uint8_t *channel_buffer[4] = { 0 };
1181 const uint8_t *buf =
s->buf;
1182 uint64_t line_offset, uncompressed_size;
1186 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1189 int bxmin = 0, axmax = 0, window_xoffset = 0;
1190 int window_xmin, window_xmax, window_ymin, window_ymax;
1191 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1192 int i, x, buf_size =
s->buf_size;
1193 int c, rgb_channel_count;
1194 float one_gamma = 1.0f /
s->gamma;
1198 line_offset =
AV_RL64(
s->gb.buffer + jobnr * 8);
1201 if (buf_size < 20 || line_offset > buf_size - 20)
1204 src = buf + line_offset + 20;
1205 if (
s->is_multipart)
1214 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1217 if (tile_level_x || tile_level_y) {
1222 if (tile_x &&
s->tile_attr.xSize + (
int64_t)
FFMAX(
s->xmin, 0) >= INT_MAX / tile_x )
1224 if (tile_y &&
s->tile_attr.ySize + (
int64_t)
FFMAX(
s->ymin, 0) >= INT_MAX / tile_y )
1227 line =
s->ymin +
s->tile_attr.ySize * tile_y;
1228 col =
s->tile_attr.xSize * tile_x;
1231 s->xmin + col < s->xmin ||
s->xmin + col >
s->xmax)
1234 td->
ysize =
FFMIN(
s->tile_attr.ySize,
s->ydelta - tile_y *
s->tile_attr.ySize);
1235 td->
xsize =
FFMIN(
s->tile_attr.xSize,
s->xdelta - tile_x *
s->tile_attr.xSize);
1237 if (td->
xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1244 if (buf_size < 8 || line_offset > buf_size - 8)
1247 src = buf + line_offset + 8;
1248 if (
s->is_multipart)
1256 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1262 if (td->
xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1269 if ((
s->compression ==
EXR_RAW && (data_size != uncompressed_size ||
1270 line_offset > buf_size - uncompressed_size)) ||
1271 (
s->compression !=
EXR_RAW && (data_size > uncompressed_size ||
1272 line_offset > buf_size - data_size))) {
1281 xsize = window_xmax - window_xmin;
1282 ysize = window_ymax - window_ymin;
1285 if (xsize <= 0 || ysize <= 0)
1292 window_xoffset =
FFMAX(0,
s->xmin);
1294 bxmin = window_xoffset *
step;
1298 if(col + td->
xsize ==
s->xdelta) {
1299 window_xmax = avctx->
width;
1307 if (data_size < uncompressed_size || s->is_tile) {
1313 if (data_size < uncompressed_size) {
1321 switch (
s->compression) {
1357 channel_buffer[0] =
src + (td->
xsize *
s->channel_offsets[0]) + data_window_offset;
1358 channel_buffer[1] =
src + (td->
xsize *
s->channel_offsets[1]) + data_window_offset;
1359 channel_buffer[2] =
src + (td->
xsize *
s->channel_offsets[2]) + data_window_offset;
1360 rgb_channel_count = 3;
1362 channel_buffer[0] =
src + (td->
xsize *
s->channel_offsets[1]) + data_window_offset;
1363 rgb_channel_count = 1;
1365 if (
s->channel_offsets[3] >= 0)
1366 channel_buffer[3] =
src + (td->
xsize *
s->channel_offsets[3]) + data_window_offset;
1370 int channel_count =
s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1372 channel_buffer[1] = channel_buffer[0];
1373 channel_buffer[2] = channel_buffer[0];
1376 for (
c = 0;
c < channel_count;
c++) {
1377 int plane =
s->desc->comp[
c].plane;
1378 ptr = p->
data[plane] + window_ymin * p->
linesize[plane] + (window_xmin * 4);
1380 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[plane]) {
1384 src = channel_buffer[
c];
1388 memset(ptr_x, 0, bxmin);
1389 ptr_x += window_xoffset;
1396 if (trc_func &&
c < 3) {
1397 for (x = 0; x < xsize; x++) {
1398 t.
