FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
imc.c
Go to the documentation of this file.
1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * IMC - Intel Music Coder
27  * A mdct based codec using a 256 points large transform
28  * divided into 32 bands with some mix of scale factors.
29  * Only mono is supported.
30  */
31 
32 
33 #include <math.h>
34 #include <stddef.h>
35 #include <stdio.h>
36 
38 #include "libavutil/ffmath.h"
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "avcodec.h"
42 #include "bswapdsp.h"
43 #include "get_bits.h"
44 #include "fft.h"
45 #include "internal.h"
46 #include "sinewin.h"
47 
48 #include "imcdata.h"
49 
50 #define IMC_BLOCK_SIZE 64
51 #define IMC_FRAME_ID 0x21
52 #define BANDS 32
53 #define COEFFS 256
54 
55 typedef struct IMCChannel {
56  float old_floor[BANDS];
57  float flcoeffs1[BANDS];
58  float flcoeffs2[BANDS];
59  float flcoeffs3[BANDS];
60  float flcoeffs4[BANDS];
61  float flcoeffs5[BANDS];
62  float flcoeffs6[BANDS];
63  float CWdecoded[COEFFS];
64 
65  int bandWidthT[BANDS]; ///< codewords per band
66  int bitsBandT[BANDS]; ///< how many bits per codeword in band
67  int CWlengthT[COEFFS]; ///< how many bits in each codeword
69  int bandFlagsBuf[BANDS]; ///< flags for each band
70  int sumLenArr[BANDS]; ///< bits for all coeffs in band
71  int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
72  int skipFlagBits[BANDS]; ///< bits used to code skip flags
73  int skipFlagCount[BANDS]; ///< skipped coefficients per band
74  int skipFlags[COEFFS]; ///< skip coefficient decoding or not
75  int codewords[COEFFS]; ///< raw codewords read from bitstream
76 
78 
80 } IMCChannel;
81 
82 typedef struct IMCContext {
84 
85  /** MDCT tables */
86  //@{
88  float post_cos[COEFFS];
89  float post_sin[COEFFS];
90  float pre_coef1[COEFFS];
91  float pre_coef2[COEFFS];
92  //@}
93 
94  float sqrt_tab[30];
96 
101  float *out_samples;
102 
104 
105  int8_t cyclTab[32], cyclTab2[32];
106  float weights1[31], weights2[31];
107 } IMCContext;
108 
109 static VLC huffman_vlc[4][4];
110 
111 #define VLC_TABLES_SIZE 9512
112 
113 static const int vlc_offsets[17] = {
114  0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
115  4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
116 };
117 
119 
120 static inline double freq2bark(double freq)
121 {
122  return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
123 }
124 
125 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
126 {
127  double freqmin[32], freqmid[32], freqmax[32];
128  double scale = sampling_rate / (256.0 * 2.0 * 2.0);
129  double nyquist_freq = sampling_rate * 0.5;
130  double freq, bark, prev_bark = 0, tf, tb;
131  int i, j;
132 
133  for (i = 0; i < 32; i++) {
134  freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
135  bark = freq2bark(freq);
136 
137  if (i > 0) {
138  tb = bark - prev_bark;
139  q->weights1[i - 1] = ff_exp10(-1.0 * tb);
140  q->weights2[i - 1] = ff_exp10(-2.7 * tb);
141  }
142  prev_bark = bark;
143 
144  freqmid[i] = freq;
145 
146  tf = freq;
147  while (tf < nyquist_freq) {
148  tf += 0.5;
149  tb = freq2bark(tf);
150  if (tb > bark + 0.5)
151  break;
152  }
153  freqmax[i] = tf;
154 
155  tf = freq;
156  while (tf > 0.0) {
157  tf -= 0.5;
158  tb = freq2bark(tf);
159  if (tb <= bark - 0.5)
160  break;
161  }
162  freqmin[i] = tf;
163  }
164 
165  for (i = 0; i < 32; i++) {
166  freq = freqmax[i];
167  for (j = 31; j > 0 && freq <= freqmid[j]; j--);
168  q->cyclTab[i] = j + 1;
169 
170  freq = freqmin[i];
171  for (j = 0; j < 32 && freq >= freqmid[j]; j++);
172  q->cyclTab2[i] = j - 1;
173  }
174 }
175 
177 {
178  int i, j, ret;
179  IMCContext *q = avctx->priv_data;
180  double r1, r2;
181 
182  if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
183  av_log(avctx, AV_LOG_ERROR,
184  "Strange sample rate of %i, file likely corrupt or "
185  "needing a new table derivation method.\n",
186  avctx->sample_rate);
187  return AVERROR_PATCHWELCOME;
188  }
189 
190  if (avctx->codec_id == AV_CODEC_ID_IMC)
191  avctx->channels = 1;
192 
193  if (avctx->channels > 2) {
194  avpriv_request_sample(avctx, "Number of channels > 2");
195  return AVERROR_PATCHWELCOME;
196  }
197 
198  for (j = 0; j < avctx->channels; j++) {
199  q->chctx[j].decoder_reset = 1;
200 
201  for (i = 0; i < BANDS; i++)
202  q->chctx[j].old_floor[i] = 1.0;
203 
204  for (i = 0; i < COEFFS / 2; i++)
205  q->chctx[j].last_fft_im[i] = 0;
206  }
207 
208  /* Build mdct window, a simple sine window normalized with sqrt(2) */
210  for (i = 0; i < COEFFS; i++)
211  q->mdct_sine_window[i] *= sqrt(2.0);
212  for (i = 0; i < COEFFS / 2; i++) {
213  q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
214  q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
215 
216  r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
