**Click Here for**

**JEE main Previous Year Topic Wise Questions of Physics with Solutions**

**D**

**ownload eSaral app for free study material and video tutorials.**

*Simulator***Previous Years JEE Advanced Questions**

Q. A block of mass m is on an inclined plane of angle $\theta$. The coefficient of friction between the block and the plane is $\mu$ m and tan$\theta$ >m. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from $P_{1}$ = mg (sin$\theta$ – $\mu \mathrm{cos} \theta$) to $P_{2}$=mg$(\sin \theta+\mu \cos \theta)$, the frictional force f versus P graph will look like

**[IIT-JEE-2010]**
Q. A block is moving on an inclined plane making an angle $45^{\circ}$ with the horizontal and the coefficient of friction is $\mu$. The force required to just push it up the inclined plane is 3 times the force required to just prevent it from sliding down. If we define $\mathrm{N}=10 \mu$, then N is

**[IIT-JEE-2011]****Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...**

**Sol.**5 $\mathrm{F}=\operatorname{mg} \sin \theta+\mu \operatorname{mg} \cos \theta$ $\mathrm{F}+\mu \mathrm{mg} \cos \theta=\operatorname{mg} \sin \theta$ $\mathrm{F}=\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta$ $\operatorname{mg} \sin \theta+\mu \operatorname{mg} \cos \theta=3 \operatorname{mg} \sin \theta-3 \mu \operatorname{mg} \cos \theta$ $4 \mu \mathrm{mg} \cos \theta=2 \mathrm{mg} \sin \mu$ $4 u \cos \theta=2 \sin \theta$ $4 \mu=2 \tan \theta$ $\mathrm{N}=10 \times \frac{1}{2}$ $\mathrm{N}=5 \quad \mu=\frac{1}{2}$

Q. A block of mass $\mathrm{m}_{1}$ = 1 kg another mass $\mathrm{m}_{2}$ = 2kg, are placed together (see figure) on an inclined plane with angle of inclination $\theta$. Various values of $\theta$ are given in List I. The coefficient of friction between the block $\mathrm{m}_{1}$ and the plane is always zero. The coefficient of static and dynamic friction between the block $\mathrm{m}_{2}$ and the plane are equal to $\mu=$ = 0.3. In List II expressions for the friction on block m2 are given. Match the correct expression of the friction in List II with the angles given in List I, and choose the correct option. The acceleration due to gravity is denoted by g.
[useful information: $\left.\tan \left(5.5^{\circ}\right) \approx 0.1 ; \tan \left(11.5^{\circ}\right) \approx 0.2 ; \tan \left(16.5^{\circ}\right) \approx 0.3\right]$

**[IIT-JEE-2014]****Download eSaral App for Video Lectures, Complete Revision, Study Material and much more...**

**Sol.**(D) The system slip down if $\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g} \sin \theta>\mu \mathrm{m}_{2} \mathrm{gcos} \theta$ $\tan \theta>\frac{\mu \mathrm{m}_{2}}{\mathrm{m}_{1}+\mathrm{m}_{2}}>\frac{0.3 \times 2}{3}$ $\tan \theta>0.2$ $\Rightarrow \theta>11.5^{\circ}$ For $\mathrm{P}$ and $\mathrm{Q}$ system will remain stationary hence friction $=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g} \sin \theta$ For $\mathrm{R}$ and $\mathrm{S}$ system will move hence limiting friction acts friction $=\mu \mathrm{m}_{2} \mathrm{g} \cos \theta$

Nnnn

All the best for your future success ❤️❤️

these are not hard at all

searching for different type of applications of concept.

Thank You

Please make them tough

it took me 1 week to complete friction from reference books and I am able to crack jee questions present here I am so happy

is my speed is good? can I crack iit with this pace?

right now I am in 11th and I am jee 2022 aspirant

Bro i guess u should di this small topics faster than a week

Very use full

There bessst

Good