Go to the documentation of this file.
34 #define FILTER_ORDER 4
78 #define OFFSET(x) offsetof(AudioNEqualizerContext, x)
79 #define A AV_OPT_FLAG_AUDIO_PARAM
80 #define V AV_OPT_FLAG_VIDEO_PARAM
81 #define F AV_OPT_FLAG_FILTERING_PARAM
91 {
"colors",
"set channels curves colors",
OFFSET(colors),
AV_OPT_TYPE_STRING, {.str =
"red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0,
V|
F },
107 memset(
out->data[0], 0,
s->h *
out->linesize[0]);
109 for (ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
110 uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
118 for (
f = 0;
f <
s->w;
f++) {
119 double zr, zi, zr2, zi2;
125 w =
M_PI * (
s->fscale ? pow(
s->w - 1,
f /
s->w) :
f) / (
s->w - 1);
131 for (n = 0; n <
s->nb_filters; n++) {
132 if (
s->filters[n].channel != ch ||
133 s->filters[n].ignore)
142 Hr =
S->b4*(1-8*zr2*zi2) +
S->b2*(zr2-zi2) + zr*(
S->b1+
S->b3*(zr2-3*zi2))+
S->b0;
143 Hi = zi*(
S->b3*(3*zr2-zi2) +
S->b1 + 2*zr*(2*
S->b4*(zr2-zi2) +
S->b2));
144 Hmag *=
hypot(Hr, Hi);
145 Hr =
S->a4*(1-8*zr2*zi2) +
S->a2*(zr2-zi2) + zr*(
S->a1+
S->a3*(zr2-3*zi2))+
S->a0;
146 Hi = zi*(
S->a3*(3*zr2-zi2) +
S->a1 + 2*zr*(2*
S->a4*(zr2-zi2) +
S->a2));
147 Hmag /=
hypot(Hr, Hi);
151 v =
av_clip((1. + -20 * log10(Hmag) /
s->mag) *
s->h / 2, 0,
s->h - 1);
156 for (y = v; y <= prev_v; y++)
159 for (y = prev_v; y <= v; y++)
206 if (
s->draw_curves) {
232 if (
s->draw_curves) {
256 double si,
double g,
double g0,
259 if (c0 == 1 || c0 == -1) {
260 S->b0 = (
g*
g*beta*beta + 2*
g*g0*si*beta + g0*g0)/
D;
261 S->b1 = 2*c0*(
g*
g*beta*beta - g0*g0)/
D;
262 S->b2 = (
g*
g*beta*beta - 2*g0*
g*beta*si + g0*g0)/
D;
267 S->a1 = 2*c0*(beta*beta - 1)/
D;
268 S->a2 = (beta*beta - 2*beta*si + 1)/
D;
272 S->b0 = (
g*
g*beta*beta + 2*
g*g0*si*beta + g0*g0)/
D;
273 S->b1 = -4*c0*(g0*g0 +
g*g0*si*beta)/
D;
274 S->b2 = 2*(g0*g0*(1 + 2*c0*c0) -
g*
g*beta*beta)/
D;
275 S->b3 = -4*c0*(g0*g0 -
g*g0*si*beta)/
D;
276 S->b4 = (
g*
g*beta*beta - 2*
g*g0*si*beta + g0*g0)/
D;
279 S->a1 = -4*c0*(1 + si*beta)/
D;
280 S->a2 = 2*(1 + 2*c0*c0 - beta*beta)/
D;
281 S->a3 = -4*c0*(1 - si*beta)/
D;
282 S->a4 = (beta*beta - 2*si*beta + 1)/
D;
287 int N,
double w0,
double wb,
288 double G,
double Gb,
double G0)
290 double g, c0, g0, beta;
296 if (
G == 0 && G0 == 0) {
297 f->section[0].a0 = 1;
298 f->section[0].b0 = 1;
299 f->section[1].a0 = 1;
300 f->section[1].b0 = 1;
308 epsilon = sqrt((
G *
G - Gb * Gb) / (Gb * Gb - G0 * G0));
310 g0 = pow(G0, 1.0 /
N);
311 beta = pow(epsilon, -1.0 /
N) * tan(wb/2);
314 for (
i = 1;
i <=
L;
i++) {
315 double ui = (2.0 *
i - 1) /
N;
316 double si = sin(
M_PI *
ui / 2.0);
317 double Di = beta * beta + 2 * si * beta + 1;
324 double c,
double tetta_b,
325 double g0,
double si,
double b,
328 if (c0 == 1 || c0 == -1) {
329 S->b0 = (tetta_b*tetta_b*(
b*
b+g0*g0*
c*