217  r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
218 
219  if (i & 0x1) {
220  q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
221  q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
222  } else {
223  q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
224  q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
225  }
226  }
227 
228  /* Generate a square root table */
229 
230  for (i = 0; i < 30; i++)
231  q->sqrt_tab[i] = sqrt(i);
232 
233  /* initialize the VLC tables */
234  for (i = 0; i < 4 ; i++) {
235  for (j = 0; j < 4; j++) {
236  huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
237  huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
238  init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
239  imc_huffman_lens[i][j], 1, 1,
241  }
242  }
243 
244  if (avctx->codec_id == AV_CODEC_ID_IAC) {
245  iac_generate_tabs(q, avctx->sample_rate);
246  } else {
247  memcpy(q->cyclTab, cyclTab, sizeof(cyclTab));
248  memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
249  memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
250  memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
251  }
252 
253  if ((ret = ff_fft_init(&q->fft, 7, 1))) {
254  av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
255  return ret;
256  }
257  ff_bswapdsp_init(&q->bdsp);
259  if (!q->fdsp) {
260  ff_fft_end(&q->fft);
261 
262  return AVERROR(ENOMEM);
263  }
264 
266  avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
268 
269  return 0;
270 }
271 
272 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
273  float *flcoeffs2, int *bandWidthT,
274  float *flcoeffs3, float *flcoeffs5)
275 {
276  float workT1[BANDS];
277  float workT2[BANDS];
278  float workT3[BANDS];
279  float snr_limit = 1.e-30;
280  float accum = 0.0;
281  int i, cnt2;
282 
283  for (i = 0; i < BANDS; i++) {
284  flcoeffs5[i] = workT2[i] = 0.0;
285  if (bandWidthT[i]) {
286  workT1[i] = flcoeffs1[i] * flcoeffs1[i];
287  flcoeffs3[i] = 2.0 * flcoeffs2[i];
288  } else {
289  workT1[i] = 0.0;
290  flcoeffs3[i] = -30000.0;
291  }
292  workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
293  if (workT3[i] <= snr_limit)
294  workT3[i] = 0.0;
295  }
296 
297  for (i = 0; i < BANDS; i++) {
298  for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
299  flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
300  workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
301  }
302 
303  for (i = 1; i < BANDS; i++) {
304  accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
305  flcoeffs5[i] += accum;
306  }
307 
308  for (i = 0; i < BANDS; i++)
309  workT2[i] = 0.0;
310 
311  for (i = 0; i < BANDS; i++) {
312  for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
313  flcoeffs5[cnt2] += workT3[i];
314  workT2[cnt2+1] += workT3[i];
315  }
316 
317  accum = 0.0;
318 
319  for (i = BANDS-2; i >= 0; i--) {
320  accum = (workT2[i+1] + accum) * q->weights2[i];
321  flcoeffs5[i] += accum;
322  // there is missing code here, but it seems to never be triggered
323  }
324 }
325 
326 
327 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
328  int *levlCoeffs)
329 {
330  int i;
331  VLC *hufftab[4];
332  int start = 0;
333  const uint8_t *cb_sel;
334  int s;
335 
336  s = stream_format_code >> 1;
337  hufftab[0] = &huffman_vlc[s][0];
338  hufftab[1] = &huffman_vlc[s][1];
339  hufftab[2] = &huffman_vlc[s][2];
340  hufftab[3] = &huffman_vlc[s][3];
341  cb_sel = imc_cb_select[s];
342 
343  if (stream_format_code & 4)
344  start = 1;
345  if (start)
346  levlCoeffs[0] = get_bits(&q->gb, 7);
347  for (i = start; i < BANDS; i++) {
348  levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
349  hufftab[cb_sel[i]]->bits, 2);
350  if (levlCoeffs[i] == 17)
351  levlCoeffs[i] += get_bits(&q->gb, 4);
352  }
353 }
354 
355 static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
356  int *levlCoeffs)
357 {
358  int i;
359 
360  q->coef0_pos = get_bits(&q->gb, 5);
361  levlCoeffs[0] = get_bits(&q->gb, 7);
362  for (i = 1; i < BANDS; i++)
363  levlCoeffs[i] = get_bits(&q->gb, 4);
364 }
365 
366 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
367  float *flcoeffs1, float *flcoeffs2)
368 {
369  int i, level;
370  float tmp, tmp2;
371  // maybe some frequency division thingy
372 
373  flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
374  flcoeffs2[0] = log2f(flcoeffs1[0]);
375  tmp = flcoeffs1[0];
376  tmp2 = flcoeffs2[0];
377 
378  for (i = 1; i < BANDS; i++) {
379  level = levlCoeffBuf[i];
380  if (level == 16) {
381  flcoeffs1[i] = 1.0;
382  flcoeffs2[i] = 0.0;
383  } else {
384  if (level < 17)
385  level -= 7;
386  else if (level <= 24)
387  level -= 32;
388  else
389  level -= 16;
390 
391  tmp *= imc_exp_tab[15 + level];
392  tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
393  flcoeffs1[i] = tmp;
