FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vc1_block.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 block decoding routines
27  */
28 
29 #include "avcodec.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "msmpeg4data.h"
33 #include "unary.h"
34 #include "vc1.h"
35 #include "vc1_pred.h"
36 #include "vc1acdata.h"
37 #include "vc1data.h"
38 
39 #define MB_INTRA_VLC_BITS 9
40 #define DC_VLC_BITS 9
41 
42 // offset tables for interlaced picture MVDATA decoding
43 static const uint8_t offset_table[2][9] = {
44  { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
45  { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
46 };
47 
48 // mapping table for internal block representation
49 static const int block_map[6] = {0, 2, 1, 3, 4, 5};
50 
51 /***********************************************************************/
52 /**
53  * @name VC-1 Bitplane decoding
54  * @see 8.7, p56
55  * @{
56  */
57 
58 
59 static inline void init_block_index(VC1Context *v)
60 {
61  MpegEncContext *s = &v->s;
63  if (v->field_mode && !(v->second_field ^ v->tff)) {
64  s->dest[0] += s->current_picture_ptr->f->linesize[0];
65  s->dest[1] += s->current_picture_ptr->f->linesize[1];
66  s->dest[2] += s->current_picture_ptr->f->linesize[2];
67  }
68 }
69 
70 /** @} */ //Bitplane group
71 
72 static void vc1_put_blocks_clamped(VC1Context *v, int put_signed)
73 {
74  MpegEncContext *s = &v->s;
75  uint8_t *dest;
76  int block_count = CONFIG_GRAY && (s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 4 : 6;
77  int fieldtx = 0;
78  int i;
79 
80  /* The put pixels loop is one MB row and one MB column behind the decoding
81  * loop because we can only put pixels when overlap filtering is done. For
82  * interlaced frame pictures, however, the put pixels loop is only one
83  * column behind the decoding loop as interlaced frame pictures only need
84  * horizontal overlap filtering. */
85  if (!s->first_slice_line && v->fcm != ILACE_FRAME) {
86  if (s->mb_x) {
87  for (i = 0; i < block_count; i++) {
88  if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i] - 1] :
89  v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i] - 2]) {
90  dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + ((i & 1) - 2) * 8;
91  if (put_signed)
93  i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
94  i > 3 ? s->uvlinesize : s->linesize);
95  else
97  i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
98  i > 3 ? s->uvlinesize : s->linesize);
99  }
100  }
101  }
102  if (s->mb_x == v->end_mb_x - 1) {
103  for (i = 0; i < block_count; i++) {
104  if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i]] :
105  v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i]]) {
106  dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + (i & 1) * 8;
107  if (put_signed)
109  i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
110  i > 3 ? s->uvlinesize : s->linesize);
111  else
113  i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
114  i > 3 ? s->uvlinesize : s->linesize);
115  }
116  }
117  }
118  }
119  if (s->mb_y == s->end_mb_y - 1 || v->fcm == ILACE_FRAME) {
120  if (s->mb_x) {
121  if (v->fcm == ILACE_FRAME)
122  fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x - 1];
123  for (i = 0; i < block_count; i++) {
124  if (i > 3 ? v->mb_type[0][s->block_index[i] - 1] :
125  v->mb_type[0][s->block_index[i] - 2]) {
126  if (fieldtx)
127  dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + ((i & 1) - 2) * 8;
128  else
129  dest = s->dest[0] + (i & 2) * 4 * s->linesize + ((i & 1) - 2) * 8;
130  if (put_signed)
132  i > 3 ? s->dest[i - 3] - 8 : dest,
133  i > 3 ? s->uvlinesize : s->linesize << fieldtx);
134  else
136  i > 3 ? s->dest[i - 3] - 8 : dest,
137  i > 3 ? s->uvlinesize : s->linesize << fieldtx);
138  }
139  }
140  }
141  if (s->mb_x == v->end_mb_x - 1) {
142  if (v->fcm == ILACE_FRAME)
143  fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x];
144  for (i = 0; i < block_count; i++) {
145  if (v->mb_type[0][s->block_index[i]]) {
146  if (fieldtx)
147  dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + (i & 1) * 8;
148  else
149  dest = s->dest[0] + (i & 2) * 4 * s->linesize + (i & 1) * 8;
150  if (put_signed)
152  i > 3 ? s->dest[i - 3] : dest,
153  i > 3 ? s->uvlinesize : s->linesize << fieldtx);
154  else
156  i > 3 ? s->dest[i - 3] : dest,
157  i > 3 ? s->uvlinesize : s->linesize << fieldtx);
158  }
159  }
160  }
161  }
162 }
163 
164 #define inc_blk_idx(idx) do { \
165  idx++; \
166  if (idx >= v->n_allocated_blks) \
167  idx = 0; \
168  } while (0)
169 
170 /***********************************************************************/
171 /**
172  * @name VC-1 Block-level functions
173  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
174  * @{
175  */
176 
177 /**
178  * @def GET_MQUANT
179  * @brief Get macroblock-level quantizer scale
180  */
181 #define GET_MQUANT() \
182  if (v->dquantfrm) { \
183  int edges = 0; \
184  if (v->dqprofile == DQPROFILE_ALL_MBS) { \
185  if (v->dqbilevel) { \
186  mquant = (get_bits1(gb)) ? -v->altpq : v->pq; \
187  } else { \
188  mqdiff = get_bits(gb, 3); \
189  if (mqdiff != 7) \
190  mquant = -v->pq - mqdiff; \
191  else \
192  mquant = -get_bits(gb, 5); \
193  } \
194  } \
195  if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
196  edges = 1 << v->dqsbedge; \
197  else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
198  edges = (3 << v->dqsbedge) % 15; \
199  else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
200  edges = 15; \
201  if ((edges&1) && !s->mb_x) \
202  mquant = -v->altpq; \
203  if ((edges&2) && !s->mb_y) \
204  mquant = -v->altpq; \
205  if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
206  mquant = -v->altpq; \
207  if ((edges&8) && \
208  s->mb_y == ((s->mb_height >> v->field_mode) - 1)) \
209  mquant = -v->altpq; \
210  if (!mquant || mquant > 31 || mquant < -31) { \
211  av_log(v->s.avctx, AV_LOG_ERROR, \
212  "Overriding invalid mquant %d\n", mquant); \
213  mquant = 1; \
214  } \
215  }
216 
217 /**
218  * @def GET_MVDATA(_dmv_x, _dmv_y)
219  * @brief Get MV differentials
220  * @see MVDATA decoding from 8.3.5.2, p(1)20
221  * @param _dmv_x Horizontal differential for decoded MV
222  * @param _dmv_y Vertical differential for decoded MV
223  */
224 #define GET_MVDATA(_dmv_x, _dmv_y) \
225  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
226  VC1_MV_DIFF_VLC_BITS, 2); \
227  if (index > 36) { \
228  mb_has_coeffs = 1; \
229  index -= 37; \
230  } else \
231  mb_has_coeffs = 0; \
232  s->mb_intra = 0; \
233  if (!index) { \
234  _dmv_x = _dmv_y = 0; \
235  } else if (index == 35) { \
236  _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
237  _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
238  } else if (index == 36) { \
239  _dmv_x = 0; \
240  _dmv_y = 0; \
241  s->mb_intra = 1; \
242  } else { \
243  index1 = index % 6; \
244  _dmv_x = offset_table[1][index1]; \
245  val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
246  if (val > 0) { \
247  val = get_bits(gb, val); \
248  sign = 0 - (val & 1); \
249  _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
250  } \
251  \
252  index1 = index / 6; \
253  _dmv_y = offset_table[1][index1]; \
254  val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
255  if (val > 0) { \
256  val = get_bits(gb, val); \
257  sign = 0 - (val & 1); \
258  _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
259  } \
260  }
261 
263  int *dmv_y, int *pred_flag)
264 {
265  int index, index1;
266  int extend_x, extend_y;
267  GetBitContext *gb = &v->s.gb;
268  int bits, esc;
269  int val, sign;
270 
271  if (v->numref) {
273  esc = 125;
274  } else {
276  esc = 71;
277  }
278  extend_x = v->dmvrange & 1;
279  extend_y = (v->dmvrange >> 1) & 1;
280  index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
281  if (index == esc) {
282  *dmv_x = get_bits(gb, v->k_x);
283  *dmv_y = get_bits(gb, v->k_y);
284  if (v->numref) {
285  if (pred_flag)
286  *pred_flag = *dmv_y & 1;
287  *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
288  }
289  }
290  else {
291  av_assert0(index < esc);
292  index1 = (index + 1) % 9;
293  if (index1 != 0) {
294  val = get_bits(gb, index1 + extend_x);
295  sign = 0 - (val & 1);
296  *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
297  } else
298  *dmv_x = 0;
299  index1 = (index + 1) / 9;
300  if (index1 > v->numref) {
301  val = get_bits(gb, (index1 >> v->numref) + extend_y);
302  sign = 0 - (val & 1);
303  *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
304  } else
305  *dmv_y = 0;
306  if (v->numref && pred_flag)
307  *pred_flag = index1 & 1;
308  }
309 }
310 
311 /** Reconstruct motion vector for B-frame and do motion compensation
312  */
313 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
314  int direct, int mode)
315 {
316  if (direct) {
317  ff_vc1_mc_1mv(v, 0);
318  ff_vc1_interp_mc(v);
319  return;
320  }
321  if (mode == BMV_TYPE_INTERPOLATED) {
322  ff_vc1_mc_1mv(v, 0);
323  ff_vc1_interp_mc(v);
324  return;
325  }
326 
327  ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
328 }
329 
330 /** Get predicted DC value for I-frames only
331  * prediction dir: left=0, top=1
332  * @param s MpegEncContext
333  * @param overlap flag indicating that overlap filtering is used
334  * @param pq integer part of picture quantizer
335  * @param[in] n block index in the current MB
336  * @param dc_val_ptr Pointer to DC predictor
337  * @param dir_ptr Prediction direction for use in AC prediction
338  */
339 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
340  int16_t **dc_val_ptr, int *dir_ptr)
341 {
342  int a, b, c, wrap, pred, scale;
343  int16_t *dc_val;
344  static const uint16_t dcpred[32] = {
345  -1, 1024, 512, 341, 256, 205, 171, 146, 128,
346  114, 102, 93, 85, 79, 73, 68, 64,
347  60, 57, 54, 51, 49, 47, 45, 43,
348  41, 39, 38, 37, 35, 34, 33
349  };
350 
351  /* find prediction - wmv3_dc_scale always used here in fact */
352  if (n < 4) scale = s->y_dc_scale;
353  else scale = s->c_dc_scale;
354 
355  wrap = s->block_wrap[n];
356  dc_val = s->dc_val[0] + s->block_index[n];
357 
358  /* B A
359  * C X
360  */
361  c = dc_val[ - 1];
362  b = dc_val[ - 1 - wrap];
363  a = dc_val[ - wrap];
364 
365  if (pq < 9 || !overlap) {
