46 int jobnr,
int nb_jobs);
49 static inline float lerpf(
float v0,
float v1,
float f)
51 return v0 + (v1 -
v0) * f;
60 const float scale = 1.f / 255.f;
66 const float gintensity = intensity * s->
balance[0];
67 const float bintensity = intensity * s->
balance[1];
68 const float rintensity = intensity * s->
balance[2];
69 const float sgintensity = alternate *
FFSIGN(gintensity);
70 const float sbintensity = alternate *
FFSIGN(bintensity);
71 const float srintensity = alternate *
FFSIGN(rintensity);
72 const int slice_start = (height * jobnr) / nb_jobs;
73 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
74 const int glinesize = frame->
linesize[0];
75 const int blinesize = frame->
linesize[1];
76 const int rlinesize = frame->
linesize[2];
77 uint8_t *gptr = frame->
data[0] + slice_start * glinesize;
78 uint8_t *bptr = frame->
data[1] + slice_start * blinesize;
79 uint8_t *rptr = frame->
data[2] + slice_start * rlinesize;
81 for (
int y = slice_start; y <
slice_end; y++) {
82 for (
int x = 0; x <
width; x++) {
83 float g = gptr[x] * scale;
84 float b = bptr[x] * scale;
85 float r = rptr[x] * scale;
86 float max_color =
FFMAX3(r, g, b);
87 float min_color =
FFMIN3(r, g, b);
88 float color_saturation = max_color - min_color;
89 float luma = g * gc + r * rc + b * bc;
90 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
91 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
92 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
94 g =
lerpf(luma, g, cg);
95 b =
lerpf(luma, b, cb);
96 r =
lerpf(luma, r, cr);
117 const float scale = 1.f /
max;
118 const float gc = s->
lcoeffs[0];
119 const float bc = s->
lcoeffs[1];
120 const float rc = s->
lcoeffs[2];
125 const float gintensity = intensity * s->
balance[0];
126 const float bintensity = intensity * s->
balance[1];
127 const float rintensity = intensity * s->
balance[2];
128 const float sgintensity = alternate *
FFSIGN(gintensity);
129 const float sbintensity = alternate *
FFSIGN(bintensity);
130 const float srintensity = alternate *
FFSIGN(rintensity);
131 const int slice_start = (height * jobnr) / nb_jobs;
132 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
133 const int glinesize = frame->
linesize[0] / 2;
134 const int blinesize = frame->
linesize[1] / 2;
135 const int rlinesize = frame->
linesize[2] / 2;
136 uint16_t *gptr = (uint16_t *)frame->
data[0] + slice_start * glinesize;
137 uint16_t *bptr = (uint16_t *)frame->
data[1] + slice_start * blinesize;
138 uint16_t *rptr = (uint16_t *)frame->
data[2] + slice_start * rlinesize;
141 for (
int x = 0; x <
width; x++) {
142 float g = gptr[x] * scale;
143 float b = bptr[x] * scale;
144 float r = rptr[x] * scale;
145 float max_color =
FFMAX3(r, g, b);
146 float min_color =
FFMIN3(r, g, b);
147 float color_saturation = max_color - min_color;
148 float luma = g * gc + r * rc + b * bc;
149 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
150 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
151 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
153 g =
lerpf(luma, g, cg);
154 b =
lerpf(luma, b, cb);
155 r =
lerpf(luma, r, cr);
177 const float scale = 1.f / 255.f;
178 const float gc = s->
lcoeffs[0];
179 const float bc = s->
lcoeffs[1];
180 const float rc = s->
lcoeffs[2];
186 const float gintensity = intensity * s->
balance[0];
187 const float bintensity = intensity * s->
balance[1];
188 const float rintensity = intensity * s->
balance[2];
189 const float sgintensity = alternate *
FFSIGN(gintensity);
190 const float sbintensity = alternate *
FFSIGN(bintensity);
191 const float srintensity = alternate *
FFSIGN(rintensity);
192 const int slice_start = (height * jobnr) / nb_jobs;
193 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
194 const int linesize = frame->
linesize[0];
195 uint8_t *ptr = frame->
data[0] + slice_start * linesize;
197 for (
int y = slice_start; y <
slice_end; y++) {
198 for (
int x = 0; x <
width; x++) {
199 float g = ptr[x * step + goffset] * scale;
200 float b = ptr[x * step + boffset] * scale;
201 float r = ptr[x * step + roffset] * scale;
202 float max_color =
FFMAX3(r, g, b);
203 float min_color =
FFMIN3(r, g, b);
204 float color_saturation = max_color - min_color;
205 float luma = g * gc + r * rc + b * bc;
206 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
207 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
208 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
210 g =
lerpf(luma, g, cg);
211 b =
lerpf(luma, b, cb);
212 r =
lerpf(luma, r, cr);
232 const float scale = 1.f /
max;
233 const float gc = s->
lcoeffs[0];
234 const float bc = s->
lcoeffs[1];
235 const float rc = s->
lcoeffs[2];
