29 #define LONG_BITSTREAM_READER
42 for (i = 0; i < 64; i++)
43 dst[i] = permutation[src[i]];
73 av_dlog(avctx,
"header size %d\n", hdr_size);
74 if (hdr_size > data_size) {
80 av_dlog(avctx,
"%.4s version %d\n", buf+4, version);
88 if (width != avctx->
width || height != avctx->
height) {
121 av_dlog(avctx,
"flags %x\n", flags);
124 if(buf + data_size - ptr < 64) {
135 if(buf + data_size - ptr < 64) {
150 int i, hdr_size, slice_count;
151 unsigned pic_data_size;
152 int log2_slice_mb_width, log2_slice_mb_height;
153 int slice_mb_count, mb_x, mb_y;
154 const uint8_t *data_ptr, *index_ptr;
156 hdr_size = buf[0] >> 3;
157 if (hdr_size < 8 || hdr_size > buf_size) {
162 pic_data_size =
AV_RB32(buf + 1);
163 if (pic_data_size > buf_size) {
168 log2_slice_mb_width = buf[7] >> 4;
169 log2_slice_mb_height = buf[7] & 0xF;
170 if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
172 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
182 slice_count =
AV_RB16(buf + 5);
196 if (hdr_size + slice_count*2 > buf_size) {
202 index_ptr = buf + hdr_size;
203 data_ptr = index_ptr + slice_count*2;
205 slice_mb_count = 1 << log2_slice_mb_width;
209 for (i = 0; i < slice_count; i++) {
212 slice->
data = data_ptr;
213 data_ptr +=
AV_RB16(index_ptr + i*2);
215 while (ctx->
mb_width - mb_x < slice_mb_count)
216 slice_mb_count >>= 1;
228 mb_x += slice_mb_count;
230 slice_mb_count = 1 << log2_slice_mb_width;
234 if (data_ptr > buf + buf_size) {
246 return pic_data_size;
249 #define DECODE_CODEWORD(val, codebook) \
251 unsigned int rice_order, exp_order, switch_bits; \
252 unsigned int q, buf, bits; \
254 UPDATE_CACHE(re, gb); \
255 buf = GET_CACHE(re, gb); \
258 switch_bits = codebook & 3; \
259 rice_order = codebook >> 5; \
260 exp_order = (codebook >> 2) & 7; \
262 q = 31 - av_log2(buf); \
264 if (q > switch_bits) { \
265 bits = exp_order - switch_bits + (q<<1); \
266 val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
267 ((switch_bits + 1) << rice_order); \
268 SKIP_BITS(re, gb, bits); \
269 } else if (rice_order) { \
270 SKIP_BITS(re, gb, q+1); \
271 val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
272 SKIP_BITS(re, gb, rice_order); \
275 SKIP_BITS(re, gb, q+1); \
279 #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
281 #define FIRST_DC_CB 0xB8
286 int blocks_per_slice)
301 for (i = 1; i < blocks_per_slice; i++, out += 64) {
303 if(code) sign ^= -(code & 1);
305 prev_dc += (((code + 1) >> 1) ^ sign) - sign;
312 static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
313 static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
316 int16_t *
out,
int blocks_per_slice)
319 int block_mask, sign;
321 int max_coeffs, i, bits_left;
322 int log2_block_count =
av_log2(blocks_per_slice);
329 max_coeffs = 64 << log2_block_count;
330 block_mask = blocks_per_slice - 1;
332 for (pos = block_mask;;) {
334 if (!bits_left || (bits_left < 32 && !
SHOW_UBITS(
re, gb, bits_left)))
339 if (pos >= max_coeffs) {
347 i = pos >> log2_block_count;
351 out[((pos & block_mask) << 6) + ctx->
scan[i]] = ((level ^ sign) - sign);
359 uint16_t *dst,
int dst_stride,
367 int i, blocks_per_slice = slice->
mb_count<<2;
370 for (i = 0; i < blocks_per_slice; i++)
380 for (i = 0; i < slice->
mb_count; i++) {
383 ctx->
prodsp.
idct_put(dst+4*dst_stride , dst_stride, block+(2<<6), qmat);
384 ctx->
prodsp.
idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
392 uint16_t *dst,
int dst_stride,
394 const int16_t *qmat,
int log2_blocks_per_mb)
400 int i, j, blocks_per_slice = slice->
mb_count << log2_blocks_per_mb;
403 for (i = 0; i < blocks_per_slice; i++)
413 for (i = 0; i < slice->
mb_count; i++) {
414 for (j = 0; j < log2_blocks_per_mb; j++) {
416 ctx->
prodsp.
idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
427 const int mask = (1 << num_bits) - 1;
428 int i, idx,
val, alpha_val;
438 val =
get_bits(gb, num_bits == 16 ? 7 : 4);
440 val = (val + 2) >> 1;
444 alpha_val = (alpha_val +
val) & mask;
445 if (num_bits == 16) {
446 dst[idx++] = alpha_val >> 6;
448 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
450 if (idx >= num_coeffs)
456 if (idx + val > num_coeffs)
457 val = num_coeffs - idx;
458 if (num_bits == 16) {
459 for (i = 0; i <
val; i++)
460 dst[idx++] = alpha_val >> 6;
462 for (i = 0; i <
val; i++)
463 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
466 }
while (idx < num_coeffs);
473 uint16_t *dst,
int dst_stride,
475 int blocks_per_slice)
482 for (i = 0; i < blocks_per_slice<<2; i++)
488 unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
490 unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
494 for (i = 0; i < 16; i++) {
495 memcpy(dst, block, 16 * blocks_per_slice *
sizeof(*dst));
496 dst += dst_stride >> 1;
497 block += 16 * blocks_per_slice;
507 int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
508 int luma_stride, chroma_stride;
509 int y_data_size, u_data_size, v_data_size, a_data_size;
510 uint8_t *dest_y, *dest_u, *dest_v, *dest_a;
511 int16_t qmat_luma_scaled[64];
512 int16_t qmat_chroma_scaled[64];
521 hdr_size = buf[0] >> 3;
522 qscale = av_clip(buf[1], 1, 224);
523 qscale = qscale > 128 ? qscale - 96 << 2: qscale;
524 y_data_size =
AV_RB16(buf + 2);
525 u_data_size =
AV_RB16(buf + 4);
526 v_data_size = slice->
data_size - y_data_size - u_data_size - hdr_size;
527 if (hdr_size > 7) v_data_size =
AV_RB16(buf + 6);
528 a_data_size = slice->
data_size - y_data_size - u_data_size -
529 v_data_size - hdr_size;
531 if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
532 || hdr_size+y_data_size+u_data_size+v_data_size > slice->
data_size){
539 for (i = 0; i < 64; i++) {
540 qmat_luma_scaled [i] = ctx->
qmat_luma [i] * qscale;
541 qmat_chroma_scaled[i] = ctx->
qmat_chroma[i] * qscale;
548 luma_stride = pic->
linesize[0] << 1;
549 chroma_stride = pic->
linesize[1] << 1;
554 log2_chroma_blocks_per_mb = 2;
557 log2_chroma_blocks_per_mb = 1;
560 dest_y = pic->
data[0] + (slice->
mb_y << 4) * luma_stride + (slice->
mb_x << 5);
561 dest_u = pic->
data[1] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
562 dest_v = pic->
data[2] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
563 dest_a = pic->
data[3] + (slice->
mb_y << 4) * luma_stride + (slice->
mb_x << 5);
573 buf, y_data_size, qmat_luma_scaled);
579 buf + y_data_size, u_data_size,
580 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
585 buf + y_data_size + u_data_size, v_data_size,
586 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
593 buf + y_data_size + u_data_size + v_data_size,
620 int buf_size = avpkt->
size;
621 int frame_hdr_size, pic_size,
ret;
637 if (frame_hdr_size < 0)
638 return frame_hdr_size;
640 buf += frame_hdr_size;
641 buf_size -= frame_hdr_size;
659 buf_size -= pic_size;
const char const char void * val
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
This structure describes decoded (raw) audio or video data.
#define DECODE_CODEWORD(val, codebook)
ptrdiff_t const GLvoid * data
void(* clear_block)(int16_t *block)
#define AV_PIX_FMT_YUVA422P10
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static av_cold int init(AVCodecContext *avctx)
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat)
uint8_t qmat_chroma[64]
dequantization matrix for chroma
av_cold void ff_proresdsp_init(ProresDSPContext *dsp, AVCodecContext *avctx)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
unsigned mb_height
height of the current picture in mb
int idct_permutation_type
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16
static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
static av_cold int decode_init(AVCodecContext *avctx)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
AVCodec ff_prores_decoder
bitstream reader API header.
int interlaced_frame
The content of the picture is interlaced.
int slice_count
number of slices in the current picture
static int get_bits_left(GetBitContext *gb)
unsigned mb_width
width of the current picture in mb
#define UPDATE_CACHE(name, gb)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const uint16_t mask[17]
int skip_alpha
Skip processing alpha if supported by codec.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
const char * name
Name of the codec implementation.
#define AV_PIX_FMT_YUV444P10
#define CLOSE_READER(name, gb)
Libavcodec external API header.
#define SKIP_BITS(name, gb, num)
enum AVPictureType pict_type
Picture type of the frame.
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
int width
picture width / height.
uint8_t idct_permutation[64]
static const uint8_t lev_to_cb[10]
#define AV_PIX_FMT_YUVA444P10
uint8_t interlaced_scan[64]
#define SHOW_UBITS(name, gb, num)
#define av_dlog(pctx,...)
av_dlog macros
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
const uint8_t ff_prores_interlaced_scan[64]
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
main external API structure.
void(* idct_put)(uint16_t *out, int linesize, int16_t *block, const int16_t *qmat)
const uint8_t ff_prores_progressive_scan[64]
static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define OPEN_READER(name, gb)
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb, int16_t *out, int blocks_per_slice)
static unsigned int get_bits1(GetBitContext *s)
BYTE int const BYTE int int int height
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat, int log2_blocks_per_mb)
static const uint8_t run_to_cb[16]
uint8_t progressive_scan[64]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
#define AV_PIX_FMT_YUV422P10
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
#define SHOW_SBITS(name, gb, num)
#define CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
common internal api header.
#define CODEC_FLAG_GRAY
Only decode/encode grayscale.
static av_always_inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out, int blocks_per_slice)
static const uint8_t dc_codebook[7]
int top_field_first
If the content is interlaced, is top field displayed first.
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static void decode_slice_alpha(ProresContext *ctx, uint16_t *dst, int dst_stride, const uint8_t *buf, int buf_size, int blocks_per_slice)
Decode alpha slice plane.
int key_frame
1 -> keyframe, 0-> not
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
static void * av_mallocz_array(size_t nmemb, size_t size)
static av_cold int decode_close(AVCodecContext *avctx)
#define LOCAL_ALIGNED_16(t, v,...)
uint8_t qmat_luma[64]
dequantization matrix for luma
int frame_type
0 = progressive, 1 = tff, 2 = bff
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
This structure stores compressed data.
static int decode_picture(AVCodecContext *avctx)