366  /* Set outer values */
367  if (s->first_slice_line && (n != 2 && n != 3))
368  b = a = dcpred[scale];
369  if (s->mb_x == 0 && (n != 1 && n != 3))
370  b = c = dcpred[scale];
371  } else {
372  /* Set outer values */
373  if (s->first_slice_line && (n != 2 && n != 3))
374  b = a = 0;
375  if (s->mb_x == 0 && (n != 1 && n != 3))
376  b = c = 0;
377  }
378 
379  if (abs(a - b) <= abs(b - c)) {
380  pred = c;
381  *dir_ptr = 1; // left
382  } else {
383  pred = a;
384  *dir_ptr = 0; // top
385  }
386 
387  /* update predictor */
388  *dc_val_ptr = &dc_val[0];
389  return pred;
390 }
391 
392 
393 /** Get predicted DC value
394  * prediction dir: left=0, top=1
395  * @param s MpegEncContext
396  * @param overlap flag indicating that overlap filtering is used
397  * @param pq integer part of picture quantizer
398  * @param[in] n block index in the current MB
399  * @param a_avail flag indicating top block availability
400  * @param c_avail flag indicating left block availability
401  * @param dc_val_ptr Pointer to DC predictor
402  * @param dir_ptr Prediction direction for use in AC prediction
403  */
404 static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
405  int a_avail, int c_avail,
406  int16_t **dc_val_ptr, int *dir_ptr)
407 {
408  int a, b, c, wrap, pred;
409  int16_t *dc_val;
410  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
411  int q1, q2 = 0;
412  int dqscale_index;
413 
414  /* scale predictors if needed */
415  q1 = FFABS(s->current_picture.qscale_table[mb_pos]);
416  dqscale_index = s->y_dc_scale_table[q1] - 1;
417  if (dqscale_index < 0)
418  return 0;
419 
420  wrap = s->block_wrap[n];
421  dc_val = s->dc_val[0] + s->block_index[n];
422 
423  /* B A
424  * C X
425  */
426  c = dc_val[ - 1];
427  b = dc_val[ - 1 - wrap];
428  a = dc_val[ - wrap];
429 
430  if (c_avail && (n != 1 && n != 3)) {
431  q2 = FFABS(s->current_picture.qscale_table[mb_pos - 1]);
432  if (q2 && q2 != q1)
433  c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
434  }
435  if (a_avail && (n != 2 && n != 3)) {
436  q2 = FFABS(s->current_picture.qscale_table[mb_pos - s->mb_stride]);
437  if (q2 && q2 != q1)
438  a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
439  }
440  if (a_avail && c_avail && (n != 3)) {
441  int off = mb_pos;
442  if (n != 1)
443  off--;
444  if (n != 2)
445  off -= s->mb_stride;
446  q2 = FFABS(s->current_picture.qscale_table[off]);
447  if (q2 && q2 != q1)
448  b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
449  }
450 
451  if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
452  pred = c;
453  *dir_ptr = 1; // left
454  } else if (a_avail) {
455  pred = a;
456  *dir_ptr = 0; // top
457  } else {
458  pred = 0;
459  *dir_ptr = 1; // left
460  }
461 
462  /* update predictor */
463  *dc_val_ptr = &dc_val[0];
464  return pred;
465 }
466 
467 /** @} */ // Block group
468 
469 /**
470  * @name VC1 Macroblock-level functions in Simple/Main Profiles
471  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
472  * @{
473  */
474 
475 static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
476  uint8_t **coded_block_ptr)
477 {
478  int xy, wrap, pred, a, b, c;
479 
480  xy = s->block_index[n];
481  wrap = s->b8_stride;
482 
483  /* B C
484  * A X
485  */
486  a = s->coded_block[xy - 1 ];
487  b = s->coded_block[xy - 1 - wrap];
488  c = s->coded_block[xy - wrap];
489 
490  if (b == c) {
491  pred = a;
492  } else {
493  pred = c;
494  }
495 
496  /* store value */
497  *coded_block_ptr = &s->coded_block[xy];
498 
499  return pred;
500 }
501 
502 /**
503  * Decode one AC coefficient
504  * @param v The VC1 context
505  * @param last Last coefficient
506  * @param skip How much zero coefficients to skip
507  * @param value Decoded AC coefficient value
508  * @param codingset set of VLC to decode data
509  * @see 8.1.3.4
510  */
511 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
512  int *value, int codingset)
513 {
514  GetBitContext *gb = &v->s.gb;
515  int index, run, level, lst, sign;
516 
517  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
518  if (index != ff_vc1_ac_sizes[codingset] - 1) {
519  run = vc1_index_decode_table[codingset][index][0];
520  level = vc1_index_decode_table[codingset][index][1];
521  lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
522  sign = get_bits1(gb);
523  } else {
524  int escape = decode210(gb);
525  if (escape != 2) {
526  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
527  run = vc1_index_decode_table[codingset][index][0];
528  level = vc1_index_decode_table[codingset][index][1];
529  lst = index >= vc1_last_decode_table[codingset];
530  if (escape == 0) {
531  if (lst)
532  level += vc1_last_delta_level_table[codingset][run];
533  else
534  level += vc1_delta_level_table[codingset][run];
535  } else {
536  if (lst)
537  run += vc1_last_delta_run_table[codingset][level] + 1;
538  else
539  run += vc1_delta_run_table[codingset][level] + 1;
540  }
541  sign = get_bits1(gb);
542  } else {
543  lst = get_bits1(gb);
544  if (v->s.esc3_level_length == 0) {
545  if (v->pq < 8 || v->dquantfrm) { // table 59
546  v->s.esc3_level_length = get_bits(gb, 3);
547  if (!v->s.esc3_level_length)
548  v->s.esc3_level_length = get_bits(gb, 2) + 8;
549  } else { // table 60
550  v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
551  }
552  v->s.esc3_run_length = 3 + get_bits(gb, 2);
553  }
554  run = get_bits(gb, v->s.esc3_run_length);
555  sign = get_bits1(gb);
556  level = get_bits(gb, v->s.esc3_level_length);
557  }
558  }
559 
560  *last = lst;
561  *skip = run;
562  *value = (level ^ -sign) + sign;
563 }
564 
565 /** Decode intra block in intra frames - should be faster than decode_intra_block
566  * @param v VC1Context
567  * @param block block to decode
568  * @param[in] n subblock index
569  * @param coded are AC coeffs present or not
570  * @param codingset set of VLC to decode data
571  */
572 static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
573  int coded, int codingset)
574 {
575  GetBitContext *gb = &v->s.gb;
576  MpegEncContext *s = &v->s;
577  int dc_pred_dir = 0; /* Direction of the DC prediction used */
578  int i;
579  int16_t *dc_val;
580  int16_t *ac_val, *ac_val2;
581  int dcdiff, scale;
582 
583  /* Get DC differential */
584  if (n < 4) {
586  } else {
588  }
589  if (dcdiff < 0) {
590  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
591  return -1;
592  }
593  if (dcdiff) {
594  const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
595  if (dcdiff == 119 /* ESC index value */) {
596  dcdiff = get_bits(gb, 8 + m);
597  } else {
598  if (m)
599  dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
600  }
601  if (get_bits1(gb))
602  dcdiff = -dcdiff;
603  }
604 
605  /* Prediction */
606  dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
607  *dc_val = dcdiff;
608 
609  /* Store the quantized DC coeff, used for prediction */
610  if (n < 4)
611  scale = s->y_dc_scale;
612  else
613  scale = s->c_dc_scale;
614  block[0] = dcdiff * scale;
615 
616  ac_val = s->ac_val[0][s->block_index[n]];
617  ac_val2 = ac_val;
618  if (dc_pred_dir) // left
619  ac_val -= 16;
620  else // top
621  ac_val -= 16 * s->block_wrap[n];
622 
623  scale = v->pq * 2 + v->halfpq;
624 
625  //AC Decoding
626  i = !!coded;
627 
628  if (coded) {
629  int last = 0, skip, value;
630  const uint8_t *zz_table;
631  int k;
632 
633  if (v->s.ac_pred) {
634  if (!dc_pred_dir)
635  zz_table = v->zz_8x8[2];
636  else
637  zz_table = v->zz_8x8[3];
638  } else
639  zz_table = v->zz_8x8[1];
640 
641  while (!last) {
642  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
643  i += skip;
644  if (i > 63)
645  break;
646  block[zz_table[i++]] = value;
647  }
648 
649  /* apply AC prediction if needed */
650  if (s->ac_pred) {
651  int sh;
652  if (dc_pred_dir) { // left
653  sh = v->left_blk_sh;
654  } else { // top
655  sh = v->top_blk_sh;
656  ac_val += 8;
657  }
658  for (k = 1; k < 8; k++)
659  block[k << sh] += ac_val[k];
660  }
661  /* save AC coeffs for further prediction */
662  for (k = 1; k < 8; k++) {
663  ac_val2[k] = block[k << v->left_blk_sh];
664  ac_val2[k + 8] = block[k << v->top_blk_sh];
665  }
666 
667  /* scale AC coeffs */
668  for (k = 1; k < 64; k++)
669  if (block[k]) {
670  block[k] *= scale;
671  if (!v->pquantizer)
672  block[k] += (block[k] < 0) ? -v->pq : v->pq;
673  }
674 
675  } else {
676  int k;
677 
678  memset(ac_val2, 0, 16 * 2);
679 
680  /* apply AC prediction if needed */
681  if (s->ac_pred) {
682  int sh;
683  if (dc_pred_dir) { //left
684  sh = v->left_blk_sh;
685  } else { // top
686  sh = v->top_blk_sh;
687  ac_val += 8;
688  ac_val2 += 8;
689  }
690  memcpy(ac_val2, ac_val, 8 * 2);
691  for (k = 1; k < 8; k++) {
692  block[k << sh] = ac_val[k] * scale;
693  if (!v->pquantizer && block[k << sh])
694  block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
695  }
696  }
697  }
698  if (s->ac_pred) i = 63;
699  s->block_last_index[n] = i;
700 
701  return 0;
702 }
703 
704 /** Decode intra block in intra frames - should be faster than decode_intra_block
705  * @param v VC1Context
706  * @param block block to decode
707  * @param[in] n subblock number
708  * @param coded are AC coeffs present or not
709  * @param codingset set of VLC to decode data
710  * @param mquant quantizer value for this macroblock
711  */
712 static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
713  int coded, int codingset, int mquant)
714 {
715  GetBitContext *gb = &v->s.gb;
716  MpegEncContext *s = &v->s;
717  int dc_pred_dir = 0; /* Direction of the DC prediction used */
718  int i;
719  int16_t *dc_val = NULL;
720  int16_t *ac_val, *ac_val2;
721  int dcdiff;
722  int a_avail = v->a_avail, c_avail = v->c_avail;
723  int use_pred = s->ac_pred;
724  int scale;
725  int q1, q2 = 0;
726  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
727  int quant = FFABS(mquant);
728 
729  /* Get DC differential */
730  if (n < 4) {
732  } else {
734  }
735  if (dcdiff < 0) {
736  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
737  return -1;
738  }
739  if (dcdiff) {
740  const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
741  if (dcdiff == 119 /* ESC index value */) {
742  dcdiff = get_bits(gb, 8 + m);
743  } else {
744  if (m)
