Go to the documentation of this file.
36 #include <tensorflow/c/c_api.h>
67 #define OFFSET(x) offsetof(TFOptions, x)
68 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM
103 for (uint32_t
i = 0;
i < nb_output; ++
i) {
122 if (!infer_request) {
129 return infer_request;
158 if (TF_GetCode(request->
status) != TF_OK) {
179 TF_DeleteStatus(request->
status);
206 TF_Buffer *graph_buf;
207 unsigned char *graph_data =
NULL;
209 long size, bytes_read;
222 bytes_read =
avio_read(model_file_context, graph_data,
size);
224 if (bytes_read !=
size){
229 graph_buf = TF_NewBuffer();
230 graph_buf->data = graph_data;
231 graph_buf->length =
size;
260 return TF_AllocateTensor(dt, input_dims, 4,
261 input_dims[1] * input_dims[2] * input_dims[3] *
size);
273 tf_output.oper = TF_GraphOperationByName(tf_model->
graph, input_name);
274 if (!tf_output.oper) {
280 dt = TF_OperationOutputType(tf_output);
295 TF_GraphGetTensorShape(tf_model->
graph, tf_output, dims, 4,
status);
296 if (TF_GetCode(
status) != TF_OK){
305 for (
int i = 0;
i < 4;
i++)
313 const char *output_name,
int *output_width,
int *output_height)
322 .output_names = &output_name,
356 #define SPACE_CHARS " \t\r\n"
368 if (
c >=
'0' &&
c <=
'9')
370 else if (
c >=
'A' &&
c <=
'F')
389 TF_Buffer *graph_def;
390 TF_ImportGraphDefOptions *graph_opts;
391 TF_SessionOptions *sess_opts;
392 const TF_Operation *init_op;
393 uint8_t *sess_config =
NULL;
394 int sess_config_length = 0;
397 if (
ctx->tf_option.sess_config !=
NULL) {
405 if (strncmp(
ctx->tf_option.sess_config,
"0x", 2) != 0) {
429 tf_model->
graph = TF_NewGraph();
430 tf_model->
status = TF_NewStatus();
431 graph_opts = TF_NewImportGraphDefOptions();
432 TF_GraphImportGraphDef(tf_model->
graph, graph_def, graph_opts, tf_model->
status);
433 TF_DeleteImportGraphDefOptions(graph_opts);
434 TF_DeleteBuffer(graph_def);
435 if (TF_GetCode(tf_model->
status) != TF_OK){
441 init_op = TF_GraphOperationByName(tf_model->
graph,
"init");
442 sess_opts = TF_NewSessionOptions();
445 TF_SetConfig(sess_opts, sess_config, sess_config_length,tf_model->
status);
447 if (TF_GetCode(tf_model->
status) != TF_OK) {
448 TF_DeleteSessionOptions(sess_opts);
450 ctx->tf_option.sess_config);
456 TF_DeleteSessionOptions(sess_opts);
457 if (TF_GetCode(tf_model->
status) != TF_OK)
470 if (TF_GetCode(tf_model->
status) != TF_OK)
485 if (!model || !*model)
488 tf_model = (
TFModel *)(*model);
509 if (tf_model->
graph){
510 TF_DeleteGraph(tf_model->
graph);
517 TF_DeleteStatus(tf_model->
status);
531 model = &tf_model->
model;
539 if (
ctx->nireq <= 0) {
543 #if !HAVE_PTHREAD_CANCEL
544 if (
ctx->options.async) {
545 ctx->options.async = 0;
555 for (
int i = 0;
i <
ctx->nireq;
i++) {
567 item->
status = TF_NewStatus();
629 if (!infer_request->
tf_input->oper){
771 tf_model = task->
model;
#define AV_LOG_WARNING
Something somehow does not look correct.
Stores execution parameters for single call to the TensorFlow C API.
static int execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
void * ff_safe_queue_pop_front(SafeQueue *sq)
Remove and free first element from the queue in SafeQueue.
Common Async Execution Mechanism for the DNN Backends.
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
void * ff_queue_pop_front(Queue *q)
Remove and free first element from the Queue.
int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func_type, DNNExecBaseParams *exec_params)
size_t ff_queue_size(Queue *q)
Return the length of the Queue.
#define DNN_GENERIC_ERROR
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
Double-ended queue with mutex locks ensuring data consistency while multithreading.