c) + 2*g0*
b*si*tetta_b*tetta_b + g0*g0)/
D;
330 S->b1 = 2*c0*(tetta_b*tetta_b*(
b*
b+g0*g0*
c*
c) - g0*g0)/
D;
331 S->b2 = (tetta_b*tetta_b*(
b*
b+g0*g0*
c*
c) - 2*g0*
b*si*tetta_b + g0*g0)/
D;
336 S->a1 = 2*c0*(tetta_b*tetta_b*(
a*
a+
c*
c) - 1)/
D;
337 S->a2 = (tetta_b*tetta_b*(
a*
a+
c*
c) - 2*
a*si*tetta_b + 1)/
D;
341 S->b0 = ((
b*
b + g0*g0*
c*
c)*tetta_b*tetta_b + 2*g0*
b*si*tetta_b + g0*g0)/
D;
342 S->b1 = -4*c0*(g0*g0 + g0*
b*si*tetta_b)/
D;
343 S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - (
b*
b + g0*g0*
c*
c)*tetta_b*tetta_b)/
D;
344 S->b3 = -4*c0*(g0*g0 - g0*
b*si*tetta_b)/
D;
345 S->b4 = ((
b*
b + g0*g0*
c*
c)*tetta_b*tetta_b - 2*g0*
b*si*tetta_b + g0*g0)/
D;
348 S->a1 = -4*c0*(1 +
a*si*tetta_b)/
D;
349 S->a2 = 2*(1 + 2*c0*c0 - (
a*
a +
c*
c)*tetta_b*tetta_b)/
D;
350 S->a3 = -4*c0*(1 -
a*si*tetta_b)/
D;
351 S->a4 = ((
a*
a +
c*
c)*tetta_b*tetta_b - 2*
a*si*tetta_b + 1)/
D;
356 int N,
double w0,
double wb,
357 double G,
double Gb,
double G0)
359 double a,
b, c0, g0, alfa, beta, tetta_b;
365 if (
G == 0 && G0 == 0) {
366 f->section[0].a0 = 1;
367 f->section[0].b0 = 1;
368 f->section[1].a0 = 1;
369 f->section[1].b0 = 1;
377 epsilon = sqrt((
G*
G - Gb*Gb) / (Gb*Gb - G0*G0));
379 alfa = pow(1.0/epsilon + sqrt(1 + 1/(epsilon*epsilon)), 1.0/
N);
380 beta = pow(
G/epsilon + Gb * sqrt(1 + 1/(epsilon*epsilon)), 1.0/
N);
381 a = 0.5 * (alfa - 1.0/alfa);
382 b = 0.5 * (beta - g0*g0*(1/beta));
386 for (
i = 1;
i <=
L;
i++) {
387 double ui = (2.0*
i-1.0)/
N;
388 double ci = cos(
M_PI*
ui/2.0);
389 double si = sin(
M_PI*
ui/2.0);
390 double Di = (
a*
a + ci*ci)*tetta_b*tetta_b + 2.0*
a*si*tetta_b + 1;
397 double c,
double tetta_b,
398 double g,
double si,
double b,
401 if (c0 == 1 || c0 == -1) {
402 S->b0 = (
g*
g*tetta_b*tetta_b + 2*tetta_b*
g*
b*si +
b*
b +
g*
g*
c*
c)/
D;
403 S->b1 = 2*c0*(
g*
g*tetta_b*tetta_b -
b*
b -
g*
g*
c*
c)/
D;
404 S->b2 = (
g*
g*tetta_b*tetta_b - 2*tetta_b*
g*
b*si +
b*
b +
g*
g*
c*
c)/
D;
409 S->a1 = 2*c0*(tetta_b*tetta_b -
a*
a -
c*
c)/
D;
410 S->a2 = (tetta_b*tetta_b - 2*tetta_b*
a*si +
a*
a +
c*
c)/
D;
414 S->b0 = (
g*
g*tetta_b*tetta_b + 2*
g*
b*si*tetta_b +
b*
b +
g*
g*
c*
c)/
D;
415 S->b1 = -4*c0*(
b*
b +
g*
g*
c*
c +
g*
b*si*tetta_b)/
D;
416 S->b2 = 2*((
b*
b +
g*
g*
c*
c)*(1 + 2*c0*c0) -
g*
g*tetta_b*tetta_b)/
D;
417 S->b3 = -4*c0*(
b*
b +
g*
g*
c*
c -
g*
b*si*tetta_b)/
D;
418 S->b4 = (
g*
g*tetta_b*tetta_b - 2*
g*
b*si*tetta_b +
b*
b +
g*
g*
c*
c)/
D;
421 S->a1 = -4*c0*(
a*
a +
c*
c +
a*si*tetta_b)/
D;
422 S->a2 = 2*((
a*
a +
c*
c)*(1 + 2*c0*c0) - tetta_b*tetta_b)/
D;
423 S->a3 = -4*c0*(
a*
a +
c*
c -
a*si*tetta_b)/
D;
424 S->a4 = (tetta_b*tetta_b - 2*
a*si*tetta_b +
a*
a +
c*
c)/
D;
429 int N,
double w0,
double wb,
430 double G,
double Gb,
double G0)
432 double a,
b, c0, tetta_b;
433 double epsilon,
g, eu, ew;