i = bytestream_get_le32(&
src);
1399 t.
f = trc_func(t.
f);
1402 }
else if (one_gamma != 1.
f) {
1403 for (x = 0; x < xsize; x++) {
1404 t.
i = bytestream_get_le32(&
src);
1405 if (t.
f > 0.0f &&
c < 3)
1406 t.
f =
powf(t.
f, one_gamma);
1410 for (x = 0; x < xsize; x++) {
1411 t.
i = bytestream_get_le32(&
src);
1417 if (
c < 3 || !trc_func) {
1418 for (x = 0; x < xsize; x++) {
1419 *ptr_x++ =
s->gamma_table[bytestream_get_le16(&
src)];
1422 for (x = 0; x < xsize; x++) {
1430 memset(ptr_x, 0, axmax);
1437 ptr = p->
data[0] + window_ymin * p->
linesize[0] + (window_xmin *
s->desc->nb_components * 2);
1439 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[0]) {
1442 const uint8_t *
rgb[3];
1445 for (
c = 0;
c < rgb_channel_count;
c++) {
1446 rgb[
c] = channel_buffer[
c];
1449 if (channel_buffer[3])
1450 a = channel_buffer[3];
1452 ptr_x = (uint16_t *) ptr;
1455 memset(ptr_x, 0, bxmin);
1456 ptr_x += window_xoffset *
s->desc->nb_components;
1458 for (x = 0; x < xsize; x++) {
1459 for (
c = 0;
c < rgb_channel_count;
c++) {
1460 *ptr_x++ = bytestream_get_le32(&
rgb[
c]) >> 16;
1463 if (channel_buffer[3])
1464 *ptr_x++ = bytestream_get_le32(&
a) >> 16;
1468 memset(ptr_x, 0, axmax);
1473 if (channel_buffer[3])
1486 if (!bytestream2_peek_byte(gb))
1490 for (
int i = 0;
i < 2;
i++)
1491 while (bytestream2_get_byte(gb) != 0);
1511 const char *value_name,
1512 const char *value_type,
1513 unsigned int minimum_length)
1519 !strcmp(gb->
buffer, value_name)) {
1521 gb->
buffer += strlen(value_name) + 1;
1522 if (!strcmp(gb->
buffer, value_type)) {
1523 gb->
buffer += strlen(value_type) + 1;
1524 var_size = bytestream2_get_le32(gb);
1530 gb->
buffer -= strlen(value_name) + 1;
1532 "Unknown data type %s for header variable %s.\n",
1533 value_type, value_name);
1545 int layer_match = 0;
1547 int dup_channels = 0;
1549 s->current_channel_offset = 0;
1556 s->channel_offsets[0] = -1;
1557 s->channel_offsets[1] = -1;
1558 s->channel_offsets[2] = -1;
1559 s->channel_offsets[3] = -1;
1565 s->tile_attr.xSize = -1;
1566 s->tile_attr.ySize = -1;
1568 s->is_multipart = 0;
1570 s->current_part = 0;
1577 magic_number = bytestream2_get_le32(gb);
1578 if (magic_number != 20000630) {
1585 version = bytestream2_get_byte(gb);
1591 flags = bytestream2_get_le24(gb);
1596 s->is_multipart = 1;
1606 while (
s->is_multipart &&
s->current_part <
s->selected_part &&
1608 if (bytestream2_peek_byte(gb)) {
1612 if (!bytestream2_peek_byte(gb))
1619 if (!bytestream2_peek_byte(gb)) {
1620 if (!
s->is_multipart)
1623 if (
s->current_part ==
s->selected_part) {
1625 if (bytestream2_peek_byte(gb)) {
1629 if (!bytestream2_peek_byte(gb))
1634 if (!bytestream2_peek_byte(gb))
1640 "chlist", 38)) >= 0) {
1652 int channel_index = -1;
1655 if (strcmp(
s->layer,
"") != 0) {
1656 if (strncmp(ch_gb.
buffer,
s->layer, strlen(
s->layer)) == 0) {
1659 "Channel match layer : %s.\n", ch_gb.
buffer);
1660 ch_gb.
buffer += strlen(
s->layer);
1661 if (*ch_gb.
buffer ==
'.')