745  dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
746  }
747  if (get_bits1(gb))
748  dcdiff = -dcdiff;
749  }
750 
751  /* Prediction */
752  dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
753  *dc_val = dcdiff;
754 
755  /* Store the quantized DC coeff, used for prediction */
756  if (n < 4)
757  scale = s->y_dc_scale;
758  else
759  scale = s->c_dc_scale;
760  block[0] = dcdiff * scale;
761 
762  /* check if AC is needed at all */
763  if (!a_avail && !c_avail)
764  use_pred = 0;
765 
766  scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
767 
768  ac_val = s->ac_val[0][s->block_index[n]];
769  ac_val2 = ac_val;
770  if (dc_pred_dir) // left
771  ac_val -= 16;
772  else // top
773  ac_val -= 16 * s->block_wrap[n];
774 
775  q1 = s->current_picture.qscale_table[mb_pos];
776  if (n == 3)
777  q2 = q1;
778  else if (dc_pred_dir) {
779  if (n == 1)
780  q2 = q1;
781  else if (c_avail && mb_pos)
782  q2 = s->current_picture.qscale_table[mb_pos - 1];
783  } else {
784  if (n == 2)
785  q2 = q1;
786  else if (a_avail && mb_pos >= s->mb_stride)
787  q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
788  }
789 
790  //AC Decoding
791  i = 1;
792 
793  if (coded) {
794  int last = 0, skip, value;
795  const uint8_t *zz_table;
796  int k;
797 
798  if (v->s.ac_pred) {
799  if (!use_pred && v->fcm == ILACE_FRAME) {
800  zz_table = v->zzi_8x8;
801  } else {
802  if (!dc_pred_dir) // top
803  zz_table = v->zz_8x8[2];
804  else // left
805  zz_table = v->zz_8x8[3];
806  }
807  } else {
808  if (v->fcm != ILACE_FRAME)
809  zz_table = v->zz_8x8[1];
810  else
811  zz_table = v->zzi_8x8;
812  }
813 
814  while (!last) {
815  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
816  i += skip;
817  if (i > 63)
818  break;
819  block[zz_table[i++]] = value;
820  }
821 
822  /* apply AC prediction if needed */
823  if (use_pred) {
824  int sh;
825  if (dc_pred_dir) { // left
826  sh = v->left_blk_sh;
827  } else { // top
828  sh = v->top_blk_sh;
829  ac_val += 8;
830  }
831  /* scale predictors if needed*/
832  q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
833  if (q1 < 1)
834  return AVERROR_INVALIDDATA;
835  if (q2)
836  q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
837  if (q2 && q1 != q2) {
838  for (k = 1; k < 8; k++)
839  block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
840  } else {
841  for (k = 1; k < 8; k++)
842  block[k << sh] += ac_val[k];
843  }
844  }
845  /* save AC coeffs for further prediction */
846  for (k = 1; k < 8; k++) {
847  ac_val2[k ] = block[k << v->left_blk_sh];
848  ac_val2[k + 8] = block[k << v->top_blk_sh];
849  }
850 
851  /* scale AC coeffs */
852  for (k = 1; k < 64; k++)
853  if (block[k]) {
854  block[k] *= scale;
855  if (!v->pquantizer)
856  block[k] += (block[k] < 0) ? -quant : quant;
857  }
858 
859  } else { // no AC coeffs
860  int k;
861 
862  memset(ac_val2, 0, 16 * 2);
863 
864  /* apply AC prediction if needed */
865  if (use_pred) {
866  int sh;
867  if (dc_pred_dir) { // left
868  sh = v->left_blk_sh;
869  } else { // top
870  sh = v->top_blk_sh;
871  ac_val += 8;
872  ac_val2 += 8;
873  }
874  memcpy(ac_val2, ac_val, 8 * 2);
875  q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
876  if (q1 < 1)
877  return AVERROR_INVALIDDATA;
878  if (q2)
879  q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
880  if (q2 && q1 != q2) {
881  for (k = 1; k < 8; k++)
882  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
883  }
884  for (k = 1; k < 8; k++) {
885  block[k << sh] = ac_val2[k] * scale;
886  if (!v->pquantizer && block[k << sh])
887  block[k << sh] += (block[k << sh] < 0) ? -quant : quant;
888  }
889  }
890  }
891  if (use_pred) i = 63;
892  s->block_last_index[n] = i;
893 
894  return 0;
895 }
896 
897 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
898  * @param v VC1Context
899  * @param block block to decode
900  * @param[in] n subblock index
901  * @param coded are AC coeffs present or not
902  * @param mquant block quantizer
903  * @param codingset set of VLC to decode data
904  */
905 static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
906  int coded, int mquant, int codingset)
907 {
908  GetBitContext *gb = &v->s.gb;
909  MpegEncContext *s = &v->s;
910  int dc_pred_dir = 0; /* Direction of the DC prediction used */
911  int i;
912  int16_t *dc_val = NULL;
913  int16_t *ac_val, *ac_val2;
914  int dcdiff;
915  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
916  int a_avail = v->a_avail, c_avail = v->c_avail;
917  int use_pred = s->ac_pred;
918  int scale;
919  int q1, q2 = 0;
920  int quant = FFABS(mquant);
921 
922  s->bdsp.clear_block(block);
923 
924  /* XXX: Guard against dumb values of mquant */
925  quant = av_clip_uintp2(quant, 5);
926 
927  /* Set DC scale - y and c use the same */
930 
931  /* Get DC differential */
932  if (n < 4) {
934  } else {
936  }
937  if (dcdiff < 0) {
938  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
939  return -1;
940  }
941  if (dcdiff) {
942  const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
943  if (dcdiff == 119 /* ESC index value */) {
944  dcdiff = get_bits(gb, 8 + m);
945  } else {
946  if (m)
947  dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
948  }
949  if (get_bits1(gb))
950  dcdiff = -dcdiff;
951  }
952 
953  /* Prediction */
954  dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
955  *dc_val = dcdiff;
956 
957  /* Store the quantized DC coeff, used for prediction */
958 
959  if (n < 4) {
960  block[0] = dcdiff * s->y_dc_scale;
961  } else {
962  block[0] = dcdiff * s->c_dc_scale;
963  }
964 
965  //AC Decoding
966  i = 1;
967 
968  /* check if AC is needed at all and adjust direction if needed */
969  if (!a_avail) dc_pred_dir = 1;
970  if (!c_avail) dc_pred_dir = 0;
971  if (!a_avail && !c_avail) use_pred = 0;
972  ac_val = s->ac_val[0][s->block_index[n]];
973  ac_val2 = ac_val;
974 
975  scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
976 
977  if (dc_pred_dir) //left
978  ac_val -= 16;
979  else //top
980  ac_val -= 16 * s->block_wrap[n];
981 
982  q1 = s->current_picture.qscale_table[mb_pos];
983  if (dc_pred_dir && c_avail && mb_pos)
984  q2 = s->current_picture.qscale_table[mb_pos - 1];
985  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
986  q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
987  if (dc_pred_dir && n == 1)
988  q2 = q1;
989  if (!dc_pred_dir && n == 2)
990  q2 = q1;
991  if (n == 3) q2 = q1;
992 
993  if (coded) {
994  int last = 0, skip, value;
995  int k;
996 
997  while (!last) {
998  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
999  i += skip;
1000  if (i > 63)
1001  break;
1002  if (v->fcm == PROGRESSIVE)
1003  block[v->zz_8x8[0][i++]] = value;
1004  else {
1005  if (use_pred && (v->fcm == ILACE_FRAME)) {
1006  if (!dc_pred_dir) // top
1007  block[v->zz_8x8[2][i++]] = value;
1008  else // left
1009  block[v->zz_8x8[3][i++]] = value;
1010  } else {
1011  block[v->zzi_8x8[i++]] = value;
1012  }
1013  }
1014  }
1015 
1016  /* apply AC prediction if needed */
1017  if (use_pred) {
1018  /* scale predictors if needed*/
1019  q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
1020  if (q1 < 1)
1021  return AVERROR_INVALIDDATA;
1022  if (q2)
1023  q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
1024  if (q2 && q1 != q2) {
1025  if (dc_pred_dir) { // left
1026  for (k = 1; k < 8; k++)
1027  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1028  } else { //top
1029  for (k = 1; k < 8; k++)
1030  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1031  }
1032  } else {
1033  if (dc_pred_dir) { // left
1034  for (k = 1; k < 8; k++)
1035  block[k << v->left_blk_sh] += ac_val[k];
1036  } else { // top
1037  for (k = 1; k < 8; k++)
1038  block[k << v->top_blk_sh] += ac_val[k + 8];
1039  }
1040  }
1041  }
1042  /* save AC coeffs for further prediction */
1043  for (k = 1; k < 8; k++) {
1044  ac_val2[k ] = block[k << v->left_blk_sh];
1045  ac_val2[k + 8] = block[k << v->top_blk_sh];
1046  }
1047 
1048  /* scale AC coeffs */
1049  for (k = 1; k < 64; k++)
1050  if (block[k]) {
1051  block[k] *= scale;
1052  if (!v->pquantizer)
1053  block[k] += (block[k] < 0) ? -quant : quant;
1054  }
1055 
1056  if (use_pred) i = 63;
1057  } else { // no AC coeffs
1058  int k;
1059 
1060  memset(ac_val2, 0, 16 * 2);
1061  if (dc_pred_dir) { // left
1062  if (use_pred) {
1063  memcpy(ac_val2, ac_val, 8 * 2);
1064  q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
1065  if (q1 < 1)
1066  return AVERROR_INVALIDDATA;
1067  if (q2)
1068  q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
1069  if (q2 && q1 != q2) {
1070  for (k = 1; k < 8; k++)
1071  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1072  }
1073  }
1074  } else { // top
1075  if (use_pred) {
1076  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1077  q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
1078  if (q1 < 1)
1079  return AVERROR_INVALIDDATA;
1080  if (q2)
1081  q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
1082  if (q2 && q1 != q2) {
1083  for (k = 1; k < 8; k++)
1084  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1085  }
1086  }
1087  }
1088 
1089  /* apply AC prediction if needed */
1090  if (use_pred) {
1091  if (dc_pred_dir) { // left
1092  for (k = 1; k < 8; k++) {
1093  block[k << v->left_blk_sh] = ac_val2[k] * scale;
1094  if (!v->pquantizer && block[k << v->left_blk_sh])
1095  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -quant : quant;
1096  }
1097  } else { // top
1098  for (k = 1; k < 8; k++) {
1099  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
1100  if (!v->pquantizer && block[k << v->top_blk_sh])
1101  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -quant : quant;
1102  }
1103  }
1104  i = 63;
1105  }
1106  }
1107  s->block_last_index[n] = i;
1108 
1109  return 0;
1110 }
1111 
1112 /** Decode P block
1113  */
1114 static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
1115  int mquant, int ttmb, int first_block,
1116  uint8_t *dst, int linesize, int skip_block,
1117  int *ttmb_out)
1118 {
1119  MpegEncContext *s = &v->s;
1120  GetBitContext *gb = &s->gb;
1121  int i, j;
1122  int subblkpat = 0;
1123  int scale, off, idx, last, skip, value;
1124  int ttblk = ttmb & 7;
