42 const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
87 int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
88 ((height >> log2_min_cb_size) + 1);
142 uint8_t luma_weight_l0_flag[16];
143 uint8_t chroma_weight_l0_flag[16];
144 uint8_t luma_weight_l1_flag[16];
145 uint8_t chroma_weight_l1_flag[16];
146 int luma_log2_weight_denom;
149 if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
159 if (!luma_weight_l0_flag[i]) {
166 chroma_weight_l0_flag[i] =
get_bits1(gb);
169 chroma_weight_l0_flag[i] = 0;
172 if (luma_weight_l0_flag[i]) {
177 if (chroma_weight_l0_flag[i]) {
178 for (j = 0; j < 2; j++) {
195 if (!luma_weight_l1_flag[i]) {
202 chroma_weight_l1_flag[i] =
get_bits1(gb);
205 chroma_weight_l1_flag[i] = 0;
208 if (luma_weight_l1_flag[i]) {
213 if (chroma_weight_l1_flag[i]) {
214 for (j = 0; j < 2; j++) {
235 int prev_delta_msb = 0;
236 unsigned int nb_sps = 0, nb_sh;
252 for (i = 0; i < rps->
nb_refs; i++) {
269 if (delta_poc_msb_present) {
272 if (i && i != nb_sps)
273 delta += prev_delta_msb;
276 prev_delta_msb =
delta;
287 unsigned int num = 0, den = 0;
324 if (num != 0 && den != 0)
331 #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL)
343 #if CONFIG_HEVC_DXVA2_HWACCEL
346 #if CONFIG_HEVC_D3D11VA_HWACCEL
368 for (i = 0; i < 3; i++) {
377 for(c_idx = 0; c_idx < c_count; c_idx++) {
452 int slice_address_length;
462 "Invalid slice segment address: %u.\n",
511 "Ignoring POC change between slices: %d -> %d\n", s->
poc, poc);
528 int numbits, rps_idx;
536 rps_idx = numbits > 0 ?
get_bits(gb, numbits) : 0;
639 "Invalid collocated_ref_idx: %d.\n",
654 "Invalid number of merging MVP candidates: %d.\n",
676 int deblocking_filter_override_flag = 0;
679 deblocking_filter_override_flag =
get_bits1(gb);
681 if (deblocking_filter_override_flag) {
724 if (offset_len < 1 || offset_len > 32) {
760 for (i = 0; i <
length; i++)
769 "The slice_qp %d is outside the valid range "
801 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
803 #define SET_SAO(elem, value) \
805 if (!sao_merge_up_flag && !sao_merge_left_flag) \
807 else if (sao_merge_left_flag) \
808 sao->elem = CTB(s->sao, rx-1, ry).elem; \
809 else if (sao_merge_up_flag) \
810 sao->elem = CTB(s->sao, rx, ry-1).elem; \
818 int sao_merge_left_flag = 0;
819 int sao_merge_up_flag = 0;
829 if (ry > 0 && !sao_merge_left_flag) {
854 for (i = 0; i < 4; i++)
858 for (i = 0; i < 4; i++) {
867 }
else if (c_idx != 2) {
873 for (i = 0; i < 4; i++) {
881 sao->
offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
893 if (log2_res_scale_abs_plus1 != 0) {
896 (1 - 2 * res_scale_sign_flag);
906 int xBase,
int yBase,
int cb_xBase,
int cb_yBase,
907 int log2_cb_size,
int log2_trafo_size,
908 int blk_idx,
int cbf_luma,
int *cbf_cb,
int *cbf_cr)
911 const int log2_trafo_size_c = log2_trafo_size - s->
sps->
hshift[1];
915 int trafo_size = 1 << log2_trafo_size;
921 if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
925 int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
927 (cbf_cb[1] || cbf_cr[1]));
939 "The cu_qp_delta %d is outside the valid range "
953 if (cu_chroma_qp_offset_flag) {
954 int cu_chroma_qp_offset_idx = 0;
958 "cu_chroma_qp_offset_idx not yet tested.\n");
992 int trafo_size_h = 1 << (log2_trafo_size_c + s->
sps->
hshift[1]);
993 int trafo_size_v = 1 << (log2_trafo_size_c + s->
sps->
vshift[1]);
1004 s->
hpc.
intra_pred[log2_trafo_size_c - 2](
s, x0, y0 + (i << log2_trafo_size_c), 1);
1008 log2_trafo_size_c, scan_idx_c, 1);
1016 int size = 1 << log2_trafo_size_c;
1020 for (i = 0; i < (size *
size); i++) {
1033 s->
hpc.
intra_pred[log2_trafo_size_c - 2](
s, x0, y0 + (i << log2_trafo_size_c), 2);
1037 log2_trafo_size_c, scan_idx_c, 2);
1045 int size = 1 << log2_trafo_size_c;
1049 for (i = 0; i < (size *
size); i++) {
1056 int trafo_size_h = 1 << (log2_trafo_size + 1);
1057 int trafo_size_v = 1 << (log2_trafo_size + s->
sps->
vshift[1]);
1061 trafo_size_h, trafo_size_v);
1062 s->
hpc.
