57 #define OFFSET(x) offsetof(DatascopeContext, x) 58 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 59 #define FLAGSR AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM 87 int x0,
int y0,
const uint8_t *text,
int vertical)
91 for (; *text; text++) {
113 color->
rgba[3] = 255;
116 for (i = 0; i < 4; i++) {
122 color->
comp[p].
u8[0] = value[p];
131 color->
rgba[3] = 255;
134 for (i = 0; i < 4; i++) {
140 color->
comp[p].
u16[0] = value[p];
149 reverse->
rgba[3] = 255;
151 reverse->
comp[p].
u8[0] = color->
comp[p].
u8[0] > 127 ? 0 : 255;
152 reverse->
comp[p].
u8[1] = color->
comp[p].
u8[1] > 127 ? 0 : 255;
153 reverse->
comp[p].
u8[2] = color->
comp[p].
u8[2] > 127 ? 0 : 255;
161 reverse->
rgba[3] = 255;
164 const unsigned mid = (max + 1) / 2;
185 const int PP = td->
PP;
186 const int xoff = td->
xoff;
187 const int yoff = td->
yoff;
191 const int W = (outlink->
w - xoff) / (C * 10);
192 const int H = (outlink->
h - yoff) / (PP * 12);
193 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
194 const int slice_start = (W * jobnr) / nb_jobs;
195 const int slice_end = (W * (jobnr+1)) / nb_jobs;
198 for (y = 0; y < H && (y + s->
y < inlink->
h); y++) {
199 for (x = slice_start; x < slice_end && (x + s->
x < inlink->
w); x++) {
202 int value[4] = { 0 }, pp = 0;
207 xoff + x * C * 10, yoff + y * PP * 12, C * 10, PP * 12);
209 for (p = 0; p <
P; p++) {
214 snprintf(text,
sizeof(text), format[D], value[p]);
215 draw_text(&s->
draw, out, &reverse, xoff + x * C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
232 const int PP = td->
PP;
233 const int xoff = td->
xoff;
234 const int yoff = td->
yoff;
238 const int W = (outlink->
w - xoff) / (C * 10);
239 const int H = (outlink->
h - yoff) / (PP * 12);
240 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
241 const int slice_start = (W * jobnr) / nb_jobs;
242 const int slice_end = (W * (jobnr+1)) / nb_jobs;
245 for (y = 0; y < H && (y + s->
y < inlink->
h); y++) {
246 for (x = slice_start; x < slice_end && (x + s->
x < inlink->
w); x++) {
248 int value[4] = { 0 }, pp = 0;
252 for (p = 0; p <
P; p++) {
257 snprintf(text,
sizeof(text), format[D], value[p]);
258 draw_text(&s->
draw, out, &color, xoff + x * C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
275 const int PP = td->
PP;
276 const int xoff = td->
xoff;
277 const int yoff = td->
yoff;
281 const int W = (outlink->
w - xoff) / (C * 10);
282 const int H = (outlink->
h - yoff) / (PP * 12);
283 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
284 const int slice_start = (W * jobnr) / nb_jobs;
285 const int slice_end = (W * (jobnr+1)) / nb_jobs;
288 for (y = 0; y < H && (y + s->
y < inlink->
h); y++) {
289 for (x = slice_start; x < slice_end && (x + s->
x < inlink->
w); x++) {
291 int value[4] = { 0 }, pp = 0;
294 for (p = 0; p <
P; p++) {
299 snprintf(text,
sizeof(text), format[D], value[p]);
300 draw_text(&s->
draw, out, &s->
white, xoff + x * C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
329 0, 0, outlink->
w, outlink->
h);
331 for (
int p = 0; p <
P; p++) {
339 int Y = outlink->
h / (PP * 12);
340 int X = outlink->
w / (C * 10);
341 char text[256] = { 0 };
344 snprintf(text,
sizeof(text),
"%d", s->
y + Y);
345 ymaxlen = strlen(text);
347 snprintf(text,
sizeof(text),
"%d", s->
x + X);
348 xmaxlen = strlen(text);
351 Y = (outlink->
h - xmaxlen) / (PP * 12);
352 X = (outlink->
w - ymaxlen) / (C * 10);
354 for (y = 0; y <
Y; y++) {
355 snprintf(text,
sizeof(text),
"%d", s->
y + y);
358 0, xmaxlen + y * PP * 12 + (PP + 1) * PP - 2, ymaxlen, 10);
363 for (x = 0; x <
X; x++) {
364 snprintf(text,
sizeof(text),
"%d", s->
x + x);
367 ymaxlen + x * C * 10 + 2 * C - 2, 0, 10, xmaxlen);
423 char *res,
int res_len,
int flags)
457 .priv_class = &datascope_class,
494 #define POFFSET(x) offsetof(PixscopeContext, x) 547 if (inlink->
w < 640 || inlink->
h < 480) {
554 s->
x = s->
