Go to the documentation of this file.
37 switch (
sps->bit_depth) {
58 "The following bit-depths are currently specified: 8, 10, 12 bits, "
59 "chroma_format_idc is %d, depth is %d\n",
60 r->sps_chroma_format_idc,
sps->bit_depth);
68 sps->hshift[0] =
sps->vshift[0] = 0;
69 sps->hshift[2] =
sps->hshift[1] =
desc->log2_chroma_w;
70 sps->vshift[2] =
sps->vshift[1] =
desc->log2_chroma_h;
72 sps->pixel_shift =
sps->bit_depth > 8;
81 sps->bit_depth =
r->sps_bitdepth_minus8 + 8;
82 sps->qp_bd_offset = 6 * (
sps->bit_depth - 8);
83 sps->log2_transform_range =
84 r->sps_extended_precision_flag ?
FFMAX(15,
FFMIN(20,
sps->bit_depth + 6)) : 15;
91 const int num_qp_tables =
r->sps_same_qp_table_for_chroma_flag ?
92 1 : (
r->sps_joint_cbcr_enabled_flag ? 3 : 2);
94 for (
int i = 0;
i < num_qp_tables;
i++) {
95 int num_points_in_qp_table;
98 int off =
sps->qp_bd_offset;
100 num_points_in_qp_table =
r->sps_num_points_in_qp_table_minus1[
i] + 1;
102 qp_out[0] = qp_in[0] =
r->sps_qp_table_start_minus26[
i] + 26;
103 for (
int j = 0; j < num_points_in_qp_table; j++ ) {
104 const uint8_t delta_qp_out = (
r->sps_delta_qp_in_val_minus1[
i][j] ^
r->sps_delta_qp_diff_val[
i][j]);
105 delta_qp_in[j] =
r->sps_delta_qp_in_val_minus1[
i][j] + 1;
108 if (qp_in[j] + delta_qp_in[j] > 63 || qp_out[j] + delta_qp_out > 63)
110 qp_in[j+1] = qp_in[j] + delta_qp_in[j];
111 qp_out[j+1] = qp_out[j] + delta_qp_out;
113 sps->chroma_qp_table[
i][qp_in[0] + off] = qp_out[0];
114 for (
int k = qp_in[0] - 1 + off; k >= 0; k--)
115 sps->chroma_qp_table[
i][k] =
av_clip(
sps->chroma_qp_table[
i][k+1]-1, -off, 63);
117 for (
int j = 0; j < num_points_in_qp_table; j++) {
118 int sh = delta_qp_in[j] >> 1;
119 for (
int k = qp_in[j] + 1 + off, m = 1; k <= qp_in[j+1] + off; k++, m++) {
120 sps->chroma_qp_table[
i][k] =
sps->chroma_qp_table[
i][qp_in[j] + off] +
121 ((qp_out[j+1] - qp_out[j]) * m + sh) / delta_qp_in[j];
124 for (
int k = qp_in[num_points_in_qp_table] + 1 + off; k <= 63 + off; k++)
125 sps->chroma_qp_table[
i][k] =
av_clip(
sps->chroma_qp_table[
i][k-1] + 1, -
sps->qp_bd_offset, 63);
127 if (
r->sps_same_qp_table_for_chroma_flag) {
128 memcpy(&
sps->chroma_qp_table[1], &
sps->chroma_qp_table[0],
sizeof(
sps->chroma_qp_table[0]));
129 memcpy(&
sps->chroma_qp_table[2], &
sps->chroma_qp_table[0],
sizeof(
sps->chroma_qp_table[0]));
137 sps->max_pic_order_cnt_lsb = 1 << (
sps->r->sps_log2_max_pic_order_cnt_lsb_minus4 + 4);
144 sps->max_num_merge_cand = 6 -
r->sps_six_minus_max_num_merge_cand;
145 sps->max_num_ibc_merge_cand = 6 -
r->sps_six_minus_max_num_ibc_merge_cand;
147 if (
sps->r->sps_gpm_enabled_flag) {
148 sps->max_num_gpm_merge_cand = 2;
149 if (
sps->max_num_merge_cand >= 3)
150 sps->max_num_gpm_merge_cand =
sps->max_num_merge_cand -
r->sps_max_num_merge_cand_minus_max_num_gpm_cand;
153 sps->log2_parallel_merge_level =
r->sps_log2_parallel_merge_level_minus2 + 2;
160 sps->ctb_log2_size_y =
r->sps_log2_ctu_size_minus5 + 5;
161 sps->ctb_size_y = 1 <<
sps->ctb_log2_size_y;
162 sps->min_cb_log2_size_y =
r->sps_log2_min_luma_coding_block_size_minus2 + 2;
163 sps->min_cb_size_y = 1 <<
sps->min_cb_log2_size_y;
164 sps->max_tb_size_y = 1 << (
r->sps_max_luma_transform_size_64_flag ? 6 : 5);
165 sps->max_ts_size = 1 << (
r->sps_log2_transform_skip_max_size_minus2 + 2);
172 if (
r->sps_ladf_enabled_flag) {
173 sps->num_ladf_intervals =
r->sps_num_ladf_intervals_minus2 + 2;
174 sps->ladf_interval_lower_bound[0] = 0;
175 for (
int i = 0;
i <
sps->num_ladf_intervals - 1;
i++) {
176 sps->ladf_interval_lower_bound[
i + 1] =
177 sps->ladf_interval_lower_bound[
i] +