438 if (
G == 0 && G0 == 0) {
439 f->section[0].a0 = 1;
440 f->section[0].b0 = 1;
441 f->section[1].a0 = 1;
442 f->section[1].b0 = 1;
450 epsilon = sqrt((
G*
G - Gb*Gb) / (Gb*Gb - G0*G0));
452 eu = pow(epsilon + sqrt(1 + epsilon*epsilon), 1.0/
N);
453 ew = pow(G0*epsilon + Gb*sqrt(1 + epsilon*epsilon), 1.0/
N);
454 a = (eu - 1.0/eu)/2.0;
455 b = (ew -
g*
g/ew)/2.0;
459 for (
i = 1;
i <=
L;
i++) {
460 double ui = (2.0 *
i - 1.0)/
N;
461 double ci = cos(
M_PI *
ui / 2.0);
462 double si = sin(
M_PI *
ui / 2.0);
463 double Di = tetta_b*tetta_b + 2*
a*si*tetta_b +
a*
a + ci*ci;
475 else if(gain > -6 && gain < 6)
476 bw_gain = gain * 0.5;
489 else if(gain > -6 && gain < 6)
490 bw_gain = gain * 0.9;
503 else if(gain > -6 && gain < 6)
504 bw_gain = gain * 0.3;
518 double w0 =
hz_2_rad(
f->freq, sample_rate);
519 double wb =
hz_2_rad(
f->width, sample_rate);
542 if (
s->nb_filters >=
s->nb_allocated - 1) {
548 memcpy(
filters,
s->filters,
sizeof(*
s->filters) *
s->nb_allocated);
551 s->nb_allocated *= 2;
563 char *saveptr =
NULL;
569 s->nb_allocated = 32 *
inlink->ch_layout.nb_channels;
583 s->filters[
s->nb_filters].type = 0;
584 if (sscanf(
arg,
"c%d f=%lf w=%lf g=%lf t=%d", &
s->filters[
s->nb_filters].channel,
585 &
s->filters[
s->nb_filters].freq,
586 &
s->filters[
s->nb_filters].width,
587 &
s->filters[
s->nb_filters].gain,
588 &
s->filters[
s->nb_filters].type) != 5 &&
589 sscanf(
arg,
"c%d f=%lf w=%lf g=%lf", &
s->filters[
s->nb_filters].channel,
590 &
s->filters[
s->nb_filters].freq,
591 &
s->filters[
s->nb_filters].width,
592 &
s->filters[
s->nb_filters].gain) != 4 ) {
597 if (
s->filters[
s->nb_filters].freq < 0 ||
598 s->filters[
s->nb_filters].freq >
inlink->sample_rate / 2.0)
599 s->filters[
s->nb_filters].ignore = 1;
601 if (
s->filters[
s->nb_filters].channel < 0 ||
602 s->filters[
s->nb_filters].channel >=
inlink->ch_layout.nb_channels)
603 s->filters[
s->nb_filters].ignore = 1;
617 char *res,
int res_len,
int flags)
623 if (!strcmp(cmd,
"change")) {
624 double freq,
width, gain;
627 if (sscanf(args,
"%d|f=%lf|w=%lf|g=%lf", &
filter, &freq, &
width, &gain) != 4)
630 if (filter < 0 || filter >=
s->nb_filters)
633 if (freq < 0 || freq >
inlink->sample_rate / 2.0)
636 s->filters[
filter].freq = freq;
638 s->filters[
filter].gain = gain;
654 out+=
S->b1 *
S->num[0] -
S->denum[0] *
S->a1;
655 out+=
S->b2 *
S->num[1] -
S->denum[1] *
S->a2;
656 out+=
S->b3 *
S->num[2] -
S->denum[2] *
S->a3;
657 out+=
S->b4 *
S->num[3] -
S->denum[3] *
S->a4;
659 S->num[3] =
S->num[2];
660 S->num[2] =
S->num[1];
661 S->num[1] =
S->num[0];
664 S->denum[3] =
S->denum[2];
665 S->denum[2] =
S->denum[1];
666 S->denum[1] =
S->denum[0];
686 int jobnr,
int nb_jobs)
693 for (
int i = 0;
i <
s->nb_filters;
i++) {
697 if (
f->gain == 0. ||
f->ignore)
699 if (
f->channel < start ||
721 if (!
