35 void ff_put_vp8_epel4_h4_mmxext(
uint8_t *dst, ptrdiff_t dststride,
37 int height,
int mx,
int my);
38 void ff_put_vp8_epel4_h6_mmxext(
uint8_t *dst, ptrdiff_t dststride,
40 int height,
int mx,
int my);
41 void ff_put_vp8_epel4_v4_mmxext(
uint8_t *dst, ptrdiff_t dststride,
43 int height,
int mx,
int my);
44 void ff_put_vp8_epel4_v6_mmxext(
uint8_t *dst, ptrdiff_t dststride,
46 int height,
int mx,
int my);
48 void ff_put_vp8_epel8_h4_sse2 (
uint8_t *dst, ptrdiff_t dststride,
50 int height,
int mx,
int my);
51 void ff_put_vp8_epel8_h6_sse2 (
uint8_t *dst, ptrdiff_t dststride,
53 int height,
int mx,
int my);
54 void ff_put_vp8_epel8_v4_sse2 (
uint8_t *dst, ptrdiff_t dststride,
56 int height,
int mx,
int my);
57 void ff_put_vp8_epel8_v6_sse2 (
uint8_t *dst, ptrdiff_t dststride,
59 int height,
int mx,
int my);
61 void ff_put_vp8_epel4_h4_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
63 int height,
int mx,
int my);
64 void ff_put_vp8_epel4_h6_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
66 int height,
int mx,
int my);
67 void ff_put_vp8_epel4_v4_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
69 int height,
int mx,
int my);
70 void ff_put_vp8_epel4_v6_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
72 int height,
int mx,
int my);
73 void ff_put_vp8_epel8_h4_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
75 int height,
int mx,
int my);
76 void ff_put_vp8_epel8_h6_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
78 int height,
int mx,
int my);
79 void ff_put_vp8_epel8_v4_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
81 int height,
int mx,
int my);
82 void ff_put_vp8_epel8_v6_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
84 int height,
int mx,
int my);
86 void ff_put_vp8_bilinear4_h_mmxext(
uint8_t *dst, ptrdiff_t dststride,
88 int height,
int mx,
int my);
89 void ff_put_vp8_bilinear8_h_sse2 (
uint8_t *dst, ptrdiff_t dststride,
91 int height,
int mx,
int my);
92 void ff_put_vp8_bilinear4_h_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
94 int height,
int mx,
int my);
95 void ff_put_vp8_bilinear8_h_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
97 int height,
int mx,
int my);
99 void ff_put_vp8_bilinear4_v_mmxext(
uint8_t *dst, ptrdiff_t dststride,
101 int height,
int mx,
int my);
102 void ff_put_vp8_bilinear8_v_sse2 (
uint8_t *dst, ptrdiff_t dststride,
104 int height,
int mx,
int my);
105 void ff_put_vp8_bilinear4_v_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
107 int height,
int mx,
int my);
108 void ff_put_vp8_bilinear8_v_ssse3 (
uint8_t *dst, ptrdiff_t dststride,
110 int height,
int mx,
int my);
113 void ff_put_vp8_pixels8_mmx (
uint8_t *dst, ptrdiff_t dststride,
115 int height,
int mx,
int my);
116 void ff_put_vp8_pixels16_mmx(
uint8_t *dst, ptrdiff_t dststride,
118 int height,
int mx,
int my);
119 void ff_put_vp8_pixels16_sse(
uint8_t *dst, ptrdiff_t dststride,
121 int height,
int mx,
int my);
