59 #define MUL16(a, b) ((a) * (b)) 
   61 #define CMAC(pre, pim, are, aim, bre, bim)          \ 
   63         pre += (MUL16(are, bre) - MUL16(aim, bim)); \ 
   64         pim += (MUL16(are, bim) + MUL16(bre, aim)); \ 
   67 #if FFT_FLOAT || AVFFT 
   69 #define REF_SCALE(x, bits)  (x) 
   73 #define REF_SCALE(x, bits) (x) 
   77 #define REF_SCALE(x, bits) ((x) / (1 << (bits))) 
   87     int i, 
n = 1 << nbits;
 
   93     for (i = 0; i < (n / 2); i++) {
 
   94         double alpha = 2 * 
M_PI * (float) i / (
float) 
n;
 
   95         double c1 = cos(alpha), 
s1 = sin(alpha);
 
  110     for (i = 0; i < 
n; i++) {
 
  111         double tmp_re = 0, tmp_im = 0;
 
  113         for (j = 0; j < 
n; j++) {
 
  115             int k = (i * j) & (n - 1);
 
  123             CMAC(tmp_re, tmp_im, c, s, q->
re, q->
im);
 
  134     int i, k, 
n = 1 << nbits;
 
  136     for (i = 0; i < 
n; i++) {
 
  138         for (k = 0; k < n / 2; k++) {
 
  139             int a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
 
  140             double f = cos(
M_PI * a / (
double) (2 * n));
 
  150     int i, k, n = 1 << nbits;
 
  153     for (k = 0; k < n / 2; k++) {
 
  155         for (i = 0; i < 
n; i++) {
 
  156             double a = (2 * 
M_PI * (2 * i + 1 + n / 2) * (2 * k + 1) / (4 * 
n));
 
  157             s += input[i] * cos(a);
 
  168     int i, k, n = 1 << nbits;
 
  171     for (i = 0; i < 
n; i++) {
 
  172         double s = 0.5 * input[0];
 
  173         for (k = 1; k < 
n; k++) {
 
  174             double a = 
M_PI * k * (i + 0.5) / 
n;
 
  175             s += input[k] * cos(
a);
 
  177         output[i] = 2 * s / 
n;
 
  183     int i, k, n = 1 << nbits;
 
  186     for (k = 0; k < 
n; k++) {
 
  188         for (i = 0; i < 
n; i++) {
 
  189             double a = 
M_PI * k * (i + 0.5) / 
n;
 
  190             s += input[i] * cos(
a);
 
  206     double error = 0, max = 0;
 
  208     for (i = 0; i < 
n; i++) {
 
  209         double e = fabs(tab1[i] - (tab2[i] / scale)) / 
RANGE;
 
  212                    i, tab1[i], tab2[i]);
 
  354            "usage: fft-test [-h] [-s] [-i] [-n b]\n" 
  355            "-h     print this help\n" 
  360            "-i     inverse transform test\n" 
  361            "-n b   set the transform size to 2^b\n" 
  362            "-f x   set scale factor for output data of (I)MDCT to x\n");
 
  376 int main(
int argc, 
char **argv)
 
  387     int do_speed = 0, do_inverse = 0;
 
  388     int fft_nbits = 9, fft_size;
 
  397 #if !AVFFT && FFT_FLOAT 
  405         int c = 
getopt(argc, argv, 
"hsimrdn:f:c:");
 
  446     fft_size = 1 << fft_nbits;
 
  452     if (!(tab && tab1 && tab_ref && tab2))
 
  463         mdct_init(&m, fft_nbits, do_inverse, scale);
 
  471         fft_init(&s, fft_nbits, do_inverse);
 
  505     for (i = 0; i < fft_size; i++) {
 
  517             imdct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
 
  521             mdct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
 
  523             err = 
check_diff(&tab_ref->
re, tab2, fft_size / 2, scale);
 
  528         memcpy(tab, tab1, fft_size * 
sizeof(
FFTComplex));
 
  532         fft_ref(tab_ref, tab1, fft_nbits);
 
  539         int fft_size_2 = fft_size >> 1;
 
  542             tab1[fft_size_2].
im = 0;
 