1666 "Channel doesn't match layer : %s.\n", ch_gb.
buffer);
1694 "Unsupported channel %.256s.\n", ch_gb.
buffer);
1700 bytestream2_get_byte(&ch_gb))
1709 current_pixel_type = bytestream2_get_le32(&ch_gb);
1712 current_pixel_type);
1718 xsub = bytestream2_get_le32(&ch_gb);
1719 ysub = bytestream2_get_le32(&ch_gb);
1721 if (xsub != 1 || ysub != 1) {
1723 "Subsampling %dx%d",
1729 if (channel_index >= 0 &&
s->channel_offsets[channel_index] == -1) {
1731 s->pixel_type != current_pixel_type) {
1733 "RGB channels not of the same depth.\n");
1737 s->pixel_type = current_pixel_type;
1738 s->channel_offsets[channel_index] =
s->current_channel_offset;
1739 }
else if (channel_index >= 0) {
1741 "Multiple channels with index %d.\n", channel_index);
1742 if (++dup_channels > 10) {
1754 channel = &
s->channels[
s->nb_channels - 1];
1755 channel->pixel_type = current_pixel_type;
1759 if (current_pixel_type ==
EXR_HALF) {
1760 s->current_channel_offset += 2;
1762 s->current_channel_offset += 4;
1769 if (
FFMIN3(
s->channel_offsets[0],
1770 s->channel_offsets[1],
1771 s->channel_offsets[2]) < 0) {
1772 if (
s->channel_offsets[0] < 0)
1774 if (
s->channel_offsets[1] < 0)
1776 if (
s->channel_offsets[2] < 0)
1788 int xmin, ymin, xmax, ymax;
1794 xmin = bytestream2_get_le32(gb);
1795 ymin = bytestream2_get_le32(gb);
1796 xmax = bytestream2_get_le32(gb);
1797 ymax = bytestream2_get_le32(gb);
1799 if (xmin > xmax || ymin > ymax ||
1800 ymax == INT_MAX || xmax == INT_MAX ||
1801 (
unsigned)xmax - xmin >= INT_MAX ||
1802 (
unsigned)ymax - ymin >= INT_MAX) {
1810 s->xdelta = (
s->xmax -
s->xmin) + 1;
1811 s->ydelta = (
s->ymax -
s->ymin) + 1;
1815 "box2i", 34)) >= 0) {
1823 sx = bytestream2_get_le32(gb);
1824 sy = bytestream2_get_le32(gb);
1825 dx = bytestream2_get_le32(gb);
1826 dy = bytestream2_get_le32(gb);
1828 s->w = (unsigned)dx - sx + 1;
1829 s->h = (unsigned)dy - sy + 1;
1833 "lineOrder", 25)) >= 0) {
1840 line_order = bytestream2_get_byte(gb);
1842 if (line_order > 2) {
1850 "float", 31)) >= 0) {
1856 s->sar = bytestream2_get_le32(gb);
1860 "compression", 29)) >= 0) {
1867 s->compression = bytestream2_get_byte(gb);
1871 "Found more than one compression attribute.\n");
1876 "tiledesc", 22)) >= 0) {
1881 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1883 s->tile_attr.xSize = bytestream2_get_le32(gb);
1884 s->tile_attr.ySize = bytestream2_get_le32(gb);
1886 tileLevel = bytestream2_get_byte(gb);
1887 s->tile_attr.level_mode = tileLevel & 0x0f;
1888 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1892 s->tile_attr.level_mode);
1899 s->tile_attr.level_round);
1906 "string", 1)) >= 0) {
1907 uint8_t
key[256] = { 0 };
1914 "rational", 33)) >= 0) {