123 #define TAP_W16(OPT, FILTERTYPE, TAPTYPE) \ 124 static void ff_put_vp8_ ## FILTERTYPE ## 16_ ## TAPTYPE ## _ ## OPT( \ 125 uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \ 126 ptrdiff_t srcstride, int height, int mx, int my) \ 128 ff_put_vp8_ ## FILTERTYPE ## 8_ ## TAPTYPE ## _ ## OPT( \ 129 dst, dststride, src, srcstride, height, mx, my); \ 130 ff_put_vp8_ ## FILTERTYPE ## 8_ ## TAPTYPE ## _ ## OPT( \ 131 dst + 8, dststride, src + 8, srcstride, height, mx, my); \ 133 #define TAP_W8(OPT, FILTERTYPE, TAPTYPE) \ 134 static void ff_put_vp8_ ## FILTERTYPE ## 8_ ## TAPTYPE ## _ ## OPT( \ 135 uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \ 136 ptrdiff_t srcstride, int height, int mx, int my) \ 138 ff_put_vp8_ ## FILTERTYPE ## 4_ ## TAPTYPE ## _ ## OPT( \ 139 dst, dststride, src, srcstride, height, mx, my); \ 140 ff_put_vp8_ ## FILTERTYPE ## 4_ ## TAPTYPE ## _ ## OPT( \ 141 dst + 4, dststride, src + 4, srcstride, height, mx, my); \ 145 TAP_W8 (mmxext, epel, h4)
146 TAP_W8 (mmxext, epel, h6)
147 TAP_W16(mmxext, epel, h6)
148 TAP_W8 (mmxext, epel, v4)
149 TAP_W8 (mmxext, epel, v6)
150 TAP_W16(mmxext, epel, v6)
151 TAP_W8 (mmxext, bilinear,
h)
152 TAP_W16(mmxext, bilinear,
h)
153 TAP_W8 (mmxext, bilinear, v)
154 TAP_W16(mmxext, bilinear, v)
157 TAP_W16(sse2, epel, h6)
158 TAP_W16(sse2, epel, v6)
159 TAP_W16(sse2, bilinear,
h)
160 TAP_W16(sse2, bilinear, v)
162 TAP_W16(ssse3, epel, h6)
163 TAP_W16(ssse3, epel, v6)
164 TAP_W16(ssse3, bilinear,
h)
165 TAP_W16(ssse3, bilinear, v)
167 #define HVTAP(OPT, ALIGN, TAPNUMX, TAPNUMY, SIZE, MAXHEIGHT) \ 168 static void ff_put_vp8_epel ## SIZE ## _h ## TAPNUMX ## v ## TAPNUMY ## _ ## OPT( \ 169 uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \ 170 ptrdiff_t srcstride, int height, int mx, int my) \ 172 LOCAL_ALIGNED(ALIGN, uint8_t, tmp, [SIZE * (MAXHEIGHT + TAPNUMY - 1)]); \ 173 uint8_t *tmpptr = tmp + SIZE * (TAPNUMY / 2 - 1); \ 174 src -= srcstride * (TAPNUMY / 2 - 1); \ 175 ff_put_vp8_epel ## SIZE ## _h ## TAPNUMX ## _ ## OPT( \ 176 tmp, SIZE, src, srcstride, height + TAPNUMY - 1, mx, my); \ 177 ff_put_vp8_epel ## SIZE ## _v ## TAPNUMY ## _ ## OPT( \ 178 dst, dststride, tmpptr, SIZE, height, mx, my); \ 182 #define HVTAPMMX(x, y) \ 183 HVTAP(mmxext, 8, x, y, 4, 8) \ 184 HVTAP(mmxext, 8, x, y, 8, 16) 186 HVTAP(mmxext, 8, 6, 6, 16, 16)
188 #define HVTAPMMX(x, y) \ 189 HVTAP(mmxext, 8, x, y, 4, 8) 197 #define HVTAPSSE2(x, y, w) \ 198 HVTAP(sse2, 16, x, y, w, 16) \ 199 HVTAP(ssse3, 16, x, y, w, 16) 207 HVTAP(ssse3, 16, 4, 4, 4, 8)
208 HVTAP(ssse3, 16, 4, 6, 4, 8)
209 HVTAP(ssse3, 16, 6, 4, 4, 8)
210 HVTAP(ssse3, 16, 6, 6, 4, 8)
212 #define HVBILIN(OPT, ALIGN, SIZE, MAXHEIGHT) \ 213 static void ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT( \ 214 uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \ 215 ptrdiff_t srcstride, int height, int mx, int my) \ 217 LOCAL_ALIGNED(ALIGN, uint8_t, tmp, [SIZE * (MAXHEIGHT + 2)]); \ 218 ff_put_vp8_bilinear ## SIZE ## _h_ ## OPT( \ 219 tmp, SIZE, src, srcstride, height + 1, mx, my); \ 220 ff_put_vp8_bilinear ## SIZE ## _v_ ## OPT( \ 221 dst, dststride, tmp, SIZE, height, mx, my); \ 224 HVBILIN(mmxext, 8, 4, 8)