ctx->is_disabled)
725 if (
s->draw_curves) {
756 .
name =
"anequalizer",
759 .priv_class = &anequalizer_class,
static int config_video(AVFilterLink *outlink)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVPixelFormat
Pixel format.
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void butterworth_fo_section(FoSection *S, double beta, double si, double g, double g0, double D, double c0)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
int av_parse_color(uint8_t *rgba_color, const char *color_string, int slen, void *log_ctx)
Put the RGBA values that correspond to color_string in rgba_color.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static void chebyshev1_bp_filter(EqualizatorFilter *f, int N, double w0, double wb, double G, double Gb, double G0)
void(* filter)(uint8_t *src, int stride, int qscale)
const char * name
Filter name.
int nb_channels
Number of channels in this layout.
A link between two filters.
static void chebyshev2_bp_filter(EqualizatorFilter *f, int N, double w0, double wb, double G, double Gb, double G0)
static const AVOption anequalizer_options[]
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
AVChannelLayout ch_layout
Channel layout of the audio data.
static int config_input(AVFilterLink *inlink)
AVFILTER_DEFINE_CLASS(anequalizer)
A filter pad used for either input or output.
static int query_formats(const AVFilterContext *ctx, AVFilterFormatsConfig **cfg_in, AVFilterFormatsConfig **cfg_out)
static void equalizer(EqualizatorFilter *f, double sample_rate)
static void chebyshev2_fo_section(FoSection *S, double a, double c, double tetta_b, double g, double si, double b, double D, double c0)
@ AV_OPT_TYPE_DOUBLE
Underlying C type is double.
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
static void chebyshev1_fo_section(FoSection *S, double a, double c, double tetta_b, double g0, double si, double b, double D, double c0)
#define filters(fmt, type, inverse, clp, inverset, clip, one, clip_fn, packed)
static enum AVPixelFormat pix_fmts[]
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
static double hz_2_rad(double x, double fs)
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
static av_cold void uninit(AVFilterContext *ctx)
Describe the class of an AVClass context structure.
#define fs(width, name, subs,...)
static const AVFilterPad inputs[]
Rational number (pair of numerator and denominator).
@ AV_OPT_TYPE_IMAGE_SIZE
Underlying C type is two consecutive integers.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
#define AVFILTERPAD_FLAG_NEEDS_WRITABLE
The filter expects writable frames from its input link, duplicating data buffers if needed.
static void draw_curves(AVFilterContext *ctx, AVFilterLink *inlink, AVFrame *out)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static av_const double hypot(double x, double y)
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
AVFilterContext * src
source filter
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static int add_filter(AudioNEqualizerContext *s, AVFilterLink *inlink)
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
int w
agreed upon image width
uint8_t ** extended_data
pointers to the data planes/channels.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
AVSampleFormat
Audio sample formats.
static double section_process(FoSection *S, double in)
#define FILTER_QUERY_FUNC2(func)
static double chebyshev1_compute_bw_gain_db(double gain)
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
static double chebyshev2_compute_bw_gain_db(double gain)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int h
agreed upon image height
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static void butterworth_bp_filter(EqualizatorFilter *f, int N, double w0, double wb, double G, double Gb, double G0)
@ AV_OPT_TYPE_INT
Underlying C type is int.
@ AV_SAMPLE_FMT_DBLP
double, planar
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
char * av_strdup(const char *s)
Duplicate a string.
int ff_append_outpad(AVFilterContext *f, AVFilterPad *p)
static double process_sample(FoSection *s1, double in)
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
const AVFilter ff_af_anequalizer
EqualizatorFilter * filters
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
static av_cold int init(AVFilterContext *ctx)
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
static double butterworth_compute_bw_gain_db(double gain)