r->sps_ladf_delta_threshold_minus1[
i] + 1;
194 if (
r->sps_chroma_format_idc != 0) {
241 if (old_sps->
r == rsps || !memcmp(old_sps->
r, rsps,
sizeof(*old_sps->
r)))
260 pps->chroma_qp_offset[
CB - 1] =
pps->r->pps_cb_qp_offset;
261 pps->chroma_qp_offset[
CR - 1] =
pps->r->pps_cr_qp_offset;
262 pps->chroma_qp_offset[
JCBCR - 1]=
pps->r->pps_joint_cbcr_qp_offset_value;
263 for (
int i = 0;
i < 6;
i++) {
264 pps->chroma_qp_offset_list[
i][
CB - 1] =
pps->r->pps_cb_qp_offset_list[
i];
265 pps->chroma_qp_offset_list[
i][
CR - 1] =
pps->r->pps_cr_qp_offset_list[
i];
266 pps->chroma_qp_offset_list[
i][
JCBCR - 1]=
pps->r->pps_joint_cbcr_qp_offset_list[
i];
274 pps->width =
r->pps_pic_width_in_luma_samples;
275 pps->height =
r->pps_pic_height_in_luma_samples;
279 pps->ctb_count =
pps->ctb_width *
pps->ctb_height;
281 pps->min_cb_width =
pps->width >>
sps->min_cb_log2_size_y;
282 pps->min_cb_height =
pps->height >>
sps->min_cb_log2_size_y;
303 if (!
pps->col_bd || !
pps->row_bd || !
pps->ctb_to_col_bd || !
pps->ctb_to_row_bd)
306 for (
int i = 0, j = 0;
i <
r->num_tile_columns;
i++) {
308 j +=
r->col_width_val[
i];
309 for (
int k =
pps->col_bd[
i]; k < j; k++)
310 pps->ctb_to_col_bd[k] =
pps->col_bd[
i];
312 pps->col_bd[
r->num_tile_columns] =
pps->ctb_to_col_bd[
pps->ctb_width] =
pps->ctb_width;
314 for (
int i = 0, j = 0;
i <
r->num_tile_rows;
i++) {
316 j +=
r->row_height_val[
i];
317 for (
int k =
pps->row_bd[
i]; k < j; k++)
318 pps->ctb_to_row_bd[k] =
pps->row_bd[
i];
320 pps->row_bd[
r->num_tile_rows] =
pps->ctb_to_row_bd[
pps->ctb_height] =
pps->ctb_height;
328 if (
r->pps_tile_idx_delta_present_flag) {
329 tile_idx +=
r->pps_tile_idx_delta_val[
i];
331 tile_idx +=
r->pps_slice_width_in_tiles_minus1[
i] + 1;
332 if (tile_idx %
r->num_tile_columns == 0)
333 tile_idx += (
r->pps_slice_height_in_tiles_minus1[
i]) *
r->num_tile_columns;
340 *tile_x = tile_idx %
pps->r->num_tile_columns;
341 *tile_y = tile_idx /
pps->r->num_tile_columns;
344 static void ctu_xy(
int *rx,
int *ry,
const int tile_x,
const int tile_y,
const VVCPPS *
pps)
346 *rx =
pps->col_bd[tile_x];
347 *ry =
pps->row_bd[tile_y];
352 return pps->ctb_width * ry + rx;
356 const int w,
const int h)
359 for (
int y = 0; y <
h; y++) {
360 for (
int x = 0; x <
w; x++) {
361 pps->ctb_addr_in_slice[*off] =
ctu_rs(rx + x, ry + y,
pps);
370 for (
int j = 0; j <
pps->r->num_tile_rows; j++) {
371 for (
int i = 0;
i <
pps->r->num_tile_columns;
i++) {
373 pps->col_bd[
i],
pps->row_bd[j],
374 pps->r->col_width_val[
i],
pps->r->row_height_val[j]);
379 static void subpic_tiles(
int *tile_x,
int *tile_y,
int *tile_x_end,
int *tile_y_end,
382 const int rx =
sps->r->sps_subpic_ctu_top_left_x[
i];
383 const int ry =
sps->r->sps_subpic_ctu_top_left_y[
i];
385 *tile_x = *tile_y = 0;
387 while (
pps->col_bd[*tile_x] < rx)
390 while (
pps->row_bd[*tile_y] < ry)
393 *tile_x_end = (*tile_x);
394 *tile_y_end = (*tile_y);
396 while (
pps->col_bd[*tile_x_end] < rx +
sps->r->sps_subpic_width_minus1[
i] + 1)
399 while (
pps->row_bd[*tile_y_end] < ry +
sps->r->sps_subpic_height_minus1[
i] + 1)
406 pps->col_bd[tx],
pps->row_bd[ty],
407 pps->r->col_width_val[tx],
sps->r->sps_subpic_height_minus1[
i] + 1);
412 for (
int ty = tile_y; ty < y_end; ty++) {
413 for (
int tx = tile_x; tx < x_end; tx++) {
415 pps->col_bd[tx],
pps->row_bd[ty],
416 pps->r->col_width_val[tx],
pps->r->row_height_val[ty]);
423 int tx, ty, x_end, y_end;
425 pps->slice_start_offset[
i] = *off;
426 pps->num_ctus_in_slice[
i] = 0;
429 if (ty + 1 == y_end &&
sps->r->sps_subpic_height_minus1[
i] + 1 <
pps->r->row_height_val[ty])
437 if (!