xpos * (inlink->
w - 1);
555 s->
y = s->
ypos * (inlink->
h - 1);
556 if (s->
x + s->
w >= inlink->
w || s->
y + s->
h >= inlink->
h) {
565 #define SQR(x) ((x)*(x)) 573 int max[4] = { 0 },
min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
574 float average[4] = { 0 };
575 double std[4] = { 0 }, rms[4] = { 0 };
576 const char rgba[4] = {
'R',
'G',
'B',
'A' };
577 const char yuva[4] = {
'Y',
'U',
'V',
'A' };
603 if (s->
x + s->
w >= X && (s->
x + s->
w <= X + s->
ww) &&
604 s->
y + s->
h >= Y && (s->
y + s->
h <= Y + s->
wh)) {
610 if (s->
x + s->
w >= X && (s->
x + s->
w <= X + s->
ww) &&
611 s->
y + s->
h >= Y && (s->
y + s->
h <= Y + s->
wh)) {
623 for (y = 0; y < s->
h; y++) {
624 for (x = 0; x < s->
w; x++) {
626 int value[4] = { 0 };
630 x * w + (s->
ww - 4 - (s->
w * w)) / 2 + X, y * h + 2 + Y, w, h);
631 for (i = 0; i < 4; i++) {
633 rms[
i] += (double)value[i] * (
double)value[
i];
634 average[
i] += value[
i];
636 max[
i] =
FFMAX(max[i], value[i]);
643 s->
x - 2, s->
y - 2, s->
w + 4, 1);
647 s->
x - 1, s->
y - 1, s->
w + 2, 1);
651 s->
x - 1, s->
y - 1, 1, s->
h + 2);
655 s->
x - 2, s->
y - 2, 1, s->
h + 4);
659 s->
x - 1, s->
y + 1 + s->
h, s->
w + 3, 1);
663 s->
x - 2, s->
y + 2 + s->
h, s->
w + 4, 1);
667 s->
x + 1 + s->
w, s->
y - 1, 1, s->
h + 2);
671 s->
x + 2 + s->
w, s->
y - 2, 1, s->
h + 5);
673 for (i = 0; i < 4; i++) {
674 rms[
i] /= s->
w * s->
h;
675 rms[
i] = sqrt(rms[i]);
676 average[
i] /= s->
w * s->
h;
679 for (y = 0; y < s->
h; y++) {
680 for (x = 0; x < s->
w; x++) {
681 for (i = 0; i < 4; i++)
682 std[i] +=
SQR(s->
values[i][x][y] - average[i]);
686 for (i = 0; i < 4; i++) {
687 std[
i] /= s->
w * s->
h;
688 std[
i] = sqrt(std[i]);
691 snprintf(text,
sizeof(text),
"CH AVG MIN MAX RMS\n");
696 snprintf(text,
sizeof(text),
"%c %07.1f %05d %05d %07.1f\n", s->
is_rgb ? rgba[i] : yuva[i], average[c],
min[c], max[c], rms[c]);
699 snprintf(text,
sizeof(text),
"CH STD\n");
704 snprintf(text,
sizeof(text),
"%c %07.2f\n", s->
is_rgb ? rgba[i] : yuva[i], std[c]);
713 char *res,
int res_len,
int flags)
746 .priv_class = &pixscope_class,
748 .inputs = pixscope_inputs,
749 .outputs = pixscope_outputs,
800 #define OOFFSET(x) offsetof(OscilloscopeContext, x) 831 int dx =
FFABS(x1 - x0), sx = x0 < x1 ? 1 : -1;
832 int dy =
FFABS(y1 - y0), sy = y0 < y1 ? 1 : -1;
833 int err = (dx > dy ? dx : -dy) / 2, e2;
837 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
859 if (x0 == x1 && y0 == y1)
923 size =
hypot(inlink->
w, inlink->
h);
926 cx = s->
xpos * (inlink->
w - 1);
927 cy = s->
ypos * (inlink->
h - 1);
928 s->
x1 = cx - size / 2.0 * cos(tilt);
929 s->
x2 = cx + size / 2.0 * cos(tilt);
930 s->
y1 = cy - size / 2.0 * sin(tilt);
931 s->
y2 = cy + size / 2.0 * sin(tilt);
980 size =
hypot(inlink->
w, inlink->
h);
994 int dx =
FFABS(x1 - x0), sx = x0 < x1 ? 1 : -1;
995 int dy =
FFABS(y1 - y0), sy = y0 < y1 ? 1 : -1;
996 int err = (dx > dy ? dx : -dy) / 2, e2;
999 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
1001 int value[4] = { 0 };
1033 if (x0 == x1 && y0 == y1)
1055 float average[4] = { 0 };
1057 int min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1066 if (s->
grid && outlink->
h >= 10) {
1070 for (i = 1; i < 5; i++) {
1075 for (i = 0; i < 10; i++) {
1087 for (c = 0; c < s->
nb_comps; c++) {
1095 for (c = 0; c < s->
nb_comps; c++) {
1100 for (c = 0, i = 0; c < s->
nb_comps; c++) {
1102 const char rgba[4] = {
'R',
'G',
'B',
'A' };
1103 const char yuva[4] = {
'Y',
'U',
'V',
'A' };
1106 snprintf(text,
sizeof(text),
"%c avg:%.1f min:%d max:%d\n", s->
is_rgb ? rgba[c] : yuva[c], average[c], min[c], max[c]);
1116 char *res,
int res_len,
int flags)
1135 .needs_writable = 1,
1149 .
name =
"oscilloscope",
1152 .priv_class = &oscilloscope_class,
1155 .inputs = oscilloscope_inputs,
1156 .outputs = oscilloscope_outputs,
int64_t frame_count_in
Number of past frames sent through the link.