intra_pred[log2_trafo_size - 2](
s, xBase, yBase + (i << log2_trafo_size), 1);
1066 log2_trafo_size, scan_idx_c, 1);
1071 trafo_size_h, trafo_size_v);
1072 s->
hpc.
intra_pred[log2_trafo_size - 2](
s, xBase, yBase + (i << log2_trafo_size), 2);
1076 log2_trafo_size, scan_idx_c, 2);
1081 int trafo_size_h = 1 << (log2_trafo_size_c + s->
sps->
hshift[1]);
1082 int trafo_size_v = 1 << (log2_trafo_size_c + s->
sps->
vshift[1]);
1088 trafo_size_h, trafo_size_v);
1089 s->
hpc.
intra_pred[log2_trafo_size_c - 2](
s, x0, y0 + (1 << log2_trafo_size_c), 1);
1090 s->
hpc.
intra_pred[log2_trafo_size_c - 2](
s, x0, y0 + (1 << log2_trafo_size_c), 2);
1092 }
else if (blk_idx == 3) {
1093 int trafo_size_h = 1 << (log2_trafo_size + 1);
1094 int trafo_size_v = 1 << (log2_trafo_size + s->
sps->
vshift[1]);
1096 trafo_size_h, trafo_size_v);
1101 trafo_size_h, trafo_size_v);
1102 s->
hpc.
intra_pred[log2_trafo_size - 2](
s, xBase, yBase + (1 << (log2_trafo_size)), 1);
1103 s->
hpc.
intra_pred[log2_trafo_size - 2](
s, xBase, yBase + (1 << (log2_trafo_size)), 2);
1113 int cb_size = 1 << log2_cb_size;
1121 for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1122 for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1123 s->
is_pcm[i + j * min_pu_width] = 2;
1127 int xBase,
int yBase,
int cb_xBase,
int cb_yBase,
1128 int log2_cb_size,
int log2_trafo_size,
1129 int trafo_depth,
int blk_idx,
1130 const int *base_cbf_cb,
const int *base_cbf_cr)
1138 cbf_cb[0] = base_cbf_cb[0];
1139 cbf_cb[1] = base_cbf_cb[1];
1140 cbf_cr[0] = base_cbf_cr[0];
1141 cbf_cr[1] = base_cbf_cr[1];
1144 if (trafo_depth == 1) {
1160 if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1162 trafo_depth < lc->cu.max_trafo_depth &&
1177 if (trafo_depth == 0 || cbf_cb[0]) {
1184 if (trafo_depth == 0 || cbf_cr[0]) {
1192 if (split_transform_flag) {
1193 const int trafo_size_split = 1 << (log2_trafo_size - 1);
1194 const int x1 = x0 + trafo_size_split;
1195 const int y1 = y0 + trafo_size_split;
1197 #define SUBDIVIDE(x, y, idx) \
1199 ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1200 log2_trafo_size - 1, trafo_depth + 1, idx, \
1219 cbf_cb[0] || cbf_cr[0] ||
1225 log2_cb_size, log2_trafo_size,
1226 blk_idx, cbf_luma, cbf_cb, cbf_cr);
1232 for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1233 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1234 int x_tu = (x0 + j) >> log2_min_tu_size;
1235 int y_tu = (y0 + i) >> log2_min_tu_size;
1236 s->
cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1253 int cb_size = 1 << log2_cb_size;
1308 int block_w,
int block_h,
int luma_weight,
int luma_offset)
1312 ptrdiff_t srcstride = ref->
linesize[0];
1321 x_off += mv->
x >> 2;
1322 y_off += mv->
y >> 2;
1333 edge_emu_stride, srcstride,
1337 pic_width, pic_height);
1339 srcstride = edge_emu_stride;
1344 block_h, mx, my, block_w);
1348 luma_weight, luma_offset, mx, my, block_w);
1368 AVFrame *ref0,
const Mv *mv0,
int x_off,
int y_off,
1369 int block_w,
int block_h,
AVFrame *ref1,
const Mv *mv1,
struct MvField *current_mv)
1372 ptrdiff_t src0stride = ref0->
linesize[0];
1373 ptrdiff_t src1stride = ref1->
linesize[0];
1376 int mx0 = mv0->
x & 3;
1377 int my0 = mv0->
y & 3;
1378 int mx1 = mv1->
x & 3;
1379 int my1 = mv1->
y & 3;
1382 int x_off0 = x_off + (mv0->
x >> 2);
1383 int y_off0 = y_off + (mv0->
y >> 2);
1384 int x_off1 = x_off + (mv1->
x >> 2);
1385 int y_off1 = y_off + (mv1->
y >> 2);
1399 edge_emu_stride, src0stride,
1403 pic_width, pic_height);