sps->r->sps_subpic_info_present_flag) {
440 for (
int i = 0;
i <
pps->r->pps_num_slices_in_pic_minus1 + 1;
i++)
448 int rx, ry, ctu_y_end, tile_x, tile_y;
452 ctu_y_end = ry +
r->row_height_val[tile_y];
453 while (ry < ctu_y_end) {
454 pps->slice_start_offset[
i] = *off;
456 r->col_width_val[tile_x],
r->slice_height_in_ctus[
i]);
457 ry +=
r->slice_height_in_ctus[
i++];
466 int rx, ry, tile_x, tile_y;
469 pps->slice_start_offset[
i] = *off;
470 pps->num_ctus_in_slice[
i] = 0;
471 for (
int ty = tile_y; ty <= tile_y +
r->pps_slice_height_in_tiles_minus1[
i]; ty++) {
472 for (
int tx = tile_x; tx <= tile_x +
r->pps_slice_width_in_tiles_minus1[
i]; tx++) {
475 r->col_width_val[tx],
r->row_height_val[ty]);
483 int tile_idx = 0, off = 0;
485 if (
r->pps_single_slice_per_subpic_flag) {
490 for (
int i = 0;
i <
r->pps_num_slices_in_pic_minus1 + 1;
i++) {
491 if (!
r->pps_slice_width_in_tiles_minus1[
i] &&
492 !
r->pps_slice_height_in_tiles_minus1[
i]) {
506 for (
int tile_y = 0; tile_y <
r->num_tile_rows; tile_y++) {
507 for (
int tile_x = 0; tile_x <
r->num_tile_columns; tile_x++) {
509 pps_add_ctus(
pps, &off, rx, ry,
r->col_width_val[tile_x],
r->row_height_val[tile_y]);
517 if (!
pps->ctb_addr_in_slice)
520 if (
pps->r->pps_rect_slice_flag)
532 if (
r->pps_ref_wraparound_enabled_flag)
533 pps->ref_wraparound_offset = (
pps->width /
sps->min_cb_size_y) -
r->pps_pic_width_minus_wraparound_offset;
546 pps->subpic_x[
i] = 0;
547 pps->subpic_y[
i] = 0;
548 pps->subpic_width[
i] =
pps->width;
549 pps->subpic_height[
i] =
pps->height;
617 if (old_pps && old_pps->
r == rpps)
640 rpps = h266->
pps[
ph->ph_pic_parameter_set_id];
659 #define WEIGHT_TABLE(x) \
660 w->nb_weights[L##x] = r->num_weights_l##x; \
661 for (int i = 0; i < w->nb_weights[L##x]; i++) { \
662 w->weight_flag[L##x][LUMA][i] = r->luma_weight_l##x##_flag[i]; \
663 w->weight_flag[L##x][CHROMA][i] = r->chroma_weight_l##x##_flag[i]; \
664 w->weight[L##x][LUMA][i] = denom[LUMA] + r->delta_luma_weight_l##x[i]; \
665 w->offset[L##x][LUMA][i] = r->luma_offset_l##x[i]; \
666 for (int j = CB; j <= CR; j++) { \
667 w->weight[L##x][j][i] = denom[CHROMA] + r->delta_chroma_weight_l##x[i][j - 1]; \
668 w->offset[L##x][j][i] = 128 + r->delta_chroma_offset_l##x[i][j - 1]; \
669 w->offset[L##x][j][i] -= (128 * w->weight[L##x][j][i]) >> w->log2_denom[CHROMA]; \
670 w->offset[L##x][j][i] = av_clip_intp2(w->offset[L##x][j][i], 7); \
678 w->log2_denom[
LUMA] =
r->luma_log2_weight_denom;
679 w->log2_denom[
CHROMA] =
w->log2_denom[
LUMA] +
r->delta_chroma_log2_weight_denom;
689 const int max_poc_lsb = 1 << (
sps->sps_log2_max_pic_order_cnt_lsb_minus4 + 4);
690 const int prev_poc_lsb = poc_tid0 % max_poc_lsb;
691 const int prev_poc_msb = poc_tid0 - prev_poc_lsb;