394  flcoeffs2[i] = tmp2;
395  }
396  }
397 }
398 
399 
400 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
401  float *old_floor, float *flcoeffs1,
402  float *flcoeffs2)
403 {
404  int i;
405  /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
406  * and flcoeffs2 old scale factors
407  * might be incomplete due to a missing table that is in the binary code
408  */
409  for (i = 0; i < BANDS; i++) {
410  flcoeffs1[i] = 0;
411  if (levlCoeffBuf[i] < 16) {
412  flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
413  flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
414  } else {
415  flcoeffs1[i] = old_floor[i];
416  }
417  }
418 }
419 
420 static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
421  float *flcoeffs1, float *flcoeffs2)
422 {
423  int i, level, pos;
424  float tmp, tmp2;
425 
426  pos = q->coef0_pos;
427  flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
428  flcoeffs2[pos] = log2f(flcoeffs1[pos]);
429  tmp = flcoeffs1[pos];
430  tmp2 = flcoeffs2[pos];
431 
432  levlCoeffBuf++;
433  for (i = 0; i < BANDS; i++) {
434  if (i == pos)
435  continue;
436  level = *levlCoeffBuf++;
437  flcoeffs1[i] = tmp * powf(10.0, -level * 0.4375); //todo tab
438  flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
439  }
440 }
441 
442 /**
443  * Perform bit allocation depending on bits available
444  */
445 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
446  int stream_format_code, int freebits, int flag)
447 {
448  int i, j;
449  const float limit = -1.e20;
450  float highest = 0.0;
451  int indx;
452  int t1 = 0;
453  int t2 = 1;
454  float summa = 0.0;
455  int iacc = 0;
456  int summer = 0;
457  int rres, cwlen;
458  float lowest = 1.e10;
459  int low_indx = 0;
460  float workT[32];
461  int flg;
462  int found_indx = 0;
463 
464  for (i = 0; i < BANDS; i++)
465  highest = FFMAX(highest, chctx->flcoeffs1[i]);
466 
467  for (i = 0; i < BANDS - 1; i++) {
468  if (chctx->flcoeffs5[i] <= 0) {
469  av_log(NULL, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
470  return AVERROR_INVALIDDATA;
471  }
472  chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
473  }
474  chctx->flcoeffs4[BANDS - 1] = limit;
475 
476  highest = highest * 0.25;
477 
478  for (i = 0; i < BANDS; i++) {
479  indx = -1;
480  if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
481  indx = 0;
482 
483  if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
484  indx = 1;
485 
486  if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
487  indx = 2;
488 
489  if (indx == -1)
490  return AVERROR_INVALIDDATA;
491 
492  chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
493  }
494 
495  if (stream_format_code & 0x2) {
496  chctx->flcoeffs4[0] = limit;
497  chctx->flcoeffs4[1] = limit;
498  chctx->flcoeffs4[2] = limit;
499  chctx->flcoeffs4[3] = limit;
500  }
501 
502  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
503  iacc += chctx->bandWidthT[i];
504  summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
505  }
506 
507  if (!iacc)
508  return AVERROR_INVALIDDATA;
509 
510  chctx->bandWidthT[BANDS - 1] = 0;
511  summa = (summa * 0.5 - freebits) / iacc;
512 
513 
514  for (i = 0; i < BANDS / 2; i++) {
515  rres = summer - freebits;
516  if ((rres >= -8) && (rres <= 8))
517  break;
518 
519  summer = 0;
520  iacc = 0;
521 
522  for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
523  cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
524 
525  chctx->bitsBandT[j] = cwlen;
526  summer += chctx->bandWidthT[j] * cwlen;
527 
528  if (cwlen > 0)
529  iacc += chctx->bandWidthT[j];
530  }
531 
532  flg = t2;
533  t2 = 1;
534  if (freebits < summer)
535  t2 = -1;
536  if (i == 0)
537  flg = t2;
538  if (flg != t2)
539  t1++;
540 
541  summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
542  }
543 
544  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
545  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
546  chctx->CWlengthT[j] = chctx->bitsBandT[i];
547  }
548 
549  if (freebits > summer) {
550  for (i = 0; i < BANDS; i++) {
551  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
552  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
553  }
554 
555  highest = 0.0;
556 
557  do {
558  if (highest <= -1.e20)
559  break;
560 
561  found_indx = 0;
562  highest = -1.e20;
563 
564  for (i = 0; i < BANDS; i++) {
565  if (workT[i] > highest) {
566  highest = workT[i];
567  found_indx = i;
568  }
569  }
570 
571  if (highest > -1.e20) {
572  workT[found_indx] -= 2.0;
573  if (++chctx->bitsBandT[found_indx] == 6)
574  workT[found_indx] = -1.e20;
575 
576  for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
577  chctx->CWlengthT[j]++;
578  summer++;
579  }
580  }
581  } while (freebits > summer);
582  }
583  if (freebits < summer) {
584  for (i = 0; i < BANDS; i++) {