1405 src0stride = edge_emu_stride;
1416 edge_emu_stride, src1stride,
1420 pic_width, pic_height);
1422 src1stride = edge_emu_stride;
1426 block_h, mx0, my0, block_w);
1429 block_h, mx1, my1, block_w);
1459 ptrdiff_t dststride,
uint8_t *src0, ptrdiff_t srcstride,
int reflist,
1460 int x_off,
int y_off,
int block_w,
int block_h,
struct MvField *current_mv,
int chroma_weight,
int chroma_offset)
1465 const Mv *
mv = ¤t_mv->
mv[reflist];
1471 intptr_t mx = av_mod_uintp2(mv->
x, 2 + hshift);
1472 intptr_t my = av_mod_uintp2(mv->
y, 2 + vshift);
1473 intptr_t _mx = mx << (1 - hshift);
1474 intptr_t _my = my << (1 - vshift);
1476 x_off += mv->
x >> (2 + hshift);
1477 y_off += mv->
y >> (2 + vshift);
1488 edge_emu_stride, srcstride,
1492 pic_width, pic_height);
1495 srcstride = edge_emu_stride;
1499 block_h, _mx, _my, block_w);
1503 chroma_weight, chroma_offset, _mx, _my, block_w);
1524 int x_off,
int y_off,
int block_w,
int block_h,
struct MvField *current_mv,
int cidx)
1529 ptrdiff_t src1stride = ref0->
linesize[cidx+1];
1530 ptrdiff_t src2stride = ref1->
linesize[cidx+1];
1535 Mv *mv0 = ¤t_mv->
mv[0];
1536 Mv *mv1 = ¤t_mv->
mv[1];
1540 intptr_t mx0 = av_mod_uintp2(mv0->
x, 2 + hshift);
1541 intptr_t my0 = av_mod_uintp2(mv0->
y, 2 + vshift);
1542 intptr_t mx1 = av_mod_uintp2(mv1->
x, 2 + hshift);
1543 intptr_t my1 = av_mod_uintp2(mv1->
y, 2 + vshift);
1544 intptr_t _mx0 = mx0 << (1 - hshift);
1545 intptr_t _my0 = my0 << (1 - vshift);
1546 intptr_t _mx1 = mx1 << (1 - hshift);
1547 intptr_t _my1 = my1 << (1 - vshift);
1549 int x_off0 = x_off + (mv0->
x >> (2 + hshift));
1550 int y_off0 = y_off + (mv0->
y >> (2 + vshift));
1551 int x_off1 = x_off + (mv1->
x >> (2 + hshift));
1552 int y_off1 = y_off + (mv1->
y >> (2 + vshift));
1554 src1 += y_off0 * src1stride + (int)((
unsigned)x_off0 << s->
sps->
pixel_shift);
1555 src2 += y_off1 * src2stride + (int)((
unsigned)x_off1 << s->
sps->
pixel_shift);
1566 edge_emu_stride, src1stride,
1570 pic_width, pic_height);
1573 src1stride = edge_emu_stride;
1585 edge_emu_stride, src2stride,
1589 pic_width, pic_height);
1592 src2stride = edge_emu_stride;
1596 block_h, _mx0, _my0, block_w);
1599 src2, src2stride, lc->
tmp,
1600 block_h, _mx1, _my1, block_w);
1603 src2, src2stride, lc->
tmp,
1610 _mx1, _my1, block_w);
1616 int y =
FFMAX(0, (mv->
y >> 2) + y0 + height + 9);
1623 int nPbH,
int log2_cb_size,
int part_idx,
1635 if (inter_pred_idc !=
PRED_L1) {
1643 part_idx, merge_idx, mv, mvp_flag, 0);
1648 if (inter_pred_idc !=
PRED_L0) {
1661 part_idx, merge_idx, mv, mvp_flag, 1);
1669 int log2_cb_size,
int partIdx,
int idx)
1671 #define POS(c_idx, x, y) \
1672 &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1673 (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1676 struct MvField current_mv = {{{ 0 }}};
1688 int x_cb = x0 >> log2_min_cb_size;
1689 int y_cb = y0 >> log2_min_cb_size;
1705 partIdx, merge_idx, ¤t_mv);
1708 partIdx, merge_idx, ¤t_mv);
1716 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1719 ref0 = refPicList[0].
ref[current_mv.
ref_idx[0]];
1725 ref1 = refPicList[1].
ref[current_mv.
ref_idx[1]];
1738 ¤t_mv.
mv[0], x0, y0, nPbW, nPbH,
1744 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
1747 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
1757 ¤t_mv.
mv[1], x0, y0, nPbW, nPbH,
1763 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
1767 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
1777 ¤t_mv.
mv[0], x0, y0, nPbW, nPbH,
1778 ref1->frame, ¤t_mv.