692 const int poc_lsb =
ph->ph_pic_order_cnt_lsb;
695 if (
ph->ph_poc_msb_cycle_present_flag) {
696 poc_msb =
ph->ph_poc_msb_cycle_val * max_poc_lsb;
697 }
else if (is_clvss) {
700 if (poc_lsb < prev_poc_lsb && prev_poc_lsb - poc_lsb >= max_poc_lsb / 2)
701 poc_msb = prev_poc_msb + max_poc_lsb;
702 else if (poc_lsb > prev_poc_lsb && poc_lsb - prev_poc_lsb > max_poc_lsb / 2)
703 poc_msb = prev_poc_msb - max_poc_lsb;
705 poc_msb = prev_poc_msb;
708 return poc_msb + poc_lsb;
712 uint16_t *pivot1, uint16_t *pivot2, uint16_t *
scale_coeff,
const int idx,
const int max)
714 const int lut_sample =
726 const int off = 1 << (
shift - 1);
741 memset(cw, 0,
sizeof(cw));
749 input_pivot[
i] =
i * org_cw;
753 inv_scale_coeff[
i] = 0;
756 inv_scale_coeff[
i] = org_cw * (1 << 11) / cw[
i];
763 const int idx_y =
sample / org_cw;
777 while (i <= lmcs->max_bin_idx &&
sample >= lmcs->
pivot[
i + 1])
781 inv_scale_coeff,
i,
max);
794 if (
sps->sps_affine_enabled_flag)
795 return 5 -
sps->sps_five_minus_max_num_subblock_merge_cand;
796 return sps->sps_sbtmvp_enabled_flag &&
ph->ph_temporal_mvp_enabled_flag;
799 static int ph_vb_pos(uint16_t *vbs, uint8_t *num_vbs,
const uint16_t *pos_minus_1,
const uint8_t num_pos, uint16_t
max,
const int ctb_size_y)
802 for (
int i = 0;
i < num_pos;
i++) {
803 if (pos_minus_1[
i] >
max)
806 vbs[
i] = (pos_minus_1[
i] + 1) << 3;
809 if (
i && vbs[
i] < vbs[
i - 1] + ctb_size_y)
817 #define VBF(f) (sps->sps_virtual_boundaries_present_flag ? sps->sps_##f : ph->r->ph_##f)
818 #define VBFS(c, d) VBF(virtual_boundary_pos_##c##_minus1), VBF(num_##d##_virtual_boundaries)
822 const int ctb_size_y = 1 << (
sps->sps_log2_ctu_size_minus5 + 5);
825 if (!
sps->sps_virtual_boundaries_enabled_flag)
832 ret =
ph_vb_pos(
ph->vb_pos_y, &
ph->num_hor_vbs,
VBFS(y, hor),
pps->pps_pic_height_in_luma_samples, ctb_size_y);
846 if (
pps->pps_wp_info_in_ph_flag)
857 const int poc_tid0,
const int is_clvss)
883 rpps = h266->
pps[
ph->ph_pic_parameter_set_id];
894 if (
ph->ph_explicit_scaling_list_enabled_flag)
897 if (
ph->ph_lmcs_enabled_flag) {
912 s->no_output_before_recovery_flag = 1;
914 s->no_output_before_recovery_flag =
s->last_eos;
919 if (
s->no_output_before_recovery_flag) {
921 s->gdr_recovery_point_poc =
ph->poc +
ph->r->ph_recovery_poc_cnt;
971 const uint8_t *
abs,
const uint8_t *sign,
const int size)
978 const uint8_t *mapped_abs,
const uint8_t *sign)
981 int c = mapped_abs[
i];
983 c = (1 - 2 * sign[
i]) * (1 << (
c - 1));
990 if (!
aps->alf_luma_filter_signal_flag)
994 const int ref =
aps->alf_luma_coeff_delta_idx[
i];
995 const uint8_t *
abs =
aps->alf_luma_coeff_abs[
ref];
996 const uint8_t *sign =
aps->alf_luma_coeff_sign[
ref];
1006 if (!