585  workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
586  : 1.e20;
587  }
588  if (stream_format_code & 0x2) {
589  workT[0] = 1.e20;
590  workT[1] = 1.e20;
591  workT[2] = 1.e20;
592  workT[3] = 1.e20;
593  }
594  while (freebits < summer) {
595  lowest = 1.e10;
596  low_indx = 0;
597  for (i = 0; i < BANDS; i++) {
598  if (workT[i] < lowest) {
599  lowest = workT[i];
600  low_indx = i;
601  }
602  }
603  // if (lowest >= 1.e10)
604  // break;
605  workT[low_indx] = lowest + 2.0;
606 
607  if (!--chctx->bitsBandT[low_indx])
608  workT[low_indx] = 1.e20;
609 
610  for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
611  if (chctx->CWlengthT[j] > 0) {
612  chctx->CWlengthT[j]--;
613  summer--;
614  }
615  }
616  }
617  }
618  return 0;
619 }
620 
621 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
622 {
623  int i, j;
624 
625  memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
626  memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
627  for (i = 0; i < BANDS; i++) {
628  if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
629  continue;
630 
631  if (!chctx->skipFlagRaw[i]) {
632  chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
633 
634  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
635  chctx->skipFlags[j] = get_bits1(&q->gb);
636  if (chctx->skipFlags[j])
637  chctx->skipFlagCount[i]++;
638  }
639  } else {
640  for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
641  if (!get_bits1(&q->gb)) { // 0
642  chctx->skipFlagBits[i]++;
643  chctx->skipFlags[j] = 1;
644  chctx->skipFlags[j + 1] = 1;
645  chctx->skipFlagCount[i] += 2;
646  } else {
647  if (get_bits1(&q->gb)) { // 11
648  chctx->skipFlagBits[i] += 2;
649  chctx->skipFlags[j] = 0;
650  chctx->skipFlags[j + 1] = 1;
651  chctx->skipFlagCount[i]++;
652  } else {
653  chctx->skipFlagBits[i] += 3;
654  chctx->skipFlags[j + 1] = 0;
655  if (!get_bits1(&q->gb)) { // 100
656  chctx->skipFlags[j] = 1;
657  chctx->skipFlagCount[i]++;
658  } else { // 101
659  chctx->skipFlags[j] = 0;
660  }
661  }
662  }
663  }
664 
665  if (j < band_tab[i + 1]) {
666  chctx->skipFlagBits[i]++;
667  if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
668  chctx->skipFlagCount[i]++;
669  }
670  }
671  }
672 }
673 
674 /**
675  * Increase highest' band coefficient sizes as some bits won't be used
676  */
678  int summer)
679 {
680  float workT[32];
681  int corrected = 0;
682  int i, j;
683  float highest = 0;
684  int found_indx = 0;
685 
686  for (i = 0; i < BANDS; i++) {
687  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
688  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
689  }
690 
691  while (corrected < summer) {
692  if (highest <= -1.e20)
693  break;
694 
695  highest = -1.e20;
696 
697  for (i = 0; i < BANDS; i++) {
698  if (workT[i] > highest) {
699  highest = workT[i];
700  found_indx = i;
701  }
702  }
703 
704  if (highest > -1.e20) {
705  workT[found_indx] -= 2.0;
706  if (++(chctx->bitsBandT[found_indx]) == 6)
707  workT[found_indx] = -1.e20;
708 
709  for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
710  if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
711  chctx->CWlengthT[j]++;
712  corrected++;
713  }
714  }
715  }
716  }
717 }
718 
719 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
720 {
721  int i;
722  float re, im;
723  float *dst1 = q->out_samples;
724  float *dst2 = q->out_samples + (COEFFS - 1);
725 
726  /* prerotation */
727  for (i = 0; i < COEFFS / 2; i++) {
728  q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
729  (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
730  q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
731  (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
732  }
733 
734  /* FFT */
735  q->fft.fft_permute(&q->fft, q->samples);
736  q->fft.fft_calc(&q->fft, q->samples);
737 
738  /* postrotation, window and reorder */
739  for (i = 0; i < COEFFS / 2; i++) {
740  re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
741  im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
742  *dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
743  + (q->mdct_sine_window[i * 2] * re);
744  *dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
745  - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
746  dst1 += 2;
747  dst2 -= 2;
748  chctx->last_fft_im[i] = im;
749  }
750 }
751 
753  int stream_format_code)
754 {
755  int i, j;
756  int middle_value, cw_len, max_size;
757  const float *quantizer;
758 
759  for (i = 0; i < BANDS; i++) {
760  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
761  chctx->CWdecoded[j] = 0;
762  cw_len = chctx->CWlengthT[j];
763 
764  if (cw_len <= 0 || chctx->skipFlags[j])
765  continue;
766 
767  max_size = 1 << cw_len;
768  middle_value = max_size >> 1;
769 
770  if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