mv[1], ¤t_mv);
1782 x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0);
1785 x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1);
1794 int prev_intra_luma_pred_flag)
1812 int intra_pred_mode;
1817 if ((y0 - 1) < y_ctb)
1820 if (cand_left == cand_up) {
1821 if (cand_left < 2) {
1826 candidate[0] = cand_left;
1827 candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1828 candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1831 candidate[0] = cand_left;
1832 candidate[1] = cand_up;
1842 if (prev_intra_luma_pred_flag) {
1843 intra_pred_mode = candidate[lc->
pu.
mpm_idx];
1845 if (candidate[0] > candidate[1])
1847 if (candidate[0] > candidate[2])
1849 if (candidate[1] > candidate[2])
1853 for (i = 0; i < 3; i++)
1854 if (intra_pred_mode >= candidate[i])
1861 for (i = 0; i < size_in_pus; i++) {
1862 memset(&s->
tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1863 intra_pred_mode, size_in_pus);
1865 for (j = 0; j < size_in_pus; j++) {
1870 return intra_pred_mode;
1874 int log2_cb_size,
int ct_depth)
1887 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
1888 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
1894 static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1895 uint8_t prev_intra_luma_pred_flag[4];
1897 int pb_size = (1 << log2_cb_size) >> split;
1898 int side = split + 1;
1902 for (i = 0; i < side; i++)
1903 for (j = 0; j < side; j++)
1906 for (i = 0; i < side; i++) {
1907 for (j = 0; j < side; j++) {
1908 if (prev_intra_luma_pred_flag[2 * i + j])
1915 prev_intra_luma_pred_flag[2 * i + j]);
1920 for (i = 0; i < side; i++) {
1921 for (j = 0; j < side; j++) {
1923 if (chroma_mode != 4) {
1936 if (chroma_mode != 4) {
1940 mode_idx = intra_chroma_table[chroma_mode];
1947 if (chroma_mode != 4) {
1963 int pb_size = 1 << log2_cb_size;
1971 if (size_in_pus == 0)
1973 for (j = 0; j < size_in_pus; j++)
1974 memset(&s->
tab_ipm[(y_pu + j) * min_pu_width + x_pu],
INTRA_DC, size_in_pus);
1976 for (j = 0; j < size_in_pus; j++)
1977 for (k = 0; k < size_in_pus; k++)
1983 int cb_size = 1 << log2_cb_size;
1986 int length = cb_size >> log2_min_cb_size;
1988 int x_cb = x0 >> log2_min_cb_size;
1989 int y_cb = y0 >> log2_min_cb_size;
1990 int idx = log2_cb_size - 2;
2001 for (x = 0; x < 4; x++)
2013 x = y_cb * min_cb_width + x_cb;
2014 for (y = 0; y <
length; y++) {
2015 memset(&s->
skip_flag[x], skip_flag, length);
2020 x = y_cb * min_cb_width + x_cb;
2021 for (y = 0; y <
length; y++) {
2048 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2074 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
2078 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
2082 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
2086 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
2090 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
2094 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
2095 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
2096 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
2102 int rqt_root_cbf = 1;
2109 const static int cbf[2] = { 0 };
2115 log2_cb_size, 0, 0, cbf, cbf);
2128 x = y_cb * min_cb_width + x_cb;
2129 for (y = 0; y <
length; y++) {
2134 if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
2135 ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
2145 int log2_cb_size,
int cb_depth)
2148 const int cb_size = 1 << log2_cb_size;
2153 if (x0 + cb_size <= s->sps->width &&
2154 y0 + cb_size <= s->sps->height &&
2173 const int cb_size_split = cb_size >> 1;
2174 const int x1 = x0 + cb_size_split;
2175 const int y1 = y0 + cb_size_split;
2183 if (more_data && x1 < s->sps->width) {
2188 if (more_data && y1 < s->sps->height) {
2193 if (more_data && x1 < s->sps->width &&
2194 y1 < s->sps->height) {
2200 if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
2201 ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
2205 return ((x1 + cb_size_split) < s->
sps->
width ||
2213 if ((!((x0 + cb_size) %
2215 (x0 + cb_size >= s->
sps->
width)) &&
2220 return !end_of_slice_flag;
2235 int ctb_addr_in_slice = ctb_addr_rs - s->
sh.