aps->alf_chroma_filter_signal_flag)
1011 const uint8_t *
abs =
aps->alf_chroma_coeff_abs[
i];
1012 const uint8_t *sign =
aps->alf_chroma_coeff_sign[
i];
1023 {
aps->alf_cc_cb_mapped_coeff_abs,
aps->alf_cc_cr_mapped_coeff_abs };
1025 {
aps->alf_cc_cb_coeff_sign,
aps->alf_cc_cr_coeff_sign };
1026 const int signaled[] = {
aps->alf_cc_cb_filter_signal_flag,
aps->alf_cc_cr_filter_signal_flag};
1031 for (
int idx = 0; idx < 2; idx++) {
1032 if (signaled[idx]) {
1072 for (
int id = 0;
id <
SL_MAX_ID;
id++) {
1074 const int log2_size =
av_log2(matrix_size);
1075 const int list_size = matrix_size * matrix_size;
1077 const uint8_t *
pred;
1082 if (!
aps->scaling_list_copy_mode_flag[
id]) {
1088 for (
int i = 0;
i < list_size;
i++) {
1093 next_coef +=
aps->scaling_list_delta_coef[
id][
i];
1101 if (!
aps->scaling_list_copy_mode_flag[
id] && !
aps->scaling_list_pred_mode_flag[
id]) {
1103 }
else if (!
aps->scaling_list_pred_id_delta[
id]) {
1106 const int ref_id =
id -
aps->scaling_list_pred_id_delta[
id];
1117 if (!
aps->scaling_list_copy_mode_flag[
id] && !
aps->scaling_list_pred_mode_flag[
id])
1119 else if (!
aps->scaling_list_pred_id_delta[
id])
1123 for (
int i = 0;
i < list_size;
i++) {
1126 const int off = y * matrix_size + x;
1153 switch (
aps->aps_params_type) {
1181 if (!alf_aps_chroma)
1205 if (
pps->r->pps_rect_slice_flag) {
1206 int pic_level_slice_idx = slice_address;
1208 pic_level_slice_idx +=
pps->r->num_slices_in_subpic[j];
1212 int tile_x = slice_address %
pps->r->num_tile_columns;
1213 int tile_y = slice_address /
pps->r->num_tile_columns;
1214 const int slice_start_ctb =
pps->row_bd[tile_y] *
pps->ctb_width +
pps->col_bd[tile_x] *
pps->r->row_height_val[tile_y];
1220 tile_x = tile_idx %
pps->r->num_tile_columns;
1221 tile_y = tile_idx /
pps->r->num_tile_columns;
1229 const int init_qp =
pps->pps_init_qp_minus26 + 26;
1231 if (!
pps->pps_qp_delta_info_in_ph_flag)
1241 if (!
pps->pps_wp_info_in_ph_flag &&
1242 ((
pps->pps_weighted_pred_flag &&
IS_P(rsh)) ||
1243 (
pps->pps_weighted_bipred_flag &&
IS_B(rsh))))
1251 if (!
r->sh_deblocking_filter_disabled_flag) {
1263 const int min_cb_log2_size_y =
sps->sps_log2_min_luma_coding_block_size_minus2 + 2;
1264 int min_qt_log2_size_y[2];
1267 min_qt_log2_size_y[
LUMA] = (min_cb_log2_size_y +
ph->ph_log2_diff_min_qt_min_cb_intra_slice_luma);
1268 min_qt_log2_size_y[
CHROMA] = (min_cb_log2_size_y +
ph->ph_log2_diff_min_qt_min_cb_intra_slice_chroma);
1270 sh->
max_bt_size[
LUMA] = 1 << (min_qt_log2_size_y[
LUMA] +
ph->ph_log2_diff_max_bt_min_qt_intra_slice_luma);
1273 sh->
max_tt_size[
LUMA] = 1 << (min_qt_log2_size_y[
LUMA] +
ph->ph_log2_diff_max_tt_min_qt_intra_slice_luma);
1283 min_qt_log2_size_y[
i] = (min_cb_log2_size_y +
ph->ph_log2_diff_min_qt_min_cb_inter_slice);
1284 sh->
max_bt_size[
i] = 1 << (min_qt_log2_size_y[
i] +
ph->ph_log2_diff_max_bt_min_qt_inter_slice);
1285 sh->
max_tt_size[
i] = 1 << (min_qt_log2_size_y[
i] +
ph->ph_log2_diff_max_tt_min_qt_inter_slice);
1299 if (
sps->sps_entry_point_offsets_present_flag) {
1305 if (
pps->ctb_to_row_bd[ctb_addr_y] !=
pps->ctb_to_row_bd[pre_ctb_addr_y] ||
1306 pps->ctb_to_col_bd[ctb_addr_x] !=
pps->ctb_to_col_bd[pre_ctb_addr_x] ||
1307 (ctb_addr_y != pre_ctb_addr_y &&
sps->sps_entropy_coding_sync_enabled_flag)) {
1338 if (!fps->
sps || !fps->
pps)
uint16_t sps_subpic_height_minus1[VVC_MAX_SLICES]
uint8_t cu_qp_delta_subdiv
CuQpDeltaSubdiv.
void * content_ref
If content is reference counted, a RefStruct reference backing content.
uint32_t num_ctus_in_curr_slice
NumCtusInCurrSlice.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_vvc_decode_frame_ps(VVCFrameParamSets *fps, struct VVCContext *s)
uint32_t entry_point_start_ctu[VVC_MAX_ENTRY_POINTS]
entry point start in ctu_addr
const H266RawPPS * r
RefStruct reference.