771  return AVERROR_INVALIDDATA;
772 
773  if (cw_len >= 4) {
774  quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
775  if (chctx->codewords[j] >= middle_value)
776  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
777  else
778  chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
779  }else{
780  quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
781  if (chctx->codewords[j] >= middle_value)
782  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
783  else
784  chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
785  }
786  }
787  }
788  return 0;
789 }
790 
791 
792 static void imc_get_coeffs(AVCodecContext *avctx,
793  IMCContext *q, IMCChannel *chctx)
794 {
795  int i, j, cw_len, cw;
796 
797  for (i = 0; i < BANDS; i++) {
798  if (!chctx->sumLenArr[i])
799  continue;
800  if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
801  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
802  cw_len = chctx->CWlengthT[j];
803  cw = 0;
804 
805  if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
806  if (get_bits_count(&q->gb) + cw_len > 512) {
807  av_log(avctx, AV_LOG_WARNING,
808  "Potential problem on band %i, coefficient %i"
809  ": cw_len=%i\n", i, j, cw_len);
810  } else
811  cw = get_bits(&q->gb, cw_len);
812  }
813 
814  chctx->codewords[j] = cw;
815  }
816  }
817  }
818 }
819 
821 {
822  int i, j;
823  int bits, summer;
824 
825  for (i = 0; i < BANDS; i++) {
826  chctx->sumLenArr[i] = 0;
827  chctx->skipFlagRaw[i] = 0;
828  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
829  chctx->sumLenArr[i] += chctx->CWlengthT[j];
830  if (chctx->bandFlagsBuf[i])
831  if (((int)((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
832  chctx->skipFlagRaw[i] = 1;
833  }
834 
835  imc_get_skip_coeff(q, chctx);
836 
837  for (i = 0; i < BANDS; i++) {
838  chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
839  /* band has flag set and at least one coded coefficient */
840  if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
841  chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
842  q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
843  }
844  }
845 
846  /* calculate bits left, bits needed and adjust bit allocation */
847  bits = summer = 0;
848 
849  for (i = 0; i < BANDS; i++) {
850  if (chctx->bandFlagsBuf[i]) {
851  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
852  if (chctx->skipFlags[j]) {
853  summer += chctx->CWlengthT[j];
854  chctx->CWlengthT[j] = 0;
855  }
856  }
857  bits += chctx->skipFlagBits[i];
858  summer -= chctx->skipFlagBits[i];
859  }
860  }
861  imc_adjust_bit_allocation(q, chctx, summer);
862 }
863 
864 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
865 {
866  int stream_format_code;
867  int imc_hdr, i, j, ret;
868  int flag;
869  int bits;
870  int counter, bitscount;
871  IMCChannel *chctx = q->chctx + ch;
872 
873 
874  /* Check the frame header */
875  imc_hdr = get_bits(&q->gb, 9);
876  if (imc_hdr & 0x18) {
877  av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
878  av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
879  return AVERROR_INVALIDDATA;
880  }
881  stream_format_code = get_bits(&q->gb, 3);
882 
883  if (stream_format_code & 0x04)
884  chctx->decoder_reset = 1;
885 
886  if (chctx->decoder_reset) {
887  for (i = 0; i < BANDS; i++)
888  chctx->old_floor[i] = 1.0;
889  for (i = 0; i < COEFFS; i++)
890  chctx->CWdecoded[i] = 0;
891  chctx->decoder_reset = 0;
892  }
893 
894  flag = get_bits1(&q->gb);
895  if (stream_format_code & 0x1)
896  imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
897  else
898  imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
899 
900  if (stream_format_code & 0x1)
902  chctx->flcoeffs1, chctx->flcoeffs2);
903  else if (stream_format_code & 0x4)
905  chctx->flcoeffs1, chctx->flcoeffs2);
906  else
908  chctx->flcoeffs1, chctx->flcoeffs2);
909 
910  for(i=0; i<BANDS; i++) {
911  if(chctx->flcoeffs1[i] > INT_MAX) {
912  av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
913  return AVERROR_INVALIDDATA;
914  }
915  }
916 
917  memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
918 
919  counter = 0;
920  if (stream_format_code & 0x1) {
921  for (i = 0; i < BANDS; i++) {
922  chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
923  chctx->bandFlagsBuf[i] = 0;
924  chctx->flcoeffs3[i] = chctx->flcoeffs2[i] * 2;
925  chctx->flcoeffs5[i] = 1.0;
926  }
927  } else {
928  for (i = 0; i < BANDS; i++) {
929  if (chctx->levlCoeffBuf[i] == 16) {
930  chctx->bandWidthT[i] = 0;
931  counter++;
932  } else
933  chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
934  }
935 
936  memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
937  for (i = 0; i < BANDS - 1; i++)
938  if (chctx->bandWidthT[i])
939  chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
940 