1125  int pat = 0;
1126  int quant = FFABS(mquant);
1127 
1128  s->bdsp.clear_block(block);
1129 
1130  if (ttmb == -1) {
1132  }
1133  if (ttblk == TT_4X4) {
1134  subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
1135  }
1136  if ((ttblk != TT_8X8 && ttblk != TT_4X4)
1137  && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
1138  || (!v->res_rtm_flag && !first_block))) {
1139  subblkpat = decode012(gb);
1140  if (subblkpat)
1141  subblkpat ^= 3; // swap decoded pattern bits
1142  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
1143  ttblk = TT_8X4;
1144  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
1145  ttblk = TT_4X8;
1146  }
1147  scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
1148 
1149  // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
1150  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
1151  subblkpat = 2 - (ttblk == TT_8X4_TOP);
1152  ttblk = TT_8X4;
1153  }
1154  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
1155  subblkpat = 2 - (ttblk == TT_4X8_LEFT);
1156  ttblk = TT_4X8;
1157  }
1158  switch (ttblk) {
1159  case TT_8X8:
1160  pat = 0xF;
1161  i = 0;
1162  last = 0;
1163  while (!last) {
1164  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
1165  i += skip;
1166  if (i > 63)
1167  break;
1168  if (!v->fcm)
1169  idx = v->zz_8x8[0][i++];
1170  else
1171  idx = v->zzi_8x8[i++];
1172  block[idx] = value * scale;
1173  if (!v->pquantizer)
1174  block[idx] += (block[idx] < 0) ? -quant : quant;
1175  }
1176  if (!skip_block) {
1177  if (i == 1)
1178  v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
1179  else {
1180  v->vc1dsp.vc1_inv_trans_8x8(block);
1181  s->idsp.add_pixels_clamped(block, dst, linesize);
1182  }
1183  }
1184  break;
1185  case TT_4X4:
1186  pat = ~subblkpat & 0xF;
1187  for (j = 0; j < 4; j++) {
1188  last = subblkpat & (1 << (3 - j));
1189  i = 0;
1190  off = (j & 1) * 4 + (j & 2) * 16;
1191  while (!last) {
1192  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
1193  i += skip;
1194  if (i > 15)
1195  break;
1196  if (!v->fcm)
1198  else
1199  idx = ff_vc1_adv_interlaced_4x4_zz[i++];
1200  block[idx + off] = value * scale;
1201  if (!v->pquantizer)
1202  block[idx + off] += (block[idx + off] < 0) ? -quant : quant;
1203  }
1204  if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
1205  if (i == 1)
1206  v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
1207  else
1208  v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
1209  }
1210  }
1211  break;
1212  case TT_8X4:
1213  pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
1214  for (j = 0; j < 2; j++) {
1215  last = subblkpat & (1 << (1 - j));
1216  i = 0;
1217  off = j * 32;
1218  while (!last) {
1219  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
1220  i += skip;
1221  if (i > 31)
1222  break;
1223  if (!v->fcm)
1224  idx = v->zz_8x4[i++] + off;
1225  else
1226  idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
1227  block[idx] = value * scale;
1228  if (!v->pquantizer)
1229  block[idx] += (block[idx] < 0) ? -quant : quant;
1230  }
1231  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
1232  if (i == 1)
1233  v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
1234  else
1235  v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
1236  }
1237  }
1238  break;
1239  case TT_4X8:
1240  pat = ~(subblkpat * 5) & 0xF;
1241  for (j = 0; j < 2; j++) {
1242  last = subblkpat & (1 << (1 - j));
1243  i = 0;
1244  off = j * 4;
1245  while (!last) {
1246  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
1247  i += skip;
1248  if (i > 31)
1249  break;
1250  if (!v->fcm)
1251  idx = v->zz_4x8[i++] + off;
1252  else
1253  idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
1254  block[idx] = value * scale;
1255  if (!v->pquantizer)
1256  block[idx] += (block[idx] < 0) ? -quant : quant;
1257  }
1258  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
1259  if (i == 1)
1260  v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
1261  else
1262  v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
1263  }
1264  }
1265  break;
1266  }
1267  if (ttmb_out)
1268  *ttmb_out |= ttblk << (n * 4);
1269  return pat;
1270 }
1271 
1272 /** @} */ // Macroblock group
1273 
1274 static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
1275 
1276 /** Decode one P-frame MB
1277  */
1279 {
1280  MpegEncContext *s = &v->s;
1281  GetBitContext *gb = &s->gb;
1282  int i, j;
1283  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1284  int cbp; /* cbp decoding stuff */
1285  int mqdiff, mquant; /* MB quantization */
1286  int ttmb = v->ttfrm; /* MB Transform type */
1287 
1288  int mb_has_coeffs = 1; /* last_flag */
1289  int dmv_x, dmv_y; /* Differential MV components */
1290  int index, index1; /* LUT indexes */
1291  int val, sign; /* temp values */
1292  int first_block = 1;
1293  int dst_idx, off;
1294  int skipped, fourmv;
1295  int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
1296 
1297  mquant = v->pq; /* lossy initialization */
1298 
1299  if (v->mv_type_is_raw)
1300  fourmv = get_bits1(gb);
1301  else
1302  fourmv = v->mv_type_mb_plane[mb_pos];
1303  if (v->skip_is_raw)
1304  skipped = get_bits1(gb);
1305  else
1306  skipped = v->s.mbskip_table[mb_pos];
1307 
1308  if (!fourmv) { /* 1MV mode */
1309  if (!skipped) {
1310  GET_MVDATA(dmv_x, dmv_y);
1311 
1312  if (s->mb_intra) {
1313  s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
1314  s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
1315  }
1317  ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
1318 
1319  /* FIXME Set DC val for inter block ? */
1320  if (s->mb_intra && !mb_has_coeffs) {
1321  GET_MQUANT();
1322  s->ac_pred = get_bits1(gb);
1323  cbp = 0;
1324  } else if (mb_has_coeffs) {
1325  if (s->mb_intra)
1326  s->ac_pred = get_bits1(gb);
1327  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1328  GET_MQUANT();
1329  } else {
1330  mquant = v->pq;
1331  cbp = 0;
1332  }
1333  s->current_picture.qscale_table[mb_pos] = mquant;
1334 
1335  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
1336  ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
1337  VC1_TTMB_VLC_BITS, 2);
1338  if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
1339  dst_idx = 0;
1340  for (i = 0; i < 6; i++) {
1341  s->dc_val[0][s->block_index[i]] = 0;
1342  dst_idx += i >> 2;
1343  val = ((cbp >> (5 - i)) & 1);
1344  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
1345  v->mb_type[0][s->block_index[i]] = s->mb_intra;
1346  if (s->mb_intra) {
1347  /* check if prediction blocks A and C are available */
1348  v->a_avail = v->c_avail = 0;
1349  if (i == 2 || i == 3 || !s->first_slice_line)
1350  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
1351  if (i == 1 || i == 3 || s->mb_x)
1352  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
1353 
1354  vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
1355  (i & 4) ? v->codingset2 : v->codingset);
1356  if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1357  continue;
1359  if (v->rangeredfrm)
1360  for (j = 0; j < 64; j++)
1361  v->block[v->cur_blk_idx][block_map[i]][j] <<= 1;
1362  block_cbp |= 0xF << (i << 2);
1363  block_intra |= 1 << i;
1364  } else if (val) {
1365  pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb, first_block,
1366  s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
1367  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
1368  block_cbp |= pat << (i << 2);
1369  if (!v->ttmbf && ttmb < 8)
1370  ttmb = -1;
1371  first_block = 0;
1372  }
1373  }
1374  } else { // skipped
1375  s->mb_intra = 0;
1376  for (i = 0; i < 6; i++) {
1377  v->mb_type[0][s->block_index[i]] = 0;
1378  s->dc_val[0][s->block_index[i]] = 0;
1379  }
1380  s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
1381  s->current_picture.qscale_table[mb_pos] = 0;
1382  ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
1383  ff_vc1_mc_1mv(v, 0);
1384  }
1385  } else { // 4MV mode
1386  if (!skipped /* unskipped MB */) {
1387  int intra_count = 0, coded_inter = 0;
1388  int is_intra[6], is_coded[6];
1389  /* Get CBPCY */
1390  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1391  for (i = 0; i < 6; i++) {
1392  val = ((cbp >> (5 - i)) & 1);
1393  s->dc_val[0][s->block_index[i]] = 0;
1394  s->mb_intra = 0;
1395  if (i < 4) {
1396  dmv_x = dmv_y = 0;
1397  s->mb_intra = 0;
1398  mb_has_coeffs = 0;
1399  if (val) {
1400  GET_MVDATA(dmv_x, dmv_y);
1401  }
1402  ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
1403  if (!s->mb_intra)
1404  ff_vc1_mc_4mv_luma(v, i, 0, 0);
1405  intra_count += s->mb_intra;
1406  is_intra[i] = s->mb_intra;
1407  is_coded[i] = mb_has_coeffs;
1408  }
1409  if (i & 4) {
1410  is_intra[i] = (intra_count >= 3);
1411  is_coded[i] = val;
1412  }
1413  if (i == 4)
1414  ff_vc1_mc_4mv_chroma(v, 0);
1415  v->mb_type[0][s->block_index[i]] = is_intra[i];
1416  if (!coded_inter)
1417  coded_inter = !is_intra[i] & is_coded[i];
1418  }
1419  // if there are no coded blocks then don't do anything more
1420  dst_idx = 0;
1421  if (!intra_count && !coded_inter)
1422  goto end;
1423  GET_MQUANT();
1424  s->current_picture.qscale_table[mb_pos] = mquant;
1425  /* test if block is intra and has pred */
1426  {
1427  int intrapred = 0;
1428  for (i = 0; i < 6; i++)
1429  if (is_intra[i]) {
1430  if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
1431  || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
1432  intrapred = 1;
1433  break;
1434  }
1435  }
1436  if (intrapred)
1437  s->ac_pred = get_bits1(gb);
1438  else
1439  s->ac_pred = 0;
1440  }
1441  if (!v->ttmbf && coded_inter)
1443  for (i = 0; i < 6; i++) {
1444  dst_idx += i >> 2;
1445  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
1446  s->mb_intra = is_intra[i];
1447  if (is_intra[i]) {
1448  /* check if prediction blocks A and C are available */
1449  v->a_avail = v->c_avail = 0;
1450  if (i == 2 || i == 3 || !s->first_slice_line)
1451  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
1452  if (i == 1 || i == 3 || s->mb_x)
1453  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
1454 
1455  vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, is_coded[i], mquant,
1456  (i & 4) ? v->codingset2 : v->codingset);