#define SL_MAX_MATRIX_SIZE
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
uint8_t cu_chroma_qp_offset_subdiv
CuChromaQpOffsetSubdiv.
static void pps_free(FFRefStructOpaque opaque, void *obj)
static void * ff_refstruct_alloc_ext(size_t size, unsigned flags, void *opaque, void(*free_cb)(FFRefStructOpaque opaque, void *obj))
A wrapper around ff_refstruct_alloc_ext_c() for the common case of a non-const qualified opaque.
static void alf_derive(VVCALF *alf, const H266RawAPS *aps)
#define LMCS_MAX_BIN_SIZE
static av_always_inline int scale_coeff(const TransformBlock *tb, int coeff, const int scale, const int scale_m, const int log2_transform_range)
static int FUNC() ph(CodedBitstreamContext *ctx, RWContext *rw, H266RawPH *current)
uint16_t sps_subpic_ctu_top_left_y[VVC_MAX_SLICES]
static void pps_single_slice_picture(VVCPPS *pps, int *off)
static int aps_decode_scaling(const VVCScalingList **scaling, const H266RawAPS *aps)
uint8_t lmcs_delta_abs_crs
uint8_t sps_ccalf_enabled_flag
static void sh_qp_y(VVCSH *sh, const H266RawPPS *pps, const H266RawPictureHeader *ph)
#define AV_PIX_FMT_YUV420P10
const H266RawSliceHeader * r
RefStruct reference.
static int sps_chroma_qp_table(VVCSPS *sps)
static void pps_subpic(VVCPPS *pps, const VVCSPS *sps)
static int decode_ph(VVCFrameParamSets *fps, const H266RawPictureHeader *rph, void *rph_ref, const int poc_tid0, const int is_clvss)
static int pps_add_ctus(VVCPPS *pps, int *off, const int rx, const int ry, const int w, const int h)
RefStruct is an API for creating reference-counted objects with minimal overhead.
uint8_t pps_seq_parameter_set_id
static void bit_depth(AudioStatsContext *s, const uint64_t *const mask, uint8_t *depth)
static const VVCPPS * pps_alloc(const H266RawPPS *rpps, const VVCSPS *sps)
uint8_t num_chroma_filters
Coded bitstream unit structure.
static void sh_inter(VVCSH *sh, const H266RawSPS *sps, const H266RawPPS *pps)
static int decode_pps(VVCParamSets *ps, const H266RawPPS *rpps)
uint16_t chroma_scale_coeff[LMCS_MAX_BIN_SIZE]
H266RawPPS * pps[VVC_MAX_PPS_COUNT]
RefStruct references.
const VVCSPS * sps
RefStruct reference.
#define ALF_NUM_COEFF_CHROMA
static int pps_slice_map(VVCPPS *pps, const VVCSPS *sps)
uint16_t sps_subpic_width_minus1[VVC_MAX_SLICES]
int ff_vvc_decode_sh(VVCSH *sh, const VVCFrameParamSets *fps, const CodedBitstreamUnit *unit)
const VVCPPS * pps_list[VVC_MAX_PPS_COUNT]
RefStruct reference.
static int derive_matrix_size(const int id)
int16_t cc_coeff[2][ALF_NUM_FILTERS_CC][ALF_NUM_COEFF_CC]
const VVCScalingList * sl
RefStruct reference.
const uint8_t ff_vvc_scaling_pred_16[8 *8]
void ff_vvc_frame_ps_free(VVCFrameParamSets *fps)
uint8_t chroma_clip_idx[ALF_NUM_FILTERS_CHROMA][ALF_NUM_COEFF_CHROMA]
#define GDR_SET_RECOVERED(s)
#define AV_PIX_FMT_YUV444P10
static void sps_ladf(VVCSPS *sps)
static void pps_no_rect_slice(VVCPPS *pps)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
uint16_t lmcs_delta_abs_cw[16]
#define FF_ARRAY_ELEMS(a)
uint8_t sps_seq_parameter_set_id
#define AV_CEIL_RSHIFT(a, b)
static int decode_frame_ps(VVCFrameParamSets *fps, const VVCParamSets *ps, const CodedBitstreamH266Context *h266, const int poc_tid0, const int is_clvss)
static void pps_multi_tiles_slice(VVCPPS *pps, const int tile_idx, const int i, int *off)
static int ph_vb(VVCPH *ph, const H266RawSPS *sps, const H266RawPPS *pps)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
const VVCSPS * sps_list[VVC_MAX_SPS_COUNT]
RefStruct reference.
