31   29443, 28346, 25207, 20449, 14701,  8693,
 
   32    3143, -1352, -4402, -5865, -5850, -4673,
 
   33   -2783,  -672,  1211,  2536,  3130,  2991,
 
   34    2259,  1170,     0, -1001, -1652, -1868,
 
   35   -1666, -1147,  -464,   218,   756,  1060,
 
   36    1099,   904,   550,   135,  -245,  -514,
 
   37    -634,  -602,  -451,  -231,     0,   191,
 
   38     308,   340,   296,   198,    78,   -36,
 
   39    -120,  -163,  -165,  -132,   -79,   -19,
 
   40      34,    73,    91,    89,    70,    38,
 
   45                           const int16_t* filter_coeffs, 
int precision,
 
   46                           int frac_pos, 
int filter_length, 
int length)
 
   50     av_assert1(frac_pos >= 0 && frac_pos < precision);
 
   52     for (n = 0; n < 
length; n++) {
 
   56         for (i = 0; i < filter_length;) {
 
   67             v += in[n + i] * filter_coeffs[idx + frac_pos];
 
   70             v += in[n - i] * filter_coeffs[idx - frac_pos];
 
   72         if (av_clip_int16(v >> 15) != (v >> 15))
 
   79                            const float *filter_coeffs, 
int precision,
 
   80                            int frac_pos, 
int filter_length, 
int length)
 
   84     for (n = 0; n < 
length; n++) {
 
   88         for (i = 0; i < filter_length;) {
 
   89             v += in[n + i] * filter_coeffs[idx + frac_pos];
 
   92             v += in[n - i] * filter_coeffs[idx - frac_pos];
 
  105     for (i = 0; i < 
length; i++) {
 
  106         tmp  = (hpf_f[0]* 15836LL) >> 13;
 
  107         tmp += (hpf_f[1]* -7667LL) >> 13;
 
  108         tmp += 7699 * (in[i] - 2*in[i-1] + in[i-2]);
 
  112         out[i] = av_clip_int16((tmp + 0x800) >> 12);
 
  120                                               const float zero_coeffs[2],
 
  121                                               const float pole_coeffs[2],
 
  122                                               float gain, 
float mem[2], 
int n)
 
  127     for (i = 0; i < 
n; i++) {
 
  128         tmp = gain * in[i] - pole_coeffs[0] * mem[0] - pole_coeffs[1] * mem[1];
 
  129         out[i] =       tmp + zero_coeffs[0] * mem[0] + zero_coeffs[1] * mem[1];
 
  138     float new_tilt_mem = samples[size - 1];
 
  141     for (i = size - 1; i > 0; i--)
 
  142         samples[i] -= tilt * samples[i - 1];
 
  144     samples[0] -= tilt * *
mem;
 
void ff_acelp_high_pass_filter(int16_t *out, int hpf_f[2], const int16_t *in, int length)
high-pass filtering and upscaling (4.2.5 of G.729). 
void ff_acelp_filter_init_mips(ACELPFContext *c)
void ff_acelp_apply_order_2_transfer_function(float *out, const float *in, const float zero_coeffs[2], const float pole_coeffs[2], float gain, float mem[2], int n)
Apply an order 2 rational transfer function in-place. 
#define AV_LOG_WARNING
Something somehow does not look correct. 
const int16_t ff_acelp_interp_filter[61]
low-pass Finite Impulse Response filter coefficients. 
void(* acelp_apply_order_2_transfer_function)(float *out, const float *in, const float zero_coeffs[2], const float pole_coeffs[2], float gain, float mem[2], int n)
Apply an order 2 rational transfer function in-place. 
simple assert() macros that are a bit more flexible than ISO C assert(). 
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code. 
void ff_tilt_compensation(float *mem, float tilt, float *samples, int size)
Apply tilt compensation filter, 1 - tilt * z-1. 
Libavcodec external API header. 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void ff_acelp_interpolate(int16_t *out, const int16_t *in, const int16_t *filter_coeffs, int precision, int frac_pos, int filter_length, int length)
Generic FIR interpolation routine. 
common internal and external API header 
void ff_acelp_filter_init(ACELPFContext *c)
Initialize ACELPFContext. 
void ff_acelp_interpolatef(float *out, const float *in, const float *filter_coeffs, int precision, int frac_pos, int filter_length, int length)
Floating point version of ff_acelp_interpolate() 
void(* acelp_interpolatef)(float *out, const float *in, const float *filter_coeffs, int precision, int frac_pos, int filter_length, int length)
Floating point version of ff_acelp_interpolate()