941  imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
942  chctx->bandWidthT, chctx->flcoeffs3,
943  chctx->flcoeffs5);
944  }
945 
946  bitscount = 0;
947  /* first 4 bands will be assigned 5 bits per coefficient */
948  if (stream_format_code & 0x2) {
949  bitscount += 15;
950 
951  chctx->bitsBandT[0] = 5;
952  chctx->CWlengthT[0] = 5;
953  chctx->CWlengthT[1] = 5;
954  chctx->CWlengthT[2] = 5;
955  for (i = 1; i < 4; i++) {
956  if (stream_format_code & 0x1)
957  bits = 5;
958  else
959  bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
960  chctx->bitsBandT[i] = bits;
961  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
962  chctx->CWlengthT[j] = bits;
963  bitscount += bits;
964  }
965  }
966  }
967  if (avctx->codec_id == AV_CODEC_ID_IAC) {
968  bitscount += !!chctx->bandWidthT[BANDS - 1];
969  if (!(stream_format_code & 0x2))
970  bitscount += 16;
971  }
972 
973  if ((ret = bit_allocation(q, chctx, stream_format_code,
974  512 - bitscount - get_bits_count(&q->gb),
975  flag)) < 0) {
976  av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
977  chctx->decoder_reset = 1;
978  return ret;
979  }
980 
981  if (stream_format_code & 0x1) {
982  for (i = 0; i < BANDS; i++)
983  chctx->skipFlags[i] = 0;
984  } else {
985  imc_refine_bit_allocation(q, chctx);
986  }
987 
988  for (i = 0; i < BANDS; i++) {
989  chctx->sumLenArr[i] = 0;
990 
991  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
992  if (!chctx->skipFlags[j])
993  chctx->sumLenArr[i] += chctx->CWlengthT[j];
994  }
995 
996  memset(chctx->codewords, 0, sizeof(chctx->codewords));
997 
998  imc_get_coeffs(avctx, q, chctx);
999 
1000  if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1001  av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1002  chctx->decoder_reset = 1;
1003  return AVERROR_INVALIDDATA;
1004  }
1005 
1006  memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1007 
1008  imc_imdct256(q, chctx, avctx->channels);
1009 
1010  return 0;
1011 }
1012 
1013 static int imc_decode_frame(AVCodecContext *avctx, void *data,
1014  int *got_frame_ptr, AVPacket *avpkt)
1015 {
1016  AVFrame *frame = data;
1017  const uint8_t *buf = avpkt->data;
1018  int buf_size = avpkt->size;
1019  int ret, i;
1020 
1021  IMCContext *q = avctx->priv_data;
1022 
1023  LOCAL_ALIGNED_16(uint16_t, buf16, [(IMC_BLOCK_SIZE + AV_INPUT_BUFFER_PADDING_SIZE) / 2]);
1024 
1025  if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1026  av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1027  return AVERROR_INVALIDDATA;
1028  }
1029 
1030  /* get output buffer */
1031  frame->nb_samples = COEFFS;
1032  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1033  return ret;
1034 
1035  for (i = 0; i < avctx->channels; i++) {
1036  q->out_samples = (float *)frame->extended_data[i];
1037 
1038  q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1039 
1040  init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1041 
1042  buf += IMC_BLOCK_SIZE;
1043 
1044  if ((ret = imc_decode_block(avctx, q, i)) < 0)
1045  return ret;
1046  }
1047 
1048  if (avctx->channels == 2) {
1049  q->fdsp->butterflies_float((float *)frame->extended_data[0],
1050  (float *)frame->extended_data[1], COEFFS);
1051  }
1052 
1053  *got_frame_ptr = 1;
1054 
1055  return IMC_BLOCK_SIZE * avctx->channels;
1056 }
1057 
1059 {
1060  IMCContext *q = avctx->priv_data;
1061 
1062  ff_fft_end(&q->fft);
1063  av_freep(&q->fdsp);
1064 
1065  return 0;
1066 }
1067 
1068 static av_cold void flush(AVCodecContext *avctx)
1069 {
1070  IMCContext *q = avctx->priv_data;
1071 
1072  q->chctx[0].decoder_reset =
1073  q->chctx[1].decoder_reset = 1;
1074 }
1075 
1076 #if CONFIG_IMC_DECODER
1078  .name = "imc",
1079  .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1080  .type = AVMEDIA_TYPE_AUDIO,
1081  .id = AV_CODEC_ID_IMC,
1082  .priv_data_size = sizeof(IMCContext),
1083  .init = imc_decode_init,
1084  .close = imc_decode_close,
1086  .flush = flush,
1087  .capabilities = AV_CODEC_CAP_DR1,
1088  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1090 };
1091 #endif
1092 #if CONFIG_IAC_DECODER
1094  .name = "iac",
1095  .long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1096  .type = AVMEDIA_TYPE_AUDIO,
1097  .id = AV_CODEC_ID_IAC,
1098  .priv_data_size = sizeof(IMCContext),
1099  .init = imc_decode_init,
1100  .close = imc_decode_close,
1102  .flush = flush,
1103  .capabilities = AV_CODEC_CAP_DR1,
1104  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1106 };
1107 #endif
int skipFlags[COEFFS]
skip coefficient decoding or not
Definition: imc.c:74
float flcoeffs3[BANDS]
Definition: imc.c:59
float, planar
Definition: samplefmt.h:69
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
float flcoeffs1[BANDS]
Definition: imc.c:57
This structure describes decoded (raw) audio or video data.