#define AV_PIX_FMT_GRAY10
static void pred_weight_table(PredWeightTable *w, const H266RawPredWeightTable *r)
static int FUNC() aps(CodedBitstreamContext *ctx, RWContext *rw, H266RawAPS *current, int prefix)
static void alf_coeff_cc(int16_t *coeff, const uint8_t *mapped_abs, const uint8_t *sign)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static av_always_inline uint16_t lmcs_derive_lut_sample(uint16_t sample, uint16_t *pivot1, uint16_t *pivot2, uint16_t *scale_coeff, const int idx, const int max)
uint8_t pps_pic_parameter_set_id
const VVCALF * alf_list[VVC_MAX_ALF_COUNT]
RefStruct reference.
uint8_t lmcs_delta_sign_cw_flag[16]
static int ph_max_num_subblock_merge_cand(const H266RawSPS *sps, const H266RawPictureHeader *ph)
static int is_luma_list(const int id)
static void sh_partition_constraints(VVCSH *sh, const H266RawSPS *sps, const H266RawPictureHeader *ph)
uint8_t max_tt_size[2]
MaxTtSizeY, MaxTtSizeC.
static void * ff_refstruct_allocz(size_t size)
Equivalent to ff_refstruct_alloc_ext(size, 0, NULL, NULL)
const VVCScalingList * scaling_list[VVC_MAX_SL_COUNT]
RefStruct reference.
#define AV_PIX_FMT_YUV422P10
static int ph_vb_pos(uint16_t *vbs, uint8_t *num_vbs, const uint16_t *pos_minus_1, const uint8_t num_pos, uint16_t max, const int ctb_size_y)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
const int ff_vvc_scaling_list0[8 *8]
static void decode_recovery_poc(VVCContext *s, const VVCPH *ph)
const H266RawPictureHeader * r
static void sps_partition_constraints(VVCSPS *sps)
const uint8_t ff_vvc_diag_scan_y[5][5][16 *16]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int decode_sps(VVCParamSets *ps, const H266RawSPS *rsps, void *log_ctx, int is_clvss)
int16_t luma_coeff[ALF_NUM_FILTERS_LUMA][ALF_NUM_COEFF_LUMA]
static void pps_ref_wraparound_offset(VVCPPS *pps, const VVCSPS *sps)
const VVCPPS * pps
RefStruct reference.
uint8_t max_mtt_depth[2]
MaxMttDepthY, MaxMttDepthC.
uint16_t sps_subpic_ctu_top_left_x[VVC_MAX_SLICES]
@ VVC_MAX_POINTS_IN_QP_TABLE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static int shift(int a, int b)
H266RawPictureHeader * ph
static void subpic_tiles(int *tile_x, int *tile_y, int *tile_x_end, int *tile_y_end, const VVCSPS *sps, const VVCPPS *pps, const int i)
#define AV_PIX_FMT_YUV422P12
static int aps_decode_alf(const VVCALF **alf, const H266RawAPS *aps)
#define AV_PIX_FMT_YUV444P12
static int ctu_rs(const int rx, const int ry, const VVCPPS *pps)
static int sh_derive(VVCSH *sh, const VVCFrameParamSets *fps)
static void pps_subpic_one_or_more_tiles_slice(VVCPPS *pps, const int tile_x, const int tile_y, const int x_end, const int y_end, const int i, int *off)
static int next_tile_idx(int tile_idx, const int i, const H266RawPPS *r)
union VVCLMCS::@291 inv_lut
static void alf_coeff(int16_t *coeff, const uint8_t *abs, const uint8_t *sign, const int size)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
const uint32_t * ctb_addr_in_curr_slice
CtbAddrInCurrSlice.
uint8_t scaling_matrix_dc_rec[SL_MAX_ID - SL_START_16x16]
ScalingMatrixDcRec[refId − 14].
static void sps_free(FFRefStructOpaque opaque, void *obj)
uint16_t pivot[LMCS_MAX_BIN_SIZE+1]
static int lmcs_derive_lut(VVCLMCS *lmcs, const H266RawAPS *rlmcs, const H266RawSPS *sps)
static void pps_chroma_qp_offset(VVCPPS *pps)
static int pps_derive(VVCPPS *pps, const VVCSPS *sps)
#define i(width, name, range_min, range_max)
static int sps_bit_depth(VVCSPS *sps, void *log_ctx)
const uint8_t ff_vvc_diag_scan_x[5][5][16 *16]
static int sh_alf_aps(const VVCSH *sh, const VVCFrameParamSets *fps)
static void scaling_derive(VVCScalingList *sl, const H266RawAPS *aps)
H266RawSPS * sps[VVC_MAX_SPS_COUNT]
RefStruct references.
void * rref
RefStruct reference, backing ph above.