1457  if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1458  continue;
1460  if (v->rangeredfrm)
1461  for (j = 0; j < 64; j++)
1462  v->block[v->cur_blk_idx][block_map[i]][j] <<= 1;
1463  block_cbp |= 0xF << (i << 2);
1464  block_intra |= 1 << i;
1465  } else if (is_coded[i]) {
1466  pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
1467  first_block, s->dest[dst_idx] + off,
1468  (i & 4) ? s->uvlinesize : s->linesize,
1469  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
1470  &block_tt);
1471  block_cbp |= pat << (i << 2);
1472  if (!v->ttmbf && ttmb < 8)
1473  ttmb = -1;
1474  first_block = 0;
1475  }
1476  }
1477  } else { // skipped MB
1478  s->mb_intra = 0;
1479  s->current_picture.qscale_table[mb_pos] = 0;
1480  for (i = 0; i < 6; i++) {
1481  v->mb_type[0][s->block_index[i]] = 0;
1482  s->dc_val[0][s->block_index[i]] = 0;
1483  }
1484  for (i = 0; i < 4; i++) {
1485  ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
1486  ff_vc1_mc_4mv_luma(v, i, 0, 0);
1487  }
1488  ff_vc1_mc_4mv_chroma(v, 0);
1489  s->current_picture.qscale_table[mb_pos] = 0;
1490  }
1491  }
1492 end:
1493  if (v->overlap && v->pq >= 9)
1495  vc1_put_blocks_clamped(v, 1);
1496 
1497  v->cbp[s->mb_x] = block_cbp;
1498  v->ttblk[s->mb_x] = block_tt;
1499  v->is_intra[s->mb_x] = block_intra;
1500 
1501  return 0;
1502 }
1503 
1504 /* Decode one macroblock in an interlaced frame p picture */
1505 
1507 {
1508  MpegEncContext *s = &v->s;
1509  GetBitContext *gb = &s->gb;
1510  int i;
1511  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1512  int cbp = 0; /* cbp decoding stuff */
1513  int mqdiff, mquant; /* MB quantization */
1514  int ttmb = v->ttfrm; /* MB Transform type */
1515 
1516  int mb_has_coeffs = 1; /* last_flag */
1517  int dmv_x, dmv_y; /* Differential MV components */
1518  int val; /* temp value */
1519  int first_block = 1;
1520  int dst_idx, off;
1521  int skipped, fourmv = 0, twomv = 0;
1522  int block_cbp = 0, pat, block_tt = 0;
1523  int idx_mbmode = 0, mvbp;
1524  int fieldtx;
1525 
1526  mquant = v->pq; /* Lossy initialization */
1527 
1528  if (v->skip_is_raw)
1529  skipped = get_bits1(gb);
1530  else
1531  skipped = v->s.mbskip_table[mb_pos];
1532  if (!skipped) {
1533  if (v->fourmvswitch)
1534  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
1535  else
1536  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
1537  switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
1538  /* store the motion vector type in a flag (useful later) */
1539  case MV_PMODE_INTFR_4MV:
1540  fourmv = 1;
1541  v->blk_mv_type[s->block_index[0]] = 0;
1542  v->blk_mv_type[s->block_index[1]] = 0;
1543  v->blk_mv_type[s->block_index[2]] = 0;
1544  v->blk_mv_type[s->block_index[3]] = 0;
1545  break;
1547  fourmv = 1;
1548  v->blk_mv_type[s->block_index[0]] = 1;
1549  v->blk_mv_type[s->block_index[1]] = 1;
1550  v->blk_mv_type[s->block_index[2]] = 1;
1551  v->blk_mv_type[s->block_index[3]] = 1;
1552  break;
1554  twomv = 1;
1555  v->blk_mv_type[s->block_index[0]] = 1;
1556  v->blk_mv_type[s->block_index[1]] = 1;
1557  v->blk_mv_type[s->block_index[2]] = 1;
1558  v->blk_mv_type[s->block_index[3]] = 1;
1559  break;
1560  case MV_PMODE_INTFR_1MV:
1561  v->blk_mv_type[s->block_index[0]] = 0;
1562  v->blk_mv_type[s->block_index[1]] = 0;
1563  v->blk_mv_type[s->block_index[2]] = 0;
1564  v->blk_mv_type[s->block_index[3]] = 0;
1565  break;
1566  }
1567  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
1568  for (i = 0; i < 4; i++) {
1569  s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
1570  s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
1571  }
1572  v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
1573  s->mb_intra = 1;
1574  s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
1575  fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
1576  mb_has_coeffs = get_bits1(gb);
1577  if (mb_has_coeffs)
1578  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1579  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
1580  GET_MQUANT();
1581  s->current_picture.qscale_table[mb_pos] = mquant;
1582  /* Set DC scale - y and c use the same (not sure if necessary here) */
1583  s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
1584  s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
1585  dst_idx = 0;
1586  for (i = 0; i < 6; i++) {
1587  v->a_avail = v->c_avail = 0;
1588  v->mb_type[0][s->block_index[i]] = 1;
1589  s->dc_val[0][s->block_index[i]] = 0;
1590  dst_idx += i >> 2;
1591  val = ((cbp >> (5 - i)) & 1);
1592  if (i == 2 || i == 3 || !s->first_slice_line)
1593  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
1594  if (i == 1 || i == 3 || s->mb_x)
1595  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
1596 
1597  vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
1598  (i & 4) ? v->codingset2 : v->codingset);
1599  if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1600  continue;
1602  if (i < 4)
1603  off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
1604  else
1605  off = 0;
1606  block_cbp |= 0xf << (i << 2);
1607  }
1608 
1609  } else { // inter MB
1610  mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
1611  if (mb_has_coeffs)
1612  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1613  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
1615  } else {
1616  if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
1617  || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
1619  }
1620  }
1621  s->mb_intra = v->is_intra[s->mb_x] = 0;
1622  for (i = 0; i < 6; i++)
1623  v->mb_type[0][s->block_index[i]] = 0;
1624  fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
1625  /* for all motion vector read MVDATA and motion compensate each block */
1626  dst_idx = 0;
1627  if (fourmv) {
1628  mvbp = v->fourmvbp;
1629  for (i = 0; i < 4; i++) {
1630  dmv_x = dmv_y = 0;
1631  if (mvbp & (8 >> i))
1632  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
1633  ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
1634  ff_vc1_mc_4mv_luma(v, i, 0, 0);
1635  }
1636  ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
1637  } else if (twomv) {
1638  mvbp = v->twomvbp;
1639  dmv_x = dmv_y = 0;
1640  if (mvbp & 2) {
1641  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
1642  }
1643  ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
1644  ff_vc1_mc_4mv_luma(v, 0, 0, 0);
1645  ff_vc1_mc_4mv_luma(v, 1, 0, 0);
1646  dmv_x = dmv_y = 0;
1647  if (mvbp & 1) {
1648  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
1649  }
1650  ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
1651  ff_vc1_mc_4mv_luma(v, 2, 0, 0);
1652  ff_vc1_mc_4mv_luma(v, 3, 0, 0);
1653  ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
1654  } else {
1655  mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
1656  dmv_x = dmv_y = 0;
1657  if (mvbp) {
1658  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
1659  }
1660  ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
1661  ff_vc1_mc_1mv(v, 0);
1662  }
1663  if (cbp)
1664  GET_MQUANT(); // p. 227
1665  s->current_picture.qscale_table[mb_pos] = mquant;
1666  if (!v->ttmbf && cbp)
1668  for (i = 0; i < 6; i++) {
1669  s->dc_val[0][s->block_index[i]] = 0;
1670  dst_idx += i >> 2;
1671  val = ((cbp >> (5 - i)) & 1);
1672  if (!fieldtx)
1673  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
1674  else
1675  off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
1676  if (val) {
1677  pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
1678  first_block, s->dest[dst_idx] + off,
1679  (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
1680  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
1681  block_cbp |= pat << (i << 2);
1682  if (!v->ttmbf && ttmb < 8)
1683  ttmb = -1;
1684  first_block = 0;
1685  }
1686  }
1687  }
1688  } else { // skipped
1689  s->mb_intra = v->is_intra[s->mb_x] = 0;
1690  for (i = 0; i < 6; i++) {
1691  v->mb_type[0][s->block_index[i]] = 0;
1692  s->dc_val[0][s->block_index[i]] = 0;
1693  }
1694  s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
1695  s->current_picture.qscale_table[mb_pos] = 0;
1696  v->blk_mv_type[s->block_index[0]] = 0;
1697  v->blk_mv_type[s->block_index[1]] = 0;
1698  v->blk_mv_type[s->block_index[2]] = 0;
1699  v->blk_mv_type[s->block_index[3]] = 0;
1700  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
1701  ff_vc1_mc_1mv(v, 0);
1702  v->fieldtx_plane[mb_pos] = 0;
1703  }
1704  if (v->overlap && v->pq >= 9)
1706  vc1_put_blocks_clamped(v, 1);
1707 
1708  v->cbp[s->mb_x] = block_cbp;
1709  v->ttblk[s->mb_x] = block_tt;
1710 
1711  return 0;
1712 }
1713 
1715 {
1716  MpegEncContext *s = &v->s;
1717  GetBitContext *gb = &s->gb;
1718  int i;
1719  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1720  int cbp = 0; /* cbp decoding stuff */
1721  int mqdiff, mquant; /* MB quantization */
1722  int ttmb = v->ttfrm; /* MB Transform type */
1723 
1724  int mb_has_coeffs = 1; /* last_flag */
1725  int dmv_x, dmv_y; /* Differential MV components */
1726  int val; /* temp values */
1727  int first_block = 1;
1728  int dst_idx, off;
1729  int pred_flag = 0;
1730  int block_cbp = 0, pat, block_tt = 0;
1731  int idx_mbmode = 0;
1732 
1733  mquant = v->pq; /* Lossy initialization */
1734 
1735  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
1736  if (idx_mbmode <= 1) { // intra MB
1737  v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
1738  s->mb_intra = 1;
1739  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
1740  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
1741  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
1742  GET_MQUANT();
1743  s->current_picture.qscale_table[mb_pos] = mquant;
1744  /* Set DC scale - y and c use the same (not sure if necessary here) */
1745  s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
1746  s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
1747  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
1748  mb_has_coeffs = idx_mbmode & 1;
1749  if (mb_has_coeffs)
1750  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
1751  dst_idx = 0;
1752  for (i = 0; i < 6; i++) {
1753  v->a_avail = v->c_avail = 0;
1754  v->mb_type[0][s->block_index[i]] = 1;
1755  s->dc_val[0][s->block_index[i]] = 0;
1756  dst_idx += i >> 2;