Definition: frame.h:226
int codewords[COEFFS]
raw codewords read from bitstream
Definition: imc.c:75
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
float post_sin[COEFFS]
Definition: imc.c:89
float re
Definition: fft.c:82
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
int skipFlagRaw[BANDS]
skip flags are stored in raw form or not
Definition: imc.c:71
void(* bswap16_buf)(uint16_t *dst, const uint16_t *src, int len)
Definition: bswapdsp.h:26
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static const int vlc_offsets[17]
Definition: imc.c:113
channels
Definition: aptx.c:30
int size
Definition: avcodec.h:1446
float mdct_sine_window[COEFFS]
MDCT tables.
Definition: imc.c:87
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
Definition: fft.h:101
static const uint8_t imc_huffman_lens[4][4][18]
Definition: imcdata.h:115
int skipFlagCount[BANDS]
skipped coefficients per band
Definition: imc.c:73
static const float imc_weights2[31]
Definition: imcdata.h:53
FFTSample re
Definition: avfft.h:38
int8_t cyclTab2[32]
Definition: imc.c:105
#define AV_CH_LAYOUT_STEREO
static void imc_read_level_coeffs(IMCContext *q, int stream_format_code, int *levlCoeffs)
Definition: imc.c:327
float flcoeffs4[BANDS]
Definition: imc.c:60
AVCodec.
Definition: avcodec.h:3424
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
float sqrt_tab[30]
Definition: imc.c:94
#define tf
Definition: regdef.h:73
float old_floor[BANDS]
Definition: imc.c:56
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2197
uint8_t
#define av_cold
Definition: attributes.h:82
float pre_coef1[COEFFS]
Definition: imc.c:90
float CWdecoded[COEFFS]
Definition: imc.c:63
int bandFlagsBuf[BANDS]
flags for each band
Definition: imc.c:69
int coef0_pos
Definition: imc.c:103
static av_cold int imc_decode_close(AVCodecContext *avctx)
Definition: imc.c:1058
static const int8_t cyclTab[32]
Definition: imcdata.h:36
static AVFrame * frame
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
uint8_t * data
Definition: avcodec.h:1445
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static const float imc_weights1[31]
Definition: imcdata.h:47
bitstream reader API header.
float weights2[31]
Definition: imc.c:106
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
Definition: imc.c:621
#define av_log(a,...)
static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
Definition: imc.c:820
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Definition: ffmath.h:42
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
float pre_coef2[COEFFS]
Definition: imc.c:91
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
Definition: float_dsp.c:135
static const float *const imc_exp_tab2
Definition: imcdata.h:97
#define init_vlc(vlc, nb_bits, nb_codes,bits, bits_wrap, bits_size,codes, codes_wrap, codes_size,flags)
Definition: vlc.h:38
static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf, float *flcoeffs1, float *flcoeffs2)
Definition: imc.c:420
#define AVERROR(e)
Definition: error.h:43
float weights1[31]
Definition: imc.c:106
#define VLC_TABLES_SIZE
Definition: imc.c:111
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
void(* butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len)
Calculate the sum and difference of two vectors of floats.
Definition: float_dsp.h:164
static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
Definition: imc.c:719
#define t1
Definition: regdef.h:29
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1613
static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1, float *flcoeffs2, int *bandWidthT, float *flcoeffs3, float *flcoeffs5)
Definition: imc.c:272
const char * name
Name of the codec implementation.