int ff_vvc_decode_aps(VVCParamSets *ps, const CodedBitstreamUnit *unit)
static void pps_subpic_less_than_one_tile_slice(VVCPPS *pps, const VVCSPS *sps, const int i, const int tx, const int ty, int *off)
uint16_t u16[LMCS_MAX_LUT_SIZE]
for high bit-depth
static int ph_compute_poc(const H266RawPictureHeader *ph, const H266RawSPS *sps, const int poc_tid0, const int is_clvss)
void * av_calloc(size_t nmemb, size_t size)
#define GDR_IS_RECOVERED(s)
uint8_t lmcs_delta_sign_crs_flag
static void decode_recovery_flag(VVCContext *s)
static void pps_width_height(VVCPPS *pps, const VVCSPS *sps)
void ff_vvc_ps_uninit(VVCParamSets *ps)
static const float pred[4]
#define ALF_NUM_COEFF_LUMA
static int pps_one_tile_slices(VVCPPS *pps, const int tile_idx, int i, int *off)
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
void ff_refstruct_replace(void *dstp, const void *src)
Ensure *dstp refers to the same object as src.
#define AV_PIX_FMT_YUV420P12
const VVCALF * alf_list[VVC_MAX_ALF_COUNT]
RefStruct reference.
int8_t slice_qp_y
SliceQpY.
uint16_t sps_num_subpics_minus1
static void ctu_xy(int *rx, int *ry, const int tile_x, const int tile_y, const VVCPPS *pps)
static int ref[MAX_W *MAX_W]
static int FUNC() scaling_list(CodedBitstreamContext *ctx, RWContext *rw, H264RawScalingList *current, int size_of_scaling_list)
static void alf_luma(VVCALF *alf, const H266RawAPS *aps)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
uint8_t u8[LMCS_MAX_LUT_SIZE]
static int ph_derive(VVCPH *ph, const H266RawSPS *sps, const H266RawPPS *pps, const int poc_tid0, const int is_clvss)
static void alf_cc(VVCALF *alf, const H266RawAPS *aps)
static int pps_bd(VVCPPS *pps)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
uint8_t luma_clip_idx[ALF_NUM_FILTERS_LUMA][ALF_NUM_COEFF_LUMA]
static const VVCSPS * sps_alloc(const H266RawSPS *rsps, void *log_ctx)
static void tile_xy(int *tile_x, int *tile_y, const int tile_idx, const VVCPPS *pps)
uint8_t max_bt_size[2]
MaxBtSizeY, MaxBtSizeC.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
unsigned int sps_id
seq_parameter_set_id
static void pps_rect_slice(VVCPPS *pps, const VVCSPS *sps)
static void sps_poc(VVCSPS *sps)
const H266RawSPS * r
RefStruct reference.
uint8_t num_cc_filters[2]
alf_cc_cb_filters_signalled_minus1 + 1, alf_cc_cr_filters_signalled_minus1 + 1
union VVCLMCS::@291 fwd_lut
static void sh_slice_address(VVCSH *sh, const H266RawSPS *sps, const VVCPPS *pps)
static void pps_single_slice_per_subpic(VVCPPS *pps, const VVCSPS *sps, int *off)
void * ph_ref
RefStruct reference backing ph above.
#define ALF_NUM_FILTERS_LUMA
static const double coeff[2][5]
uint8_t min_qt_size[2]
MinQtSizeY, MinQtSizeC.
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void sps_inter(VVCSPS *sps)
static void sh_deblock_offsets(VVCSH *sh)
#define AV_PIX_FMT_GRAY12
#define LMCS_MAX_BIT_DEPTH
static void alf_chroma(VVCALF *alf, const H266RawAPS *aps)
static void sh_entry_points(VVCSH *sh, const H266RawSPS *sps, const VVCPPS *pps)
static void pps_subpic_slice(VVCPPS *pps, const VVCSPS *sps, const int i, int *off)
static int decode_ps(VVCParamSets *ps, const CodedBitstreamH266Context *h266, void *log_ctx, int is_clvss)
int16_t chroma_coeff[ALF_NUM_FILTERS_CHROMA][ALF_NUM_COEFF_CHROMA]
uint8_t sps_subpic_treated_as_pic_flag[VVC_MAX_SLICES]
void ff_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
static int sps_derive(VVCSPS *sps, void *log_ctx)
static int sps_map_pixel_format(VVCSPS *sps, void *log_ctx)
const H266RawAPS * lmcs_list[VVC_MAX_LMCS_COUNT]
RefStruct reference.
const uint8_t ff_vvc_scaling_pred_8[8 *8]
#define MIN_TU_LOG2
MinTbLog2SizeY.
uint8_t scaling_matrix_rec[SL_MAX_ID][SL_MAX_MATRIX_SIZE *SL_MAX_MATRIX_SIZE]
ScalingMatrixRec.