Go to the documentation of this file.
98 #define PRE_CALCULATE_ROW(type, name) \
99 static int pre_calculate_row_##name(AVFilterContext *ctx, void *arg, \
100 int jobnr, int nb_jobs) \
102 ThreadData *td = arg; \
103 YAEPContext *s = ctx->priv; \
105 const int width = td->width; \
106 const int height = td->height; \
107 const int linesize = td->src_linesize / sizeof(type); \
108 const int sat_linesize = s->sat_linesize; \
110 const int starty = height * jobnr / nb_jobs; \
111 const int endy = height * (jobnr+1) / nb_jobs; \
113 uint64_t *sat = s->sat + (starty + 1) * sat_linesize; \
114 uint64_t *square_sat = s->square_sat + (starty + 1) * sat_linesize; \
115 const type *src = (const type *)td->src + starty * linesize; \
119 for (y = starty; y < endy; y++) { \
120 for (x = 0; x < width; x++) { \
121 sat[x+1] = sat[x] + src[x]; \
122 square_sat[x+1] = square_sat[x] + (uint64_t)src[x] * src[x]; \
124 sat += sat_linesize; \
125 square_sat += sat_linesize; \
136 int jobnr,
int nb_jobs)
143 const int sat_linesize =
s->sat_linesize;
145 const int startx =
width * jobnr / nb_jobs;
146 const int endx =
width * (jobnr + 1) / nb_jobs;
148 uint64_t *sat, *square_sat;
151 for (x = startx; x < endx; x++) {
152 sat =
s->sat + x + 1;
153 square_sat =
s->square_sat + x + 1;
154 for (y = 0; y <
height; y++) {
155 *(sat+sat_linesize) += *sat;
156 *(square_sat+sat_linesize) += *square_sat;
158 square_sat += sat_linesize;
165 #define FILTER_SLICE(type, name) \
166 static int filter_slice_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
168 ThreadData *td = arg; \
169 YAEPContext *s = ctx->priv; \
171 const int width = td->width; \
172 const int height = td->height; \
173 const int src_linesize = td->src_linesize / sizeof(type); \
174 const int dst_linesize = td->dst_linesize / sizeof(type); \
175 const int sat_linesize = s->sat_linesize; \
176 const int sigma = s->sigma; \
177 const int radius = s->radius; \
179 uint64_t *sat = s->sat; \
180 uint64_t *square_sat = s->square_sat; \
181 const type *src = (const type *)td->src; \
182 type *dst = (type *)td->dst; \
184 const int starty = height * jobnr / nb_jobs; \
185 const int endy = height * (jobnr + 1) / nb_jobs; \
188 int lower_x, higher_x; \
189 int lower_y, higher_y; \
191 uint64_t sum, square_sum, mean, var; \
193 for (y = starty; y < endy; y++) { \
194 lower_y = y - radius < 0 ? 0 : y - radius; \
195 higher_y = y + radius + 1 > height ? height : y + radius + 1; \
196 dist_y = higher_y - lower_y; \
197 for (x = 0; x < width; x++) { \
198 lower_x = x - radius < 0 ? 0 : x - radius; \
199 higher_x = x + radius + 1 > width ? width : x + radius + 1; \
200 count = dist_y * (higher_x - lower_x); \
201 sum = sat[higher_y * sat_linesize + higher_x] \
202 - sat[higher_y * sat_linesize + lower_x] \
203 - sat[lower_y * sat_linesize + higher_x] \
204 + sat[lower_y * sat_linesize + lower_x]; \
205 square_sum = square_sat[higher_y * sat_linesize + higher_x] \
206 - square_sat[higher_y * sat_linesize + lower_x] \
207 - square_sat[lower_y * sat_linesize + higher_x] \
208 + square_sat[lower_y * sat_linesize + lower_x]; \
209 mean = sum / count; \
210 var = (square_sum - sum * sum / count) / count; \
211 dst[y * dst_linesize + x] = (sigma * mean + var * src[y * src_linesize + x]) / (sigma + var); \
241 for (plane = 0; plane <
s->nb_planes; plane++) {
242 if (!
s->radius || !(
s->planes & (1<<plane))) {
245 in->data[plane],
in->linesize[plane],
246 s->planewidth[plane] * ((
s->depth + 7) / 8),
247 s->planeheight[plane]);
252 td.width =
s->planewidth[plane];
253 td.height =
s->planeheight[plane];
254 td.src =
in->data[plane];
255 td.src_linesize =
in->linesize[plane];
259 td.dst =
out->data[plane];
260 td.dst_linesize =
out->linesize[plane];
275 s->depth =
desc->comp[0].depth;
277 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
279 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
285 s->pre_calculate_row = pre_calculate_row_byte;
286 s->filter_slice = filter_slice_byte;
288 s->pre_calculate_row = pre_calculate_row_word;
289 s->filter_slice = filter_slice_word;
293 s->sat_linesize =
inlink->w + 1;
323 #define OFFSET(x) offsetof(YAEPContext, x)
324 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
342 .priv_class = &yaepblur_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRAP16
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static const AVFilterPad yaep_outputs[]
uint64_t * square_sat
square summed area table
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int(* pre_calculate_row)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
#define FILTER_SLICE(type, name)
#define AV_PIX_FMT_YUVA420P16
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_PIX_FMT_YUVA420P10
static int query_formats(AVFilterContext *ctx)
#define AV_PIX_FMT_YUV420P10
void * av_mallocz_array(size_t nmemb, size_t size)
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define PRE_CALCULATE_ROW(type, name)
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
static int config_input(AVFilterLink *inlink)
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_YUVA420P9
static const AVFilterPad yaep_inputs[]
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_GRAY16
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
static const AVFilterPad outputs[]
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_GRAY14
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GBRP16
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static const AVOption yaepblur_options[]
#define AV_PIX_FMT_YUV422P10
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
#define AV_PIX_FMT_YUV422P12
static av_cold void uninit(AVFilterContext *ctx)
#define AV_PIX_FMT_YUV444P12
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
int(* filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
int h
agreed upon image height
#define AV_PIX_FMT_YUVA422P12
uint64_t * sat
summed area table
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
static const struct @322 planes[]
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define flags(name, subs,...)
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_GRAY12
static int pre_calculate_col(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
AVFILTER_DEFINE_CLASS(yaepblur)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14