slice_addr;
2240 if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2266 if (ctb_addr_in_slice <= 0)
2268 if (ctb_addr_in_slice < s->sps->ctb_width)
2300 while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2316 if (more_data < 0) {
2327 if (x_ctb + ctb_size >= s->
sps->
width &&
2351 int *ctb_row_p = input_ctb_row;
2352 int ctb_row = ctb_row_p[job];
2362 ret =
init_get_bits8(&lc->
gb,
s->data +
s->sh.offset[ctb_row - 1],
s->sh.size[ctb_row - 1]);
2369 while(more_data && ctb_addr_ts < s->sps->ctb_size) {
2370 int x_ctb = (ctb_addr_rs %
s->sps->ctb_width) <<
s->sps->log2_ctb_size;
2371 int y_ctb = (ctb_addr_rs /
s->sps->ctb_width) <<
s->sps->log2_ctb_size;
2383 hls_sao_param(
s, x_ctb >>
s->sps->log2_ctb_size, y_ctb >>
s->sps->log2_ctb_size);
2386 if (more_data < 0) {
2387 s->tab_slice_address[ctb_addr_rs] = -1;
2397 if (!more_data && (x_ctb+ctb_size) <
s->sps->width && ctb_row !=
s->sh.num_entry_point_offsets) {
2403 if ((x_ctb+ctb_size) >=
s->sps->width && (y_ctb+ctb_size) >=
s->sps->height ) {
2408 ctb_addr_rs =
s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2411 if(x_ctb >=
s->sps->width) {
2426 int startheader, cmpt = 0;
2450 for (j = 0, cmpt = 0, startheader = offset + s->
sh.
entry_point_offset[0]; j < s->skipped_bytes; j++) {
2459 for (j = 0, cmpt = 0, startheader = offset
2523 "nal_unit_type: %d, nuh_layer_id: %d, temporal_id: %d\n",
2526 return nuh_layer_id == 0;
2639 int ctb_addr_ts,
ret;
2695 if (s->
max_ra == INT_MAX) {
2717 }
else if (!s->
ref) {
2724 "Non-matching NAL types of the VCL NALUs: %d %d\n",
2734 "Error constructing the reference lists for the current slice.\n");
2758 if (ctb_addr_ts < 0) {
2793 #define STARTCODE_TEST \
2794 if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
2795 if (src[i + 2] != 3) { \
2801 #if HAVE_FAST_UNALIGNED
2802 #define FIND_FIRST_ZERO \
2803 if (i > 0 && !src[i]) \
2808 for (i = 0; i + 1 <
length; i += 9) {
2810 (
AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2811 0x8000800080008080ULL))
2818 for (i = 0; i + 1 <
length; i += 5) {
2820 (
AV_RN32A(src + i) - 0x01000101U)) &
2829 for (i = 0; i + 1 <
length; i += 2) {
2832 if (i > 0 && src[i - 1] == 0)
2838 if (i >= length - 1) {
2853 memcpy(dst, src, i);
2855 while (si + 2 < length) {
2857 if (src[si + 2] > 3) {
2858 dst[di++] = src[si++];
2859 dst[di++] = src[si++];
2860 }
else if (src[si] == 0 && src[si + 1] == 0) {
2861 if (src[si + 2] == 3) {
2882 dst[di++] = src[si++];
2885 dst[di++] = src[si++];
2899 int i, consumed,
ret = 0;
2908 while (length >= 4) {
2910 int extract_length = 0;
2915 extract_length = (extract_length << 8) | buf[i];
2919 if (extract_length > length) {
2926 while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
3005 for (i = 0; i < s->
nb_nals; i++) {
3012 "Error parsing NAL unit #%d.\n", i);
3027 for (i = 0; i < 16; i++)
3028 av_log(log_ctx, level,
"%02"PRIx8, md5[i]);
3057 for (i = 0; frame->
data[i]; i++) {
3065 for (j = 0; j <
h; j++) {
3070 (
const uint16_t *) src, w);
3078 if (!memcmp(md5, s->
md5[i], 16)) {
3120 "hardware accelerator failed to decode picture\n");
3206 for (i = 0; i < 3; i++) {
3386 int i, j, num_arrays, nal_len_size;
3391 nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3392 num_arrays = bytestream2_get_byte(&gb);
3399 for (i = 0; i < num_arrays; i++) {
3400 int type = bytestream2_get_byte(&gb) & 0x3f;
3401 int cnt = bytestream2_get_be16(&gb);
3403 for (j = 0; j < cnt; j++) {
3405 int nalsize = bytestream2_peek_be16(&gb) + 2;
3408 "Invalid NAL unit size in extradata.\n");
3415 "Decoding nal unit %d %d from hvcC failed\n",
3487 memset(s, 0,
sizeof(*s));
3503 #define OFFSET(x) offsetof(HEVCContext, x)
3504 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3515 {
"apply_defdispwin",
"Apply default display window from VUI",
OFFSET(apply_defdispwin),
3517 {
"strict-displaywin",
"stricly apply default display window size",
OFFSET(apply_defdispwin),
3535 .priv_class = &hevc_decoder_class,
#define EDGE_EMU_BUFFER_STRIDE
const uint8_t ff_hevc_pel_weight[65]
int frame_packing_arrangement_type
unsigned int log2_min_cb_size
int sei_frame_packing_present
frame packing arrangement variables
const char const char void * val
static void export_stream_params(AVCodecContext *avctx, const HEVCContext *s, const HEVCSPS *sps)
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
uint8_t log2_sao_offset_scale_luma
int ff_hevc_merge_idx_decode(HEVCContext *s)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static enum AVPixelFormat pix_fmt
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
int ff_hevc_frame_nb_refs(HEVCContext *s)
Get the number of candidate references for the current frame.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
ptrdiff_t const GLvoid * data
Views are alternated temporally.