1757  val = ((cbp >> (5 - i)) & 1);
1758  if (i == 2 || i == 3 || !s->first_slice_line)
1759  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
1760  if (i == 1 || i == 3 || s->mb_x)
1761  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
1762 
1763  vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
1764  (i & 4) ? v->codingset2 : v->codingset);
1765  if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1766  continue;
1768  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
1769  block_cbp |= 0xf << (i << 2);
1770  }
1771  } else {
1772  s->mb_intra = v->is_intra[s->mb_x] = 0;
1773  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
1774  for (i = 0; i < 6; i++)
1775  v->mb_type[0][s->block_index[i]] = 0;
1776  if (idx_mbmode <= 5) { // 1-MV
1777  dmv_x = dmv_y = pred_flag = 0;
1778  if (idx_mbmode & 1) {
1779  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
1780  }
1781  ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
1782  ff_vc1_mc_1mv(v, 0);
1783  mb_has_coeffs = !(idx_mbmode & 2);
1784  } else { // 4-MV
1786  for (i = 0; i < 4; i++) {
1787  dmv_x = dmv_y = pred_flag = 0;
1788  if (v->fourmvbp & (8 >> i))
1789  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
1790  ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
1791  ff_vc1_mc_4mv_luma(v, i, 0, 0);
1792  }
1793  ff_vc1_mc_4mv_chroma(v, 0);
1794  mb_has_coeffs = idx_mbmode & 1;
1795  }
1796  if (mb_has_coeffs)
1797  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1798  if (cbp) {
1799  GET_MQUANT();
1800  }
1801  s->current_picture.qscale_table[mb_pos] = mquant;
1802  if (!v->ttmbf && cbp) {
1804  }
1805  dst_idx = 0;
1806  for (i = 0; i < 6; i++) {
1807  s->dc_val[0][s->block_index[i]] = 0;
1808  dst_idx += i >> 2;
1809  val = ((cbp >> (5 - i)) & 1);
1810  off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
1811  if (val) {
1812  pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
1813  first_block, s->dest[dst_idx] + off,
1814  (i & 4) ? s->uvlinesize : s->linesize,
1815  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
1816  &block_tt);
1817  block_cbp |= pat << (i << 2);
1818  if (!v->ttmbf && ttmb < 8)
1819  ttmb = -1;
1820  first_block = 0;
1821  }
1822  }
1823  }
1824  if (v->overlap && v->pq >= 9)
1826  vc1_put_blocks_clamped(v, 1);
1827 
1828  v->cbp[s->mb_x] = block_cbp;
1829  v->ttblk[s->mb_x] = block_tt;
1830 
1831  return 0;
1832 }
1833 
1834 /** Decode one B-frame MB (in Main profile)
1835  */
1837 {
1838  MpegEncContext *s = &v->s;
1839  GetBitContext *gb = &s->gb;
1840  int i, j;
1841  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1842  int cbp = 0; /* cbp decoding stuff */
1843  int mqdiff, mquant; /* MB quantization */
1844  int ttmb = v->ttfrm; /* MB Transform type */
1845  int mb_has_coeffs = 0; /* last_flag */
1846  int index, index1; /* LUT indexes */
1847  int val, sign; /* temp values */
1848  int first_block = 1;
1849  int dst_idx, off;
1850  int skipped, direct;
1851  int dmv_x[2], dmv_y[2];
1852  int bmvtype = BMV_TYPE_BACKWARD;
1853 
1854  mquant = v->pq; /* lossy initialization */
1855  s->mb_intra = 0;
1856 
1857  if (v->dmb_is_raw)
1858  direct = get_bits1(gb);
1859  else
1860  direct = v->direct_mb_plane[mb_pos];
1861  if (v->skip_is_raw)
1862  skipped = get_bits1(gb);
1863  else
1864  skipped = v->s.mbskip_table[mb_pos];
1865 
1866  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
1867  for (i = 0; i < 6; i++) {
1868  v->mb_type[0][s->block_index[i]] = 0;
1869  s->dc_val[0][s->block_index[i]] = 0;
1870  }
1871  s->current_picture.qscale_table[mb_pos] = 0;
1872 
1873  if (!direct) {
1874  if (!skipped) {
1875  GET_MVDATA(dmv_x[0], dmv_y[0]);
1876  dmv_x[1] = dmv_x[0];
1877  dmv_y[1] = dmv_y[0];
1878  }
1879  if (skipped || !s->mb_intra) {
1880  bmvtype = decode012(gb);
1881  switch (bmvtype) {
1882  case 0:
1883  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
1884  break;
1885  case 1:
1886  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
1887  break;
1888  case 2:
1889  bmvtype = BMV_TYPE_INTERPOLATED;
1890  dmv_x[0] = dmv_y[0] = 0;
1891  }
1892  }
1893  }
1894  for (i = 0; i < 6; i++)
1895  v->mb_type[0][s->block_index[i]] = s->mb_intra;
1896 
1897  if (skipped) {
1898  if (direct)
1899  bmvtype = BMV_TYPE_INTERPOLATED;
1900  ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
1901  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
1902  return;
1903  }
1904  if (direct) {
1905  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1906  GET_MQUANT();
1907  s->mb_intra = 0;
1908  s->current_picture.qscale_table[mb_pos] = mquant;
1909  if (!v->ttmbf)
1911  dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
1912  ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
1913  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
1914  } else {
1915  if (!mb_has_coeffs && !s->mb_intra) {
1916  /* no coded blocks - effectively skipped */
1917  ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
1918  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
1919  return;
1920  }
1921  if (s->mb_intra && !mb_has_coeffs) {
1922  GET_MQUANT();
1923  s->current_picture.qscale_table[mb_pos] = mquant;
1924  s->ac_pred = get_bits1(gb);
1925  cbp = 0;
1926  ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
1927  } else {
1928  if (bmvtype == BMV_TYPE_INTERPOLATED) {
1929  GET_MVDATA(dmv_x[0], dmv_y[0]);
1930  if (!mb_has_coeffs) {
1931  /* interpolated skipped block */
1932  ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
1933  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
1934  return;
1935  }
1936  }
1937  ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
1938  if (!s->mb_intra) {
1939  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
1940  }
1941  if (s->mb_intra)
1942  s->ac_pred = get_bits1(gb);
1943  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
1944  GET_MQUANT();
1945  s->current_picture.qscale_table[mb_pos] = mquant;
1946  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
1948  }
1949  }
1950  dst_idx = 0;
1951  for (i = 0; i < 6; i++) {
1952  s->dc_val[0][s->block_index[i]] = 0;
1953  dst_idx += i >> 2;
1954  val = ((cbp >> (5 - i)) & 1);
1955  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
1956  v->mb_type[0][s->block_index[i]] = s->mb_intra;
1957  if (s->mb_intra) {
1958  /* check if prediction blocks A and C are available */
1959  v->a_avail = v->c_avail = 0;
1960  if (i == 2 || i == 3 || !s->first_slice_line)
1961  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
1962  if (i == 1 || i == 3 || s->mb_x)
1963  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
1964 
1965  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
1966  (i & 4) ? v->codingset2 : v->codingset);
1967  if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
1968  continue;
1969  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
1970  if (v->rangeredfrm)
1971  for (j = 0; j < 64; j++)
1972  s->block[i][j] <<= 1;
1974  s->dest[dst_idx] + off,
1975  i & 4 ? s->uvlinesize
1976  : s->linesize);
1977  } else if (val) {
1978  vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
1979  first_block, s->dest[dst_idx] + off,
1980  (i & 4) ? s->uvlinesize : s->linesize,
1981  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
1982  if (!v->ttmbf && ttmb < 8)
1983  ttmb = -1;
1984  first_block = 0;
1985  }
1986  }
1987 }
1988 
1989 /** Decode one B-frame MB (in interlaced field B picture)
1990  */
1992 {
1993  MpegEncContext *s = &v->s;
1994  GetBitContext *gb = &s->gb;
1995  int i, j;
1996  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1997  int cbp = 0; /* cbp decoding stuff */
1998  int mqdiff, mquant; /* MB quantization */
1999  int ttmb = v->ttfrm; /* MB Transform type */
2000  int mb_has_coeffs = 0; /* last_flag */
2001  int val; /* temp value */
2002  int first_block = 1;
2003  int dst_idx, off;
2004  int fwd;
2005  int dmv_x[2], dmv_y[2], pred_flag[2];
2006  int bmvtype = BMV_TYPE_BACKWARD;
2007  int block_cbp = 0, pat, block_tt = 0;
2008  int idx_mbmode;
2009 
2010  mquant = v->pq; /* Lossy initialization */
2011  s->mb_intra = 0;
2012 
2013  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
2014  if (idx_mbmode <= 1) { // intra MB
2015  v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
2016  s->mb_intra = 1;
2017  s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
2018  s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
2019  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
2020  GET_MQUANT();
2021  s->current_picture.qscale_table[mb_pos] = mquant;
2022  /* Set DC scale - y and c use the same (not sure if necessary here) */
2023  s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
2024  s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
2025  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
2026  mb_has_coeffs = idx_mbmode & 1;
2027  if (mb_has_coeffs)
2028  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
2029  dst_idx = 0;
2030  for (i = 0; i < 6; i++) {
2031  v->a_avail = v->c_avail = 0;
2032  v->mb_type[0][s->block_index[i]] = 1;
2033  s->dc_val[0][s->block_index[i]] = 0;
2034  dst_idx += i >> 2;
2035  val = ((cbp >> (5 - i)) & 1);
2036  if (i == 2 || i == 3 || !s->first_slice_line)
2037  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2038  if (i == 1 || i == 3 || s->mb_x)
2039  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2040 
2041  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
2042  (i & 4) ? v->codingset2 : v->codingset);
2043  if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2044  continue;
2045  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
2046  if (v->rangeredfrm)
2047  for (j = 0; j < 64; j++)
2048  s->block[i][j] <<= 1;
2049  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2051  s->dest[dst_idx] + off,
2052  (i & 4) ? s->uvlinesize
2053  : s->linesize);
2054  }
2055  } else {
2056  s->mb_intra = v->is_intra[s->mb_x] = 0;
2057  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
2058  for (i = 0; i < 6; i++)
2059  v->mb_type[0][s->block_index[i]] = 0;
2060  if (v->fmb_is_raw)
2061  fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
2062  else
2063  fwd = v->forward_mb_plane[mb_pos];
2064  if (idx_mbmode <= 5) { // 1-MV
2065  int interpmvp = 0;