243 const float gintensity = intensity * s->
balance[0];
244 const float bintensity = intensity * s->
balance[1];
245 const float rintensity = intensity * s->
balance[2];
246 const float sgintensity = alternate *
FFSIGN(gintensity);
247 const float sbintensity = alternate *
FFSIGN(bintensity);
248 const float srintensity = alternate *
FFSIGN(rintensity);
249 const int slice_start = (height * jobnr) / nb_jobs;
250 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
251 const int linesize = frame->
linesize[0] / 2;
252 uint16_t *ptr = (uint16_t *)frame->
data[0] + slice_start * linesize;
255 for (
int x = 0; x <
width; x++) {
256 float g = ptr[x * step + goffset] * scale;
257 float b = ptr[x * step + boffset] * scale;
258 float r = ptr[x * step + roffset] * scale;
259 float max_color =
FFMAX3(r, g, b);
260 float min_color =
FFMIN3(r, g, b);
261 float color_saturation = max_color - min_color;
262 float luma = g * gc + r * rc + b * bc;
263 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
264 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
265 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
267 g =
lerpf(luma, g, cg);
268 b =
lerpf(luma, b, cb);
269 r =
lerpf(luma, r, cr);
364 #define OFFSET(x) offsetof(VibranceContext, x) 365 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM 385 .priv_class = &vibrance_class,
387 .
inputs = vibrance_inputs,
AVFILTER_DEFINE_CLASS(vibrance)
static av_cold int query_formats(AVFilterContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_GBRAP10
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63)))#define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};static void cpy1(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, len);}static void cpy2(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 2 *len);}static void cpy4(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 4 *len);}static void cpy8(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;}void swri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len){int ch;int off=0;const int os=(out->planar?1:out->ch_count)*out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){int planes=in->planar?in->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){int planes=out->planar?out->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){int planes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
#define AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_BGRA64
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
static double cb(void *priv, double x, double y)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
static int vibrance_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
A filter pad used for either input or output.
A link between two filters.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AV_PIX_FMT_GBRAP12
static const AVOption vibrance_options[]
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
#define AV_PIX_FMT_GBRAP16
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
uint8_t nb_components
The number of components each pixel has, (1-4)
#define AV_PIX_FMT_GBRP16
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static const AVFilterPad vibrance_inputs[]
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
packed RGB 8:8:8, 24bpp, BGRBGR...
#define AV_PIX_FMT_GBRP14
static const AVFilterPad outputs[]
int format
agreed upon media format
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static int filter_frame(AVFilterLink *link, AVFrame *frame)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
Describe the class of an AVClass context structure.
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
const char * name
Filter name.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
static const AVFilterPad vibrance_outputs[]
static av_cold int config_input(AVFilterLink *inlink)
AVFilterLink ** outputs
array of pointers to output links
static float lerpf(float v0, float v1, float f)
#define AV_PIX_FMT_GBRP12
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
planar GBRA 4:4:4:4 32bpp
static int vibrance_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
static int vibrance_slice8p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
avfilter_execute_func * execute
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
static int vibrance_slice16p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
AVFilterContext * dst
dest filter
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static double cr(void *priv, double x, double y)
int depth
Number of bits in the component.
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
AVPixelFormat
Pixel format.
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.