Definition: avcodec.h:3431
#define FFMAX(a, b)
Definition: common.h:94
GetBitContext gb
Definition: imc.c:95
Definition: vlc.h:26
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2240
#define IMC_BLOCK_SIZE
Definition: imc.c:50
IMCChannel chctx[2]
Definition: imc.c:83
#define powf(x, y)
Definition: libm.h:50
static const int8_t cyclTab2[32]
Definition: imcdata.h:42
static int imc_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: imc.c:1013
static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf, float *old_floor, float *flcoeffs1, float *flcoeffs2)
Definition: imc.c:400
common internal API header
#define COEFFS
Definition: imc.c:53
Definition: fft.h:88
audio channel layout utility functions
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:895
static const uint16_t band_tab[33]
Definition: imcdata.h:29
AVCodec ff_imc_decoder
FFTContext fft
Definition: imc.c:99
#define ff_fft_init
Definition: fft.h:149
float flcoeffs5[BANDS]
Definition: imc.c:61
int bitsBandT[BANDS]
how many bits per codeword in band
Definition: imc.c:66
#define s(width, name)
Definition: cbs_vp9.c:257
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:762
Definition: imc.c:82
float last_fft_im[COEFFS]
Definition: imc.c:77
float post_cos[COEFFS]
Definition: imc.c:88
int bits
Definition: vlc.h:27
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int table_allocated
Definition: vlc.h:29
AVCodec ff_iac_decoder
static void imc_get_coeffs(AVCodecContext *avctx, IMCContext *q, IMCChannel *chctx)
Definition: imc.c:792
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
float flcoeffs6[BANDS]
Definition: imc.c:62
static const float xTab[14]
Definition: imcdata.h:84
FFTComplex samples[COEFFS/2]
Definition: imc.c:100
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
int8_t cyclTab[32]
Definition: imc.c:105
enum AVCodecID codec_id
Definition: avcodec.h:1543
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx, int stream_format_code)
Definition: imc.c:752
int sample_rate
samples per second
Definition: avcodec.h:2189
void AAC_RENAME() ff_sine_window_init(INTFLOAT *window, int n)
Generate a sine window.
Definition: imc.c:55
main external API structure.
Definition: avcodec.h:1533
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1918
static double freq2bark(double freq)
Definition: imc.c:120
void * buf
Definition: avisynth_c.h:690
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
int bandWidthT[BANDS]
codewords per band
Definition: imc.c:65
float * out_samples
Definition: imc.c:101
static av_cold void flush(AVCodecContext *avctx)
Definition: imc.c:1068
float im
Definition: fft.c:82
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:615
static VLC huffman_vlc[4][4]
Definition: imc.c:109
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]
Definition: imc.c:118
static const float imc_quantizer1[4][8]
Definition: imcdata.h:59
#define BANDS
Definition: imc.c:52
uint8_t level
Definition: svq3.c:207
static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
Definition: imc.c:125
int levlCoeffBuf[BANDS]
Definition: imc.c:68
internal math functions header
int decoder_reset
Definition: imc.c:79
common internal api header.
FFTSample im
Definition: avfft.h:38
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
Definition: imc.c:864
if(ret< 0)
Definition: vf_mcdeint.c:279
#define exp2(x)
Definition: libm.h:288
#define log2f(x)
Definition: libm.h:409
#define flag(name)
Definition: cbs_av1.c:588
#define INIT_VLC_USE_NEW_STATIC
Definition: vlc.h:55
BswapDSPContext bdsp
Definition: imc.c:97
#define ff_fft_end
Definition: fft.h:150
static int bit_allocation(IMCContext *q, IMCChannel *chctx, int stream_format_code, int freebits, int flag)
Perform bit allocation depending on bits available.
Definition: imc.c:445
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
Definition: fft.h:106
AVFloatDSPContext * fdsp
Definition: imc.c:98
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
Definition: avcodec.h:782
static const uint8_t imc_cb_select[4][32]
Definition: imcdata.h:100
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1560
int channels
number of audio channels
Definition: avcodec.h:2190
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:131
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:690
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx, int summer)
Increase highest' band coefficient sizes as some bits won't be used.
Definition: imc.c:677
#define M_PI
Definition: mathematics.h:52
#define VLC_TYPE
Definition: vlc.h:24
static const float imc_quantizer2[2][56]
Definition: imcdata.h:66
int sumLenArr[BANDS]
bits for all coeffs in band
Definition: imc.c:70
static const uint8_t imc_huffman_sizes[4]
Definition: imcdata.h:111
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:273
#define AV_CH_LAYOUT_MONO
static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code, int *levlCoeffs)
Definition: imc.c:355
This structure stores compressed data.
Definition: avcodec.h:1422
static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf, float *flcoeffs1, float *flcoeffs2)
Definition: imc.c:366
int skipFlagBits[BANDS]
bits used to code skip flags
Definition: imc.c:72
static av_cold int imc_decode_init(AVCodecContext *avctx)
Definition: imc.c:176
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:292
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:968
static const float imc_exp_tab[32]
Definition: imcdata.h:87
float flcoeffs2[BANDS]
Definition: imc.c:58
for(j=16;j >0;--j)
#define t2
Definition: regdef.h:30
static const uint16_t imc_huffman_bits[4][4][18]
Definition: imcdata.h:142
#define tb
Definition: regdef.h:68
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
int CWlengthT[COEFFS]
how many bits in each codeword
Definition: imc.c:67
static uint8_t tmp[11]
Definition: aes_ctr.c:26