1920 s->avctx->framerate.num = bytestream2_get_le32(gb);
1921 s->avctx->framerate.den = bytestream2_get_le32(gb);
1927 s->chunk_count = bytestream2_get_le32(gb);
1931 "string", 16)) >= 0) {
1932 uint8_t
key[256] = { 0 };
1935 if (strncmp(
"scanlineimage",
key, var_size) &&
1936 strncmp(
"tiledimage",
key, var_size)) {
1943 "preview", 16)) >= 0) {
1944 uint32_t pw = bytestream2_get_le32(gb);
1945 uint32_t
ph = bytestream2_get_le32(gb);
1946 uint64_t psize = pw * (uint64_t)
ph;
1947 if (psize > INT64_MAX / 4) {
1972 uint8_t
name[256] = { 0 };
1973 uint8_t
type[256] = { 0 };
1974 uint8_t
value[8192] = { 0 };
1978 bytestream2_peek_byte(gb) &&
i < 255) {
1979 name[
i++] = bytestream2_get_byte(gb);
1985 bytestream2_peek_byte(gb) &&
i < 255) {
1986 type[
i++] = bytestream2_get_byte(gb);
1989 size = bytestream2_get_le32(gb);
1994 if (!strcmp(
type,
"string"))
2006 if (
s->tile_attr.xSize < 1 ||
s->tile_attr.ySize < 1) {
2019 frame->metadata = metadata;
2036 int i, y,
ret, ymax;
2040 uint64_t start_offset_table;
2041 uint64_t start_next_scanline;
2050 s->current_channel_offset *= 2;
2051 for (
int i = 0;
i < 4;
i++)
2052 s->channel_offsets[
i] *= 2;
2055 switch (
s->pixel_type) {
2058 if (
s->channel_offsets[3] >= 0) {
2074 if (
s->channel_offsets[3] >= 0) {
2095 else if (
s->gamma > 0.9999f &&
s->gamma < 1.0001f)
2098 switch (
s->compression) {
2102 s->scan_lines_per_block = 1;
2106 s->scan_lines_per_block = 16;
2112 s->scan_lines_per_block = 32;
2115 s->scan_lines_per_block = 256;
2124 if (
s->xmin >
s->xmax ||
s->ymin >
s->ymax ||
2125 s->ydelta == 0xFFFFFFFF ||
s->xdelta == 0xFFFFFFFF) {
2143 planes =
s->desc->nb_components;
2144 out_line_size = avctx->
width * 4;
2147 out_line_size = avctx->
width * 2 *
s->desc->nb_components;
2151 nb_blocks = ((
s->xdelta +
s->tile_attr.xSize - 1) /
s->tile_attr.xSize) *
2152 ((
s->ydelta +
s->tile_attr.ySize - 1) /
s->tile_attr.ySize);
2154 nb_blocks = (
s->ydelta +
s->scan_lines_per_block - 1) /
2155 s->scan_lines_per_block;
2165 if (!
s->is_tile && bytestream2_peek_le64(gb) == 0) {
2171 if (!
s->offset_table)
2175 start_next_scanline = start_offset_table + nb_blocks * 8;
2178 for (y = 0; y < nb_blocks; y++) {
2180 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2184 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2190 s->buf = avpkt->
data;
2191 s->buf_size = avpkt->
size;
2195 ptr = picture->
data[
i];
2196 for (y = 0; y <
FFMIN(
s->ymin,
s->h); y++) {
2197 memset(ptr, 0, out_line_size);
2202 s->picture = picture;
2206 ymax =
FFMAX(0,
s->ymax + 1);
2208 if (ymax < avctx->
height)
2211 for (y = ymax; y < avctx->
height; y++) {
2212 memset(ptr, 0, out_line_size);
2228 float one_gamma = 1.0
f /
s->gamma;
2243 for (
i = 0;
i < 65536; ++
i) {
2245 t.