uint8_t diff_cu_chroma_qp_offset_depth
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
int ff_hevc_merge_flag_decode(HEVCContext *s)
int ff_hevc_sao_band_position_decode(HEVCContext *s)
int coded_width
Bitstream width / height, may be different from width/height e.g.
int max_dec_pic_buffering
void ff_hevc_pred_init(HEVCPredContext *hpc, int bit_depth)
uint8_t edge_emu_buffer[(MAX_PB_SIZE+7)*EDGE_EMU_BUFFER_STRIDE *2]
static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref, const Mv *mv, int y0, int height)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_hevc_decode_nal_sps(HEVCContext *s)
Views are next to each other, but when upscaling apply a checkerboard pattern.
#define AV_LOG_WARNING
Something somehow does not look correct.
void(* put_hevc_qpel_bi_w[10][2][2])(uint8_t *dst, ptrdiff_t dststride, uint8_t *_src, ptrdiff_t _srcstride, int16_t *src2, int height, int denom, int wx0, int wx1, int ox0, int ox1, intptr_t mx, intptr_t my, int width)
int content_interpretation_type
int ff_hevc_cbf_luma_decode(HEVCContext *s, int trafo_depth)
int8_t cb_qp_offset_list[5]
#define LIBAVUTIL_VERSION_INT
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
int16_t x
horizontal component of motion vector
void(* bswap16_buf)(uint16_t *dst, const uint16_t *src, int len)
static av_cold int init(AVCodecContext *avctx)
#define FF_PROFILE_HEVC_MAIN_STILL_PICTURE
void * hwaccel_picture_private
static int hevc_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
int ff_hevc_end_of_slice_flag_decode(HEVCContext *s)
uint8_t intra_split_flag
IntraSplitFlag.
int rem_intra_luma_pred_mode
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv)
uint8_t weighted_bipred_flag
void ff_hevc_unref_frame(HEVCContext *s, HEVCFrame *frame, int flags)
int ff_hevc_decode_short_term_rps(HEVCContext *s, ShortTermRPS *rps, const HEVCSPS *sps, int is_slice_header)
int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCContext *s)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
static void intra_prediction_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
uint8_t seq_loop_filter_across_slices_enabled_flag
uint8_t cabac_init_present_flag
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
void(* put_hevc_epel_uni[10][2][2])(uint8_t *dst, ptrdiff_t dststride, uint8_t *_src, ptrdiff_t _srcstride, int height, intptr_t mx, intptr_t my, int width)
int ff_hevc_frame_rps(HEVCContext *s)
Construct the reference picture sets for the current frame.
#define FF_ARRAY_ELEMS(a)
int * ctb_addr_ts_to_rs
CtbAddrTSToRS.
int num_ref_idx_l0_default_active
num_ref_idx_l0_default_active_minus1 + 1
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
struct HEVCFrame * ref[MAX_REFS]
ShortTermRPS st_rps[MAX_SHORT_TERM_RPS_COUNT]
void ff_thread_await_progress2(AVCodecContext *avctx, int field, int thread, int shift)
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
int ff_hevc_sao_type_idx_decode(HEVCContext *s)
uint16_t seq_decode
Sequence counters for decoded and output frames, so that old frames are output first after a POC rese...
void av_md5_update(AVMD5 *ctx, const uint8_t *src, int len)
Update hash value.
enum NALUnitType first_nal_type
Macro definitions for various function/variable attributes.
uint8_t entropy_coding_sync_enabled_flag
int ff_hevc_cu_transquant_bypass_flag_decode(HEVCContext *s)
static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
static int hls_slice_data(HEVCContext *s)
static void hls_sao_param(HEVCContext *s, int rx, int ry)
AVBufferPool * rpl_tab_pool
candidate references for the current frame
uint8_t log2_sao_offset_scale_chroma
struct AVHWAccel * hwaccel
Hardware accelerator in use.
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
unsigned int log2_max_trafo_size
void(* put_hevc_epel[10][2][2])(int16_t *dst, uint8_t *src, ptrdiff_t srcstride, int height, intptr_t mx, intptr_t my, int width)
struct AVMD5 * av_md5_alloc(void)
Allocate an AVMD5 context.
int ff_hevc_mpm_idx_decode(HEVCContext *s)
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int ff_hevc_skip_flag_decode(HEVCContext *s, int x0, int y0, int x_cb, int y_cb)
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
static int set_side_data(HEVCContext *s)
uint8_t ctb_up_right_flag
uint8_t vps_timing_info_present_flag
static int hls_slice_header(HEVCContext *s)
#define FF_PROFILE_UNKNOWN
int num_ref_idx_l1_default_active
num_ref_idx_l1_default_active_minus1 + 1
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
unsigned int log2_min_pcm_cb_size
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
#define avpriv_atomic_int_set
Structure to hold side data for an AVFrame.