2066  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
2067  pred_flag[0] = pred_flag[1] = 0;
2068  if (fwd)
2069  bmvtype = BMV_TYPE_FORWARD;
2070  else {
2071  bmvtype = decode012(gb);
2072  switch (bmvtype) {
2073  case 0:
2074  bmvtype = BMV_TYPE_BACKWARD;
2075  break;
2076  case 1:
2077  bmvtype = BMV_TYPE_DIRECT;
2078  break;
2079  case 2:
2080  bmvtype = BMV_TYPE_INTERPOLATED;
2081  interpmvp = get_bits1(gb);
2082  }
2083  }
2084  v->bmvtype = bmvtype;
2085  if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
2086  get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
2087  }
2088  if (interpmvp) {
2089  get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
2090  }
2091  if (bmvtype == BMV_TYPE_DIRECT) {
2092  dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
2093  dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
2094  if (!s->next_picture_ptr->field_picture) {
2095  av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
2096  return;
2097  }
2098  }
2099  ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
2100  vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
2101  mb_has_coeffs = !(idx_mbmode & 2);
2102  } else { // 4-MV
2103  if (fwd)
2104  bmvtype = BMV_TYPE_FORWARD;
2105  v->bmvtype = bmvtype;
2107  for (i = 0; i < 4; i++) {
2108  dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
2109  dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
2110  if (v->fourmvbp & (8 >> i)) {
2111  get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
2112  &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
2113  &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
2114  }
2115  ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
2116  ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
2117  }
2118  ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
2119  mb_has_coeffs = idx_mbmode & 1;
2120  }
2121  if (mb_has_coeffs)
2122  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2123  if (cbp) {
2124  GET_MQUANT();
2125  }
2126  s->current_picture.qscale_table[mb_pos] = mquant;
2127  if (!v->ttmbf && cbp) {
2129  }
2130  dst_idx = 0;
2131  for (i = 0; i < 6; i++) {
2132  s->dc_val[0][s->block_index[i]] = 0;
2133  dst_idx += i >> 2;
2134  val = ((cbp >> (5 - i)) & 1);
2135  off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
2136  if (val) {
2137  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
2138  first_block, s->dest[dst_idx] + off,
2139  (i & 4) ? s->uvlinesize : s->linesize,
2140  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
2141  block_cbp |= pat << (i << 2);
2142  if (!v->ttmbf && ttmb < 8)
2143  ttmb = -1;
2144  first_block = 0;
2145  }
2146  }
2147  }
2148  v->cbp[s->mb_x] = block_cbp;
2149  v->ttblk[s->mb_x] = block_tt;
2150 }
2151 
2152 /** Decode one B-frame MB (in interlaced frame B picture)
2153  */
2155 {
2156  MpegEncContext *s = &v->s;
2157  GetBitContext *gb = &s->gb;
2158  int i, j;
2159  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2160  int cbp = 0; /* cbp decoding stuff */
2161  int mqdiff, mquant; /* MB quantization */
2162  int ttmb = v->ttfrm; /* MB Transform type */
2163  int mvsw = 0; /* motion vector switch */
2164  int mb_has_coeffs = 1; /* last_flag */
2165  int dmv_x, dmv_y; /* Differential MV components */
2166  int val; /* temp value */
2167  int first_block = 1;
2168  int dst_idx, off;
2169  int skipped, direct, twomv = 0;
2170  int block_cbp = 0, pat, block_tt = 0;
2171  int idx_mbmode = 0, mvbp;
2172  int stride_y, fieldtx;
2173  int bmvtype = BMV_TYPE_BACKWARD;
2174  int dir, dir2;
2175 
2176  mquant = v->pq; /* Lossy initialization */
2177  s->mb_intra = 0;
2178  if (v->skip_is_raw)
2179  skipped = get_bits1(gb);
2180  else
2181  skipped = v->s.mbskip_table[mb_pos];
2182 
2183  if (!skipped) {
2184  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
2185  if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
2186  twomv = 1;
2187  v->blk_mv_type[s->block_index[0]] = 1;
2188  v->blk_mv_type[s->block_index[1]] = 1;
2189  v->blk_mv_type[s->block_index[2]] = 1;
2190  v->blk_mv_type[s->block_index[3]] = 1;
2191  } else {
2192  v->blk_mv_type[s->block_index[0]] = 0;
2193  v->blk_mv_type[s->block_index[1]] = 0;
2194  v->blk_mv_type[s->block_index[2]] = 0;
2195  v->blk_mv_type[s->block_index[3]] = 0;
2196  }
2197  }
2198 
2199  if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
2200  for (i = 0; i < 4; i++) {
2201  s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
2202  s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
2203  s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
2204  s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
2205  }
2206  v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
2207  s->mb_intra = 1;
2208  s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
2209  fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
2210  mb_has_coeffs = get_bits1(gb);
2211  if (mb_has_coeffs)
2212  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2213  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
2214  GET_MQUANT();
2215  s->current_picture.qscale_table[mb_pos] = mquant;
2216  /* Set DC scale - y and c use the same (not sure if necessary here) */
2217  s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
2218  s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
2219  dst_idx = 0;
2220  for (i = 0; i < 6; i++) {
2221  v->a_avail = v->c_avail = 0;
2222  v->mb_type[0][s->block_index[i]] = 1;
2223  s->dc_val[0][s->block_index[i]] = 0;
2224  dst_idx += i >> 2;
2225  val = ((cbp >> (5 - i)) & 1);
2226  if (i == 2 || i == 3 || !s->first_slice_line)
2227  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2228  if (i == 1 || i == 3 || s->mb_x)
2229  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2230 
2231  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
2232  (i & 4) ? v->codingset2 : v->codingset);
2233  if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2234  continue;
2235  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
2236  if (i < 4) {
2237  stride_y = s->linesize << fieldtx;
2238  off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
2239  } else {
2240  stride_y = s->uvlinesize;
2241  off = 0;
2242  }
2244  s->dest[dst_idx] + off,
2245  stride_y);
2246  }
2247  } else {
2248  s->mb_intra = v->is_intra[s->mb_x] = 0;
2249 
2250  if (v->dmb_is_raw)
2251  direct = get_bits1(gb);
2252  else
2253  direct = v->direct_mb_plane[mb_pos];
2254 
2255  if (direct) {
2257  av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
2258  s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
2259  s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
2260  s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
2261  s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
2262 
2263  if (twomv) {
2264  s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
2265  s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
2266  s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
2267  s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
2268 
2269  for (i = 1; i < 4; i += 2) {
2270  s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
2271  s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
2272  s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
2273  s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
2274  }
2275  } else {
2276  for (i = 1; i < 4; i++) {
2277  s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
2278  s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
2279  s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
2280  s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
2281  }
2282  }
2283  }
2284 
2285  if (!direct) {
2286  if (skipped || !s->mb_intra) {
2287  bmvtype = decode012(gb);
2288  switch (bmvtype) {
2289  case 0:
2290  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
2291  break;
2292  case 1:
2293  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
2294  break;
2295  case 2:
2296  bmvtype = BMV_TYPE_INTERPOLATED;
2297  }
2298  }
2299 
2300  if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
2301  mvsw = get_bits1(gb);
2302  }
2303 
2304  if (!skipped) { // inter MB
2305  mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
2306  if (mb_has_coeffs)
2307  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2308  if (!direct) {
2309  if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
2311  } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
2313  }
2314  }
2315 
2316  for (i = 0; i < 6; i++)
2317  v->mb_type[0][s->block_index[i]] = 0;
2318  fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
2319  /* for all motion vector read MVDATA and motion compensate each block */
2320  dst_idx = 0;
2321  if (direct) {
2322  if (twomv) {
2323  for (i = 0; i < 4; i++) {
2324  ff_vc1_mc_4mv_luma(v, i, 0, 0);
2325  ff_vc1_mc_4mv_luma(v, i, 1, 1);
2326  }
2327  ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
2328  ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
2329  } else {
2330  ff_vc1_mc_1mv(v, 0);
2331  ff_vc1_interp_mc(v);
2332  }
2333  } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
2334  mvbp = v->fourmvbp;
2335  for (i = 0; i < 4; i++) {
2336  dir = i==1 || i==3;
2337  dmv_x = dmv_y = 0;
2338  val = ((mvbp >> (3 - i)) & 1);
2339  if (val)
2340  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
2341  j = i > 1 ? 2 : 0;
2342  ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
2343  ff_vc1_mc_4mv_luma(v, j, dir, dir);
2344  ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
2345  }
2346 
2347  ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
2348  ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
2349  } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
2350  mvbp = v->twomvbp;
2351  dmv_x = dmv_y = 0;
2352  if (mvbp & 2)
2353  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
2354 
2355  ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
2356  ff_vc1_mc_1mv(v, 0);
2357 
2358  dmv_x = dmv_y = 0;
2359  if (mvbp & 1)
2360  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
2361 
2362  ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
2363  ff_vc1_interp_mc(v);
2364  } else if (twomv) {
2365  dir = bmvtype == BMV_TYPE_BACKWARD;
2366  dir2 = dir;
2367  if (mvsw)
2368  dir2 = !dir;