f = trc_func(t.
f);
2246 s->gamma_table[
i] = t;
2249 if (one_gamma > 0.9999
f && one_gamma < 1.0001
f) {
2250 for (
i = 0;
i < 65536; ++
i) {
2254 for (
i = 0;
i < 65536; ++
i) {
2258 s->gamma_table[
i] = t;
2260 t.
f =
powf(t.
f, one_gamma);
2261 s->gamma_table[
i] = t;
2269 if (!
s->thread_data)
2301 #define OFFSET(x) offsetof(EXRContext, x)
2302 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2304 {
"layer",
"Set the decoding layer",
OFFSET(layer),
2306 {
"part",
"Set the decoding part",
OFFSET(selected_part),
2308 {
"gamma",
"Set the float gamma value when decoding",
OFFSET(gamma),
2312 {
"apply_trc",
"color transfer characteristics to apply to EXR linear input",
OFFSET(apply_trc_type),
2314 {
"bt709",
"BT.709", 0,
2316 {
"gamma",
"gamma", 0,
2318 {
"gamma22",
"BT.470 M", 0,
2320 {
"gamma28",
"BT.470 BG", 0,
2322 {
"smpte170m",
"SMPTE 170 M", 0,
2324 {
"smpte240m",
"SMPTE 240 M", 0,
2326 {
"linear",
"Linear", 0,
2330 {
"log_sqrt",
"Log square root", 0,
2332 {
"iec61966_2_4",
"IEC 61966-2-4", 0,
2334 {
"bt1361",
"BT.1361", 0,
2336 {
"iec61966_2_1",
"IEC 61966-2-1", 0,
2338 {
"bt2020_10bit",
"BT.2020 - 10 bit", 0,
2340 {
"bt2020_12bit",
"BT.2020 - 12 bit", 0,
2342 {
"smpte2084",
"SMPTE ST 2084", 0,
2344 {
"smpte428_1",
"SMPTE ST 428-1", 0,
enum ExrTileLevelRound level_round
#define AV_LOG_WARNING
Something somehow does not look correct.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
AVColorTransferCharacteristic
Color Transfer Characteristic.
#define u(width, name, range_min, range_max)
uint8_t * uncompressed_data
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
@ AVCOL_TRC_LINEAR
"Linear transfer characteristics"
static int decode_header(EXRContext *s, AVFrame *frame)
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
static int get_bits_count(const GetBitContext *s)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static int decode_frame(AVCodecContext *avctx, AVFrame *picture, int *got_frame, AVPacket *avpkt)
static int FUNC() ph(CodedBitstreamContext *ctx, RWContext *rw, H266RawPH *current)
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
@ AVCOL_TRC_NB
Not part of ABI.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
static av_cold int decode_init(AVCodecContext *avctx)
static const struct @467 planes[]
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
@ AVCOL_TRC_BT2020_12
ITU-R BT2020 for 12-bit system.
static int piz_uncompress(const EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
static const AVOption options[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int b44_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int rle(uint8_t *dst, const uint8_t *src, int compressed_size, int uncompressed_size)
static void convert(float y, float u, float v, float *b, float *g, float *r)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
av_csp_trc_function av_csp_trc_func_from_id(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
EXRTileAttribute tile_attr
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t mx
AVCodec p
The public AVCodec.
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
@ AVCOL_TRC_IEC61966_2_1
IEC 61966-2-1 (sRGB or sYCC)
enum AVDiscard skip_frame
Skip decoding for selected frames.