226 HVBILIN(mmxext, 8, 8, 16)
227 HVBILIN(mmxext, 8, 16, 16)
229 HVBILIN(sse2, 8, 8, 16)
230 HVBILIN(sse2, 8, 16, 16)
231 HVBILIN(ssse3, 8, 4, 8)
232 HVBILIN(ssse3, 8, 8, 16)
233 HVBILIN(ssse3, 8, 16, 16)
235 void ff_vp8_idct_dc_add_mmx(
uint8_t *dst, int16_t
block[16],
237 void ff_vp8_idct_dc_add_sse2(
uint8_t *dst, int16_t block[16],
239 void ff_vp8_idct_dc_add_sse4(
uint8_t *dst, int16_t block[16],
241 void ff_vp8_idct_dc_add4y_mmx(
uint8_t *dst, int16_t block[4][16],
243 void ff_vp8_idct_dc_add4y_sse2(
uint8_t *dst, int16_t block[4][16],
245 void ff_vp8_idct_dc_add4uv_mmx(
uint8_t *dst, int16_t block[2][16],
247 void ff_vp8_luma_dc_wht_mmx(int16_t block[4][4][16], int16_t
dc[16]);
248 void ff_vp8_luma_dc_wht_sse(int16_t block[4][4][16], int16_t dc[16]);
249 void ff_vp8_idct_add_mmx(
uint8_t *dst, int16_t block[16], ptrdiff_t stride);
250 void ff_vp8_idct_add_sse(
uint8_t *dst, int16_t block[16], ptrdiff_t stride);
252 #define DECLARE_LOOP_FILTER(NAME) \ 253 void ff_vp8_v_loop_filter_simple_ ## NAME(uint8_t *dst, \ 256 void ff_vp8_h_loop_filter_simple_ ## NAME(uint8_t *dst, \ 259 void ff_vp8_v_loop_filter16y_inner_ ## NAME (uint8_t *dst, \ 261 int e, int i, int hvt); \ 262 void ff_vp8_h_loop_filter16y_inner_ ## NAME (uint8_t *dst, \ 264 int e, int i, int hvt); \ 265 void ff_vp8_v_loop_filter8uv_inner_ ## NAME (uint8_t *dstU, \ 268 int e, int i, int hvt); \ 269 void ff_vp8_h_loop_filter8uv_inner_ ## NAME (uint8_t *dstU, \ 272 int e, int i, int hvt); \ 273 void ff_vp8_v_loop_filter16y_mbedge_ ## NAME(uint8_t *dst, \ 275 int e, int i, int hvt); \ 276 void ff_vp8_h_loop_filter16y_mbedge_ ## NAME(uint8_t *dst, \ 278 int e, int i, int hvt); \ 279 void ff_vp8_v_loop_filter8uv_mbedge_ ## NAME(uint8_t *dstU, \ 282 int e, int i, int hvt); \ 283 void ff_vp8_h_loop_filter8uv_mbedge_ ## NAME(uint8_t *dstU, \ 286 int e, int i, int hvt); 288 DECLARE_LOOP_FILTER(mmx)
289 DECLARE_LOOP_FILTER(mmxext)
290 DECLARE_LOOP_FILTER(sse2)
291 DECLARE_LOOP_FILTER(ssse3)
292 DECLARE_LOOP_FILTER(sse4)
296 #define VP8_LUMA_MC_FUNC(IDX, SIZE, OPT) \ 297 c->put_vp8_epel_pixels_tab[IDX][0][2] = ff_put_vp8_epel ## SIZE ## _h6_ ## OPT; \ 298 c->put_vp8_epel_pixels_tab[IDX][2][0] = ff_put_vp8_epel ## SIZE ## _v6_ ## OPT; \ 299 c->put_vp8_epel_pixels_tab[IDX][2][2] = ff_put_vp8_epel ## SIZE ## _h6v6_ ## OPT 301 #define VP8_MC_FUNC(IDX, SIZE, OPT) \ 302 c->put_vp8_epel_pixels_tab[IDX][0][1] = ff_put_vp8_epel ## SIZE ## _h4_ ## OPT; \ 303 c->put_vp8_epel_pixels_tab[IDX][1][0] = ff_put_vp8_epel ## SIZE ## _v4_ ## OPT; \ 304 c->put_vp8_epel_pixels_tab[IDX][1][1] = ff_put_vp8_epel ## SIZE ## _h4v4_ ## OPT; \ 305 c->put_vp8_epel_pixels_tab[IDX][1][2] = ff_put_vp8_epel ## SIZE ## _h6v4_ ## OPT; \ 306 c->put_vp8_epel_pixels_tab[IDX][2][1] = ff_put_vp8_epel ## SIZE ## _h4v6_ ## OPT; \ 307 VP8_LUMA_MC_FUNC(IDX, SIZE, OPT) 309 #define VP8_BILINEAR_MC_FUNC(IDX, SIZE, OPT) \ 310 c->put_vp8_bilinear_pixels_tab[IDX][0][1] = ff_put_vp8_bilinear ## SIZE ## _h_ ## OPT; \ 311 c->put_vp8_bilinear_pixels_tab[IDX][0][2] = ff_put_vp8_bilinear ## SIZE ## _h_ ## OPT; \ 312 c->put_vp8_bilinear_pixels_tab[IDX][1][0] = ff_put_vp8_bilinear ## SIZE ## _v_ ## OPT; \ 313 c->put_vp8_bilinear_pixels_tab[IDX][1][1] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT; \ 314 c->put_vp8_bilinear_pixels_tab[IDX][1][2] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT; \ 315 c->put_vp8_bilinear_pixels_tab[IDX][2][0] = ff_put_vp8_bilinear ## SIZE ## _v_ ## OPT; \ 316 c->put_vp8_bilinear_pixels_tab[IDX][2][1] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT; \ 317 c->put_vp8_bilinear_pixels_tab[IDX][2][2] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT #define EXTERNAL_MMX(flags)
void(* vp8_idct_dc_add)(uint8_t *dst, int16_t block[16], ptrdiff_t stride)
void(* vp8_idct_dc_add4y)(uint8_t *dst, int16_t block[4][16], ptrdiff_t stride)
Memory handling functions.
vp8_mc_func put_vp8_bilinear_pixels_tab[3][3][3]
void(* vp8_v_loop_filter8uv_inner)(uint8_t *dstU, uint8_t *dstV, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
#define VP8_MC_FUNC(IDX, SIZE, OPT)
static atomic_int cpu_flags
#define EXTERNAL_SSE(flags)
Macro definitions for various function/variable attributes.
vp8_mc_func put_vp8_epel_pixels_tab[3][3][3]
first dimension: 4-log2(width) second dimension: 0 if no vertical interpolation is needed; 1 4-tap ve...
#define EXTERNAL_SSE4(flags)
The exact code depends on how similar the blocks are and how related they are to the block
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void(* vp8_idct_dc_add4uv)(uint8_t *dst, int16_t block[4][16], ptrdiff_t stride)
VP8 compatible video decoder.
#define EXTERNAL_SSE2_SLOW(flags)
void(* vp8_v_loop_filter8uv)(uint8_t *dstU, uint8_t *dstV, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
#define EXTERNAL_SSE2(flags)
void(* vp8_idct_add)(uint8_t *dst, int16_t block[16], ptrdiff_t stride)
#define VP8_LUMA_MC_FUNC(IDX, SIZE, OPT)
av_cold void ff_vp78dsp_init_x86(VP8DSPContext *c)
void(* vp8_h_loop_filter8uv_inner)(uint8_t *dstU, uint8_t *dstV, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
#define VP8_BILINEAR_MC_FUNC(IDX, SIZE, OPT)
av_cold void ff_vp8dsp_init_x86(VP8DSPContext *c)
void(* vp8_v_loop_filter16y)(uint8_t *dst, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff)*mv_scale Intra DC Prediction block[y][x] dc[1]
#define EXTERNAL_SSSE3(flags)
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
void(* vp8_h_loop_filter8uv)(uint8_t *dstU, uint8_t *dstV, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
#define EXTERNAL_MMXEXT(flags)
void(* vp8_h_loop_filter16y_inner)(uint8_t *dst, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
void(* vp8_luma_dc_wht)(int16_t block[4][4][16], int16_t dc[16])
void(* vp8_v_loop_filter_simple)(uint8_t *dst, ptrdiff_t stride, int flim)
void(* vp8_h_loop_filter_simple)(uint8_t *dst, ptrdiff_t stride, int flim)
GLint GLenum GLboolean GLsizei stride
void(* vp8_v_loop_filter16y_inner)(uint8_t *dst, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)
void(* vp8_h_loop_filter16y)(uint8_t *dst, ptrdiff_t stride, int flim_E, int flim_I, int hev_thresh)