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
int ff_hevc_decode_nal_sei(HEVCContext *s)
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
void(* put_hevc_qpel_uni_w[10][2][2])(uint8_t *_dst, ptrdiff_t _dststride, uint8_t *_src, ptrdiff_t _srcstride, int height, int denom, int wx, int ox, intptr_t mx, intptr_t my, int width)
#define EPEL_EXTRA_BEFORE
uint8_t loop_filter_disable_flag
static void print_md5(void *log_ctx, int level, uint8_t md5[16])
int sei_anticlockwise_rotation
void ff_hevc_flush_dpb(HEVCContext *s)
Drop all frames currently in DPB.
static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
uint8_t cu_transquant_bypass_flag
int16_t tmp[MAX_PB_SIZE *MAX_PB_SIZE]
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
int * skipped_bytes_pos_size_nal
static int hls_transform_unit(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
void(* put_hevc_qpel[10][2][2])(int16_t *dst, uint8_t *src, ptrdiff_t srcstride, int height, intptr_t mx, intptr_t my, int width)
static av_unused const uint8_t * skip_bytes(CABACContext *c, int n)
Skip n bytes and reset the decoder.
uint8_t transquant_bypass_enable_flag
int ff_hevc_sao_offset_sign_decode(HEVCContext *s)
int temporal_id
temporal_id_plus1 - 1
#define SET_SAO(elem, value)
HEVCLocalContext * HEVClcList[MAX_NB_THREADS]
static void hevc_decode_flush(AVCodecContext *avctx)
static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, AVFrame *ref0, const Mv *mv0, int x_off, int y_off, int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
8.5.3.2.2.1 Luma sample bidirectional interpolation process
int8_t cr_qp_offset_list[5]
int slice_idx
number of the slice being currently decoded
#define BOUNDARY_UPPER_SLICE
static int get_bits_left(GetBitContext *gb)
uint8_t intra_pred_mode[4]
uint16_t depth_minus1
Number of bits in the component minus 1.
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
int has_b_frames
Size of the frame reordering buffer in the decoder.
int flags
Additional information about the frame packing.
static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
int ff_hevc_cu_chroma_qp_offset_flag(HEVCContext *s)
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size)
uint8_t slice_initialized
1 if the independent slice segment header was successfully parsed
unsigned int log2_max_poc_lsb
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
AVBufferRef * vps_list[MAX_VPS_COUNT]
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
AVBufferRef * rpl_tab_buf
#define avpriv_atomic_int_get
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int vui_timing_info_present_flag
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
int active_thread_type
Which multithreading methods are in use by the codec.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void(* intra_pred[4])(struct HEVCContext *s, int x0, int y0, int c_idx)
int ff_hevc_compute_poc(HEVCContext *s, int poc_lsb)
Compute POC of the current frame and return it.
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
unsigned int log2_ctb_size
void(* transform_add[4])(uint8_t *_dst, int16_t *coeffs, ptrdiff_t _stride)
int ** skipped_bytes_pos_nal
uint8_t * sao_pixel_buffer_h[3]
const char * name
Name of the codec implementation.
void ff_init_cabac_states(void)
static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
void ff_hevc_save_states(HEVCContext *s, int ctb_addr_ts)
static const uint8_t offset[127][2]
static int verify_md5(HEVCContext *s, AVFrame *frame)
int ff_hevc_cu_chroma_qp_offset_idx(HEVCContext *s)
static const AVClass hevc_decoder_class
uint8_t max_trafo_depth
MaxTrafoDepth.
uint8_t edge_emu_buffer2[(MAX_PB_SIZE+7)*EDGE_EMU_BUFFER_STRIDE *2]
uint16_t sequence
A sequence counter, so that old frames are output first after a POC reset.
static char * split(char *message, char delim)
uint8_t tiles_enabled_flag
int ff_hevc_decode_nal_vps(HEVCContext *s)
int ff_alloc_entries(AVCodecContext *avctx, int count)
int eo_class[3]
sao_eo_class
uint32_t vps_num_units_in_tick
static av_cold int hevc_init_context(AVCodecContext *avctx)
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
struct HEVCContext * sList[MAX_NB_THREADS]
common internal API header
#define FF_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
int ff_hevc_mvp_lx_flag_decode(HEVCContext *s)
uint8_t lists_modification_present_flag
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
AVBufferRef * tab_mvf_buf
uint8_t type_idx[3]
sao_type_idx
enum AVPictureType pict_type
Picture type of the frame.