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
@ AVCOL_TRC_GAMMA28
also ITU-R BT470BG
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
@ AVCOL_TRC_LOG_SQRT
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
static __device__ float fabsf(float a)
const FFCodec ff_exr_decoder
static int huf_build_dec_table(const EXRContext *s, EXRThreadData *td, int im, int iM)
@ AVCOL_TRC_GAMMA22
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
int av_image_check_size2(unsigned int w, unsigned int h, int64_t max_pixels, enum AVPixelFormat pix_fmt, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of a plane of an image with...
static float to_linear(float x, float scale)
static av_cold int decode_end(AVCodecContext *avctx)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
enum ExrCompr compression
#define FF_CODEC_DECODE_CB(func)
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
static void huf_canonical_code_table(uint64_t *freq)
@ AVCOL_TRC_BT1361_ECG
ITU-R BT1361 Extended Colour Gamut.
int ff_thread_get_buffer(AVCodecContext *avctx, AVFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int current_channel_offset
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
enum ExrPixelType pixel_type
int64_t max_pixels
The number of pixels per image to maximally accept.
#define SHORTEST_LONG_RUN
static void skip_header_chunk(EXRContext *s)
#define AV_PIX_FMT_GRAYF32
#define CODEC_LONG_NAME(str)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
const AVPixFmtDescriptor * desc
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
#define av_realloc_f(p, o, n)
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static int bias(int x, int c)
#define LONG_ZEROCODE_RUN
#define SHORT_ZEROCODE_RUN
@ AVCOL_TRC_IEC61966_2_4
IEC 61966-2-4.
const char * av_default_item_name(void *ptr)
Return the context name.
@ AV_PICTURE_TYPE_I
Intra.
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
av_cold void ff_exrdsp_init(ExrDSPContext *c)
@ AVCOL_TRC_BT2020_10
ITU-R BT2020 for 10-bit system.
static void unpack_14(const uint8_t b[14], uint16_t s[16])
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static av_always_inline int bytestream2_tell(GetByteContext *g)
enum ExrPixelType pixel_type
enum ExrTileLevelMode level_mode
EXRThreadData * thread_data
enum AVPictureType pict_type
Picture type of the frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static int dwa_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
@ AVCOL_TRC_LOG
"Logarithmic transfer characteristic (100:1 range)"
#define bytestream2_get_ne16
#define AV_PIX_FMT_GBRPF32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int ac_uncompress(const EXRContext *s, GetByteContext *gb, float *block)
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static void idct_1d(float *blk, int step)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
enum AVColorTransferCharacteristic apply_trc_type
int ff_vlc_init_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Build VLC decoding tables suitable for use with get_vlc2().
static void unpack_3(const uint8_t b[3], uint16_t s[16])
#define AV_LOG_INFO
Standard information.
@ AVCOL_TRC_BT709
also ITU-R BT1361
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
static void dct_inverse(float *block)
double(* av_csp_trc_function)(double)
Function pointer representing a double -> double transfer function that performs either an OETF trans...
Half2FloatTables h2f_tables
#define i(width, name, range_min, range_max)
#define av_malloc_array(a, b)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
const char * name
Name of the codec implementation.
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *freq)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
const uint8_t ff_zigzag_direct[64]
void ff_vlc_free(VLC *vlc)
static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym, int no, uint16_t *out)
static uint32_t half2float(uint16_t h, const Half2FloatTables *t)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
void ff_init_half2float_tables(Half2FloatTables *t)
static int rle_uncompress(const EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
union av_intfloat32 gamma_table[65536]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
static int pxr24_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
@ AV_OPT_TYPE_INT
Underlying C type is int.
#define AV_PIX_FMT_GBRAPF32
@ AVCOL_TRC_SMPTE170M
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
#define avpriv_request_sample(...)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static int huf_uncompress(const EXRContext *s, EXRThreadData *td, GetByteContext *gb, uint16_t *dst, int dst_size)
static void scale(int *out, const int *in, const int w, const int h, const int shift)
static const int16_t alpha[]
This structure stores compressed data.
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
static int zip_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static const AVClass exr_class
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
The official guide to swscale for confused that consecutive non overlapping rectangles of slice_bottom special converter These generally are unscaled converters of common like for each output line the vertical scaler pulls lines from a ring buffer When the ring buffer does not contain the wanted line
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.