  543             for (i = 1; i < fft_size_2; i++) {
 
  544                 tab1[fft_size_2 + i].
re =  tab1[fft_size_2 - i].
re;
 
  545                 tab1[fft_size_2 + i].
im = -tab1[fft_size_2 - i].
im;
 
  548             memcpy(tab2, tab1, fft_size * 
sizeof(
FFTSample));
 
  549             tab2[1] = tab1[fft_size_2].
re;
 
  552             fft_ref(tab_ref, tab1, fft_nbits);
 
  553             for (i = 0; i < fft_size; i++) {
 
  559             for (i = 0; i < fft_size; i++) {
 
  560                 tab2[i]    = tab1[i].
re;
 
  564             fft_ref(tab_ref, tab1, fft_nbits);
 
  565             tab_ref[0].
im = tab_ref[fft_size_2].
re;
 
  573         memcpy(tab, tab1, fft_size * 
sizeof(
FFTComplex));
 
  574         dct_calc(d, &tab->
re);
 
  576             idct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
 
  578             dct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
 
  596             for (it = 0; it < nb_its; it++) {
 
  605                     memcpy(tab, tab1, fft_size * 
sizeof(
FFTComplex));
 
  610                     memcpy(tab2, tab1, fft_size * 
sizeof(
FFTSample));
 
  614                     memcpy(tab2, tab1, fft_size * 
sizeof(
FFTSample));
 
  621             if (duration >= 1000000)
 
  626                "time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
 
  627                (
double) duration / nb_its,
 
  628                (
double) duration / 1000000.0,
 
  667 #if !AVFFT && FFT_FLOAT 
  673         printf(
"Error: %d.\n", err);
 
av_cold void ff_rdft_end(RDFTContext *s)
void(* dct_calc)(struct DCTContext *s, FFTSample *data)
ptrdiff_t const GLvoid * data
av_cold void av_fft_end(FFTContext *s)
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
void av_mdct_end(FFTContext *s)
FFTContext * av_mdct_init(int nbits, int inverse, double scale)
DCTContext * av_dct_init(int nbits, enum DCTTransformType type)
Set up DCT. 
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc(). 
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc(). 
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static void imdct_calc(struct FFTContext *s, FFTSample *output, const FFTSample *input)
static FFTSample frandom(AVLFG *prng)
static void fft_permute(FFTContext *s, FFTComplex *z)
static int fft_ref_init(int nbits, int inverse)
#define CMAC(pre, pim, are, aim, bre, bim)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered. 
static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT. 
int av_parse_cpu_caps(unsigned *flags, const char *s)
Parse CPU caps from a string and update the given AV_CPU_* flags based on that. 
void(* rdft_calc)(struct RDFTContext *s, FFTSample *z)
void av_rdft_calc(RDFTContext *s, FFTSample *data)
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
#define REF_SCALE(x, bits)
static struct @146 * exptab
void av_rdft_end(RDFTContext *s)
RDFTContext * av_rdft_init(int nbits, enum RDFTransformType trans)
Set up a real FFT. 
static void mdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
static void error(const char *err)
static void fft_end(FFTContext *s)
static const int8_t transform[32][32]
#define AV_LOG_INFO
Standard information. 
void av_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
static const int16_t alpha[]
static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
static int getopt(int argc, char *argv[], char *opts)
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG. 
void av_dct_end(DCTContext *s)
av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
Set up DCT. 
static void fft_calc(FFTContext *s, FFTComplex *z)
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU. 
int64_t av_gettime_relative(void)
Get the current time in microseconds since some unspecified starting point. 
static av_cold int dct_init(MpegEncContext *s)
static void mdct_end(FFTContext *s)
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init(). 
static void mdct_init(FFTContext **s, int nbits, int inverse, double scale)
void av_dct_calc(DCTContext *s, FFTSample *data)
int main(int argc, char **argv)
av_cold void ff_dct_end(DCTContext *s)
static const struct twinvq_data tab
void av_mdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32 
#define av_malloc_array(a, b)
void av_force_cpu_flags(int arg)
Disables cpu detection and forces the specified flags. 
static void fft_init(FFTContext **s, int nbits, int inverse)
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
Set up a real FFT. 
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init(). 
static av_cold void cleanup(FlashSV2Context *s)