FramePrePostProc frame_pre_proc
int avio_open(AVIOContext **s, const char *filename, int flags)
Create and initialize a AVIOContext for accessing the resource indicated by url.
static int load_tf_model(TFModel *tf_model, const char *model_filename)
SafeQueue * request_queue
void(* callback)(void *args)
Completion Callback for the backend.
int64_t avio_size(AVIOContext *s)
Get the filesize.
static void destroy_request_item(TFRequestItem **arg)
Free the TFRequestItem completely.
AVFilterContext * filter_ctx
Queue * ff_queue_create(void)
Create a Queue instance.
static int dnn_get_width_idx_by_layout(DNNLayout layout)
static int get_input_tf(DNNModel *model, DNNData *input, const char *input_name)
static FilteringContext * filter_ctx
static DNNModel * dnn_load_model_tf(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx)
Linear double-ended data structure.
int ff_queue_push_back(Queue *q, void *v)
Add data to the tail of the queue.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int fill_model_input_tf(TFModel *tf_model, TFRequestItem *request)
DNNAsyncExecModule exec_module
static TF_Buffer * read_graph(const char *model_filename)
void ff_queue_destroy(Queue *q)
Destroy the Queue instance.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const AVOption dnn_tensorflow_options[]
int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx)
Allocate input and output frames and fill the Task with execution parameters.
int(* get_output)(struct DNNModel *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
size_t ff_safe_queue_size(SafeQueue *sq)
Return the length of the SafeQueue.
int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
int ff_frame_to_dnn_detect(AVFrame *frame, DNNData *input, void *log_ctx)
SafeQueue * ff_safe_queue_create(void)
Create and initialize a SafeQueue instance.
FramePrePostProc frame_post_proc
static TFInferRequest * tf_create_inference_request(void)
Create a TensorFlow inference request.
int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
Join the Async Execution thread and set module pointers to NULL.
static void infer_completion_callback(void *args)
static void tf_free_request(TFInferRequest *request)
Free the contents of TensorFlow inference request.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
DetectPostProc detect_post_proc
DNNFunctionType func_type
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int dnn_flush_tf(const DNNModel *model)
void ff_safe_queue_destroy(SafeQueue *sq)
Destroy the SafeQueue instance.
static int hex_to_data(uint8_t *data, const char *p)
static int get_output_tf(DNNModel *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
static int tf_start_inference(void *args)
Start synchronous inference for the TensorFlow model.
int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc)
Fill the Task for Backend Execution.
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define DNN_DEFINE_CLASS(fname)
int ff_safe_queue_push_back(SafeQueue *sq, void *v)
Add data to the tail of queue in the SafeQueue after locking mutex.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
const DNNModule ff_dnn_backend_tf
static int dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params)
#define i(width, name, range_min, range_max)
TF_Tensor ** output_tensors
TFInferRequest * infer_request
#define av_malloc_array(a, b)
int(* start_inference)(void *request)
Synchronous inference function for the backend with corresponding request item as the argument.
void * args
Argument for the execution functions.
static av_const int av_toupper(int c)
Locale-independent conversion of ASCII characters to uppercase.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char ** output_names
void * av_calloc(size_t nmemb, size_t size)
static const AVFilterPad outputs[]
#define AV_INPUT_BUFFER_PADDING_SIZE
static DNNAsyncStatusType dnn_get_result_tf(const DNNModel *model, AVFrame **in, AVFrame **out)
static TF_Tensor * allocate_input_tensor(const DNNData *input)
LastLevelTaskItem * lltask
int avio_read(AVIOContext *s, unsigned char *buf, int size)
Read size bytes from AVIOContext into buf.
DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVFrame **out)
Extract input and output frame from the Task Queue after asynchronous inference.
void * ff_queue_peek_front(Queue *q)
Return a pointer to the data at the head of the queue.
int ff_dnn_start_inference_async(void *ctx, DNNAsyncExecModule *async_module)
Start asynchronous inference routine for the TensorFlow model on a detached thread.
#define AVIO_FLAG_READ
read-only
static int dnn_get_height_idx_by_layout(DNNLayout layout)
static void dnn_free_model_tf(DNNModel **model)
static int dnn_get_channel_idx_by_layout(DNNLayout layout)
int avio_closep(AVIOContext **s)
Close the resource accessed by the AVIOContext *s, free it and set the pointer pointing to it to NULL...
static void free_buffer(void *data, size_t length)
int(* get_input)(struct DNNModel *model, DNNData *input, const char *input_name)
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)