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
int max_transform_hierarchy_depth_inter
static const AVOption options[]
uint8_t * sao_pixel_buffer_v[3]
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
int offset_abs[3][4]
sao_offset_abs
int num_tile_columns
num_tile_columns_minus1 + 1
int width
picture width / height.
int ff_hevc_output_frame(HEVCContext *s, AVFrame *frame, int flush)
Find next frame in output order and put a reference to it in frame.
#define FF_PROFILE_HEVC_MAIN_10
static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1, int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
8.5.3.2.2.2 Chroma sample bidirectional interpolation process
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size, int prev_intra_luma_pred_flag)
8.4.1
static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt)
int ff_hevc_part_mode_decode(HEVCContext *s, int log2_cb_size)
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
AVBufferRef * sps_list[MAX_SPS_COUNT]
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
uint8_t cu_qp_delta_enabled_flag
uint8_t used_by_curr_pic_lt_sps_flag[32]
static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
Context Adaptive Binary Arithmetic Coder inline functions.
void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH)
void(* put_hevc_qpel_bi[10][2][2])(uint8_t *dst, ptrdiff_t dststride, uint8_t *_src, ptrdiff_t _srcstride, int16_t *src2, int height, intptr_t mx, intptr_t my, int width)
uint8_t output_flag_present_flag
void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
static int hevc_frame_start(HEVCContext *s)
AVBufferRef * pps_list[MAX_PPS_COUNT]
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
static void flush(AVCodecContext *avctx)
the normal 2^n-1 "JPEG" YUV ranges
uint8_t pic_slice_level_chroma_qp_offsets_present_flag
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
int ff_hevc_split_coding_unit_flag_decode(HEVCContext *s, int ct_depth, int x0, int y0)
void ff_reset_entries(AVCodecContext *avctx)
int colour_description_present_flag
static const int8_t mv[256][2]
static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist, int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
8.5.3.2.2.2 Chroma sample uniprediction interpolation process
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
enum AVPixelFormat pix_fmt
void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
int sei_display_orientation_present
display orientation
int ff_hevc_res_scale_sign_flag(HEVCContext *s, int idx)
void ff_hevc_dsp_init(HEVCDSPContext *hevcdsp, int bit_depth)
enum AVStereo3DType type
How views are packed within the video.
#define AV_LOG_INFO
Standard information.
static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
static void pic_arrays_free(HEVCContext *s)
NOTE: Each function hls_foo correspond to the function foo in the specification (HLS stands for High ...
static av_cold int hevc_decode_init(AVCodecContext *avctx)
void ff_thread_report_progress2(AVCodecContext *avctx, int field, int thread, int n)
static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride, AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h, int luma_weight, int luma_offset)
8.5.3.2.2.1 Luma sample unidirectional interpolation process
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
uint8_t is_nalff
this flag is != 0 if bitstream is encapsulated as a format defined in 14496-15
int * ctb_addr_rs_to_ts
CtbAddrRSToTS.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
unsigned int log2_min_pu_size
int ff_hevc_decode_nal_pps(HEVCContext *s)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
unsigned int sps_id
seq_parameter_set_id
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
main external API structure.
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
static int hevc_decode_extradata(HEVCContext *s)
enum PredMode pred_mode
PredMode.
AVBufferRef * hwaccel_priv_buf
int num_extra_slice_header_bits
uint8_t * data
The data buffer.
int16_t y
vertical component of motion vector
void ff_hevc_clear_refs(HEVCContext *s)
Mark all frames in DPB as unused for reference.
uint8_t num_long_term_ref_pics_sps
void av_md5_init(AVMD5 *ctx)
Initialize MD5 hashing.
static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, int ctb_addr_ts)
uint8_t cross_component_prediction_enabled_flag
uint32_t vui_num_units_in_tick
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
uint8_t deblocking_filter_control_present_flag
static unsigned int get_bits1(GetBitContext *s)
BYTE int const BYTE int int int height
uint8_t * checksum_buf
used on BE to byteswap the lines for checksumming
static int decode_nal_unit(HEVCContext *s, const HEVCNAL *nal)
uint8_t sps_temporal_mvp_enabled_flag
#define FF_THREAD_FRAME
Decode more than one frame at once.
Describe the class of an AVClass context structure.
int num_tile_rows
num_tile_rows_minus1 + 1
int ff_hevc_log2_res_scale_abs(HEVCContext *s, int idx)
static void skip_bits(GetBitContext *s, int n)
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
uint8_t chroma_qp_offset_list_enabled_flag
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0, int log2_cb_size, int ct_depth)
enum AVColorSpace colorspace
YUV colorspace type.
static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
void(* put_pcm)(uint8_t *_dst, ptrdiff_t _stride, int width, int height, struct GetBitContext *gb, int pcm_bit_depth)
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
int enable_parallel_tiles
int ff_hevc_sao_eo_class_decode(HEVCContext *s)