AVFilterFormats * ff_draw_supported_pixel_formats(unsigned flags)
Return the list of pixel formats supported by the draw functions.
static int pixscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
This structure describes decoded (raw) audio or video data.
static const AVOption pixscope_options[]
#define AV_LOG_WARNING
Something somehow does not look correct.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Main libavfilter public API header.
int h
agreed upon image height
void(* draw_trace)(struct OscilloscopeContext *s, AVFrame *frame)
static int filter_color2(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate.The lists are not just lists
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
static int filter_mono(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
AVFilterLink ** inputs
array of pointers to input links
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
static void pick_color16(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static void pick_color8(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static av_cold int uninit(AVCodecContext *avctx)
void(* reverse_color)(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
static int filter_color(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
GLsizei GLboolean const GLfloat * value
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static const AVFilterPad inputs[]
static uint32_t reverse(uint32_t num, int bits)
union FFDrawColor::@204 comp[MAX_PLANES]
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
A filter pad used for either input or output.
A link between two filters.
static const AVOption datascope_options[]
static void draw_trace16(OscilloscopeContext *s, AVFrame *frame)
static void draw_trace8(OscilloscopeContext *s, AVFrame *frame)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const uint8_t avpriv_cga_font[2048]
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
void ff_draw_color(FFDrawContext *draw, FFDrawColor *color, const uint8_t rgba[4])
Prepare a color.
simple assert() macros that are a bit more flexible than ISO C assert().
static const AVFilterPad oscilloscope_inputs[]
static const AVFilterPad oscilloscope_outputs[]
static void reverse_color16(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
int av_frame_copy(AVFrame *dst, const AVFrame *src)
Copy the frame data from src to dst.
int w
agreed upon image width
static void oscilloscope_uninit(AVFilterContext *ctx)
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
static void update_oscilloscope(AVFilterContext *ctx)
static av_const double hypot(double x, double y)
uint8_t nb_components
The number of components each pixel has, (1-4)
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static int config_input(AVFilterLink *inlink)
static int query_formats(AVFilterContext *ctx)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
AVFilter ff_vf_oscilloscope
AVFilterContext * src
source filter
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
int format
agreed upon media format
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
AVFILTER_DEFINE_CLASS(datascope)
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
void ff_blend_mask(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, const uint8_t *mask, int mask_linesize, int mask_w, int mask_h, int l2depth, unsigned endianness, int x0, int y0)
Blend an alpha mask with an uniform color.
static const AVFilterPad outputs[]
static int oscilloscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Used for passing data between threads.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
static const AVOption oscilloscope_options[]
static void draw_text(FFDrawContext *draw, AVFrame *frame, FFDrawColor *color, int x0, int y0, const uint8_t *text, int vertical)
static const int16_t alpha[]
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static int pixscope_filter_frame(AVFilterLink *inlink, AVFrame *in)
Describe the class of an AVClass context structure.
Rational number (pair of numerator and denominator).
void ff_blend_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, int x0, int y0, int w, int h)
Blend a rectangle with an uniform color.
const char * name
Filter name.
int ff_draw_init(FFDrawContext *draw, enum AVPixelFormat format, unsigned flags)
Init a draw context.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
offset must point to two consecutive integers
AVFilterLink ** outputs
array of pointers to output links
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static void draw_scope(OscilloscopeContext *s, int x0, int y0, int x1, int y1, AVFrame *out, PixelValues *p, int state)
static int config_output(AVFilterLink *outlink)
static int oscilloscope_filter_frame(AVFilterLink *inlink, AVFrame *frame)
static int pixscope_config_input(AVFilterLink *inlink)
avfilter_execute_func * execute
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
uint16_t values[4][80][80]
AVFilterContext * dst
dest filter
static const AVFilterPad pixscope_outputs[]
int pixelstep[MAX_PLANES]
const struct AVPixFmtDescriptor * desc
void ff_fill_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_x, int dst_y, int w, int h)
Fill a rectangle with an uniform color.
static void draw_line(FFDrawContext *draw, int x0, int y0, int x1, int y1, AVFrame *out, FFDrawColor *color)
static int oscilloscope_config_input(AVFilterLink *inlink)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
int depth
Number of bits in the component.
static const AVFilterPad pixscope_inputs[]
mode
Use these values in ebur128_init (or'ed).
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
CGA/EGA/VGA ROM font data.
static void reverse_color8(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)