2369  mvbp = v->twomvbp;
2370  dmv_x = dmv_y = 0;
2371  if (mvbp & 2)
2372  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
2373  ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
2374 
2375  dmv_x = dmv_y = 0;
2376  if (mvbp & 1)
2377  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
2378  ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
2379 
2380  if (mvsw) {
2381  for (i = 0; i < 2; i++) {
2382  s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
2383  s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
2384  s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
2385  s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
2386  }
2387  } else {
2388  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
2389  ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
2390  }
2391 
2392  ff_vc1_mc_4mv_luma(v, 0, dir, 0);
2393  ff_vc1_mc_4mv_luma(v, 1, dir, 0);
2394  ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
2395  ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
2396  ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
2397  } else {
2398  dir = bmvtype == BMV_TYPE_BACKWARD;
2399 
2400  mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
2401  dmv_x = dmv_y = 0;
2402  if (mvbp)
2403  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
2404 
2405  ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
2406  v->blk_mv_type[s->block_index[0]] = 1;
2407  v->blk_mv_type[s->block_index[1]] = 1;
2408  v->blk_mv_type[s->block_index[2]] = 1;
2409  v->blk_mv_type[s->block_index[3]] = 1;
2410  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
2411  for (i = 0; i < 2; i++) {
2412  s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
2413  s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
2414  }
2415  ff_vc1_mc_1mv(v, dir);
2416  }
2417 
2418  if (cbp)
2419  GET_MQUANT(); // p. 227
2420  s->current_picture.qscale_table[mb_pos] = mquant;
2421  if (!v->ttmbf && cbp)
2423  for (i = 0; i < 6; i++) {
2424  s->dc_val[0][s->block_index[i]] = 0;
2425  dst_idx += i >> 2;
2426  val = ((cbp >> (5 - i)) & 1);
2427  if (!fieldtx)
2428  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2429  else
2430  off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
2431  if (val) {
2432  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
2433  first_block, s->dest[dst_idx] + off,
2434  (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
2435  CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
2436  block_cbp |= pat << (i << 2);
2437  if (!v->ttmbf && ttmb < 8)
2438  ttmb = -1;
2439  first_block = 0;
2440  }
2441  }
2442 
2443  } else { // skipped
2444  dir = 0;
2445  for (i = 0; i < 6; i++) {
2446  v->mb_type[0][s->block_index[i]] = 0;
2447  s->dc_val[0][s->block_index[i]] = 0;
2448  }
2449  s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
2450  s->current_picture.qscale_table[mb_pos] = 0;
2451  v->blk_mv_type[s->block_index[0]] = 0;
2452  v->blk_mv_type[s->block_index[1]] = 0;
2453  v->blk_mv_type[s->block_index[2]] = 0;
2454  v->blk_mv_type[s->block_index[3]] = 0;
2455 
2456  if (!direct) {
2457  if (bmvtype == BMV_TYPE_INTERPOLATED) {
2458  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
2459  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
2460  } else {
2461  dir = bmvtype == BMV_TYPE_BACKWARD;
2462  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
2463  if (mvsw) {
2464  int dir2 = dir;
2465  if (mvsw)
2466  dir2 = !dir;
2467  for (i = 0; i < 2; i++) {
2468  s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
2469  s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
2470  s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
2471  s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
2472  }
2473  } else {
2474  v->blk_mv_type[s->block_index[0]] = 1;
2475  v->blk_mv_type[s->block_index[1]] = 1;
2476  v->blk_mv_type[s->block_index[2]] = 1;
2477  v->blk_mv_type[s->block_index[3]] = 1;
2478  ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
2479  for (i = 0; i < 2; i++) {
2480  s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
2481  s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
2482  }
2483  }
2484  }
2485  }
2486 
2487  ff_vc1_mc_1mv(v, dir);
2488  if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
2489  ff_vc1_interp_mc(v);
2490  }
2491  v->fieldtx_plane[mb_pos] = 0;
2492  }
2493  }
2494  v->cbp[s->mb_x] = block_cbp;
2495  v->ttblk[s->mb_x] = block_tt;
2496 
2497  return 0;
2498 }
2499 
2500 /** Decode blocks of I-frame
2501  */
2503 {
2504  int k, j;
2505  MpegEncContext *s = &v->s;
2506  int cbp, val;
2507  uint8_t *coded_val;
2508  int mb_pos;
2509 
2510  /* select coding mode used for VLC tables selection */
2511  switch (v->y_ac_table_index) {
2512  case 0:
2514  break;
2515  case 1:
2517  break;
2518  case 2:
2520  break;
2521  }
2522 
2523  switch (v->c_ac_table_index) {
2524  case 0:
2526  break;
2527  case 1:
2529  break;
2530  case 2:
2532  break;
2533  }
2534 
2535  /* Set DC scale - y and c use the same */
2536  s->y_dc_scale = s->y_dc_scale_table[v->pq];
2537  s->c_dc_scale = s->c_dc_scale_table[v->pq];
2538 
2539  //do frame decode
2540  s->mb_x = s->mb_y = 0;
2541  s->mb_intra = 1;
2542  s->first_slice_line = 1;
2543  for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
2544  s->mb_x = 0;
2545  init_block_index(v);
2546  for (; s->mb_x < v->end_mb_x; s->mb_x++) {
2548  s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
2549  mb_pos = s->mb_x + s->mb_y * s->mb_width;
2550  s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
2551  s->current_picture.qscale_table[mb_pos] = v->pq;
2552  for (int i = 0; i < 4; i++) {
2553  s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
2554  s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
2555  }
2556 
2557  // do actual MB decoding and displaying
2559  v->s.ac_pred = get_bits1(&v->s.gb);
2560 
2561  for (k = 0; k < 6; k++) {
2562  v->mb_type[0][s->block_index[k]] = 1;
2563 
2564  val = ((cbp >> (5 - k)) & 1);
2565 
2566  if (k < 4) {
2567  int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
2568  val = val ^ pred;
2569  *coded_val = val;
2570  }
2571  cbp |= val << (5 - k);
2572 
2573  vc1_decode_i_block(v, v->block[v->cur_blk_idx][block_map[k]], k, val, (k < 4) ? v->codingset : v->codingset2);
2574 
2575  if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2576  continue;
2578  }
2579 
2580  if (v->overlap && v->pq >= 9) {
2582  if (v->rangeredfrm)
2583  for (k = 0; k < 6; k++)
2584  for (j = 0; j < 64; j++)
2585  v->block[v->cur_blk_idx][block_map[k]][j] <<= 1;
2586  vc1_put_blocks_clamped(v, 1);
2587  } else {
2588  if (v->rangeredfrm)
2589  for (k = 0; k < 6; k++)
2590  for (j = 0; j < 64; j++)
2591  v->block[v->cur_blk_idx][block_map[k]][j] = (v->block[v->cur_blk_idx][block_map[k]][j] - 64) << 1;
2592  vc1_put_blocks_clamped(v, 0);
2593  }
2594 
2595  if (v->s.loop_filter)
2597 
2598  if (get_bits_count(&s->gb) > v->bits) {
2599  ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
2600  av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
2601  get_bits_count(&s->gb), v->bits);
2602  return;
2603  }
2604 
2605  v->topleft_blk_idx = (v->topleft_blk_idx + 1) % (v->end_mb_x + 2);
2606  v->top_blk_idx = (v->top_blk_idx + 1) % (v->end_mb_x + 2);
2607  v->left_blk_idx = (v->left_blk_idx + 1) % (v->end_mb_x + 2);
2608  v->cur_blk_idx = (v->cur_blk_idx + 1) % (v->end_mb_x + 2);
2609  }
2610  if (!v->s.loop_filter)
2611  ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
2612  else if (s->mb_y)
2613  ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
2614 
2615  s->first_slice_line = 0;
2616  }
2617  if (v->s.loop_filter)
2618  ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
2619 
2620  /* This is intentionally mb_height and not end_mb_y - unlike in advanced
2621  * profile, these only differ are when decoding MSS2 rectangles. */
2622  ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
2623 }
2624 
2625 /** Decode blocks of I-frame for advanced profile
2626  */
2628 {
2629  int k;
2630  MpegEncContext *s = &v->s;
2631  int cbp, val;
2632  uint8_t *coded_val;
2633  int mb_pos;
2634  int mquant;
2635  int mqdiff;
2636  GetBitContext *gb = &s->gb;
2637 
2638  /* select coding mode used for VLC tables selection */
2639  switch (v->y_ac_table_index) {
2640  case 0:
2642  break;
2643  case 1:
2645  break;
2646  case 2:
2648  break;
2649  }
2650 
2651  switch (v->c_ac_table_index) {
2652  case 0:
2654  break;
2655  case 1:
2657  break;
2658  case 2:
2660  break;
2661  }
2662 
2663  // do frame decode
2664  s->mb_x = s->mb_y = 0;
2665  s->mb_intra = 1;
2666  s->first_slice_line = 1;
2667  s->mb_y = s->start_mb_y;
2668  if (s->start_mb_y) {
2669  s->mb_x = 0;
2670  init_block_index(v);
2671  memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
2672  (1 + s->b8_stride) * sizeof(*s->coded_block));
2673  }
2674  for (; s->mb_y < s->end_mb_y; s->mb_y++) {
2675  s->mb_x = 0;
2676  init_block_index(v);
2677  for (;s->mb_x < s->mb_width; s->mb_x++) {
2678  mquant = v->pq;
2680  s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
2681  mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2682  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
2683  for (int i = 0; i < 4; i++) {
2684  s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = 0;
2685  s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = 0;
2686  }
2687 
2688  // do actual MB decoding and displaying
2689  if (v->fieldtx_is_raw)
2690  v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
2692  if (v->acpred_is_raw)
2693  v->s.ac_pred = get_bits1(&v->s.gb);
2694  else
2695  v->s.ac_pred = v->acpred_plane[mb_pos];
2696 
2697  if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
2698  v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
2699 
2700  GET_MQUANT();
2701 
2702  s->current_picture.qscale_table[mb_pos] = mquant;
2703  /* Set DC scale - y and c use the same */
2704  s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
2705  s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
2706 
2707  for (k = 0; k < 6; k++) {
2708  v->mb_type[0][s->block_index[k]] = 1;
2709 
2710  val = ((cbp >> (5 - k)) & 1);
2711 
2712  if (k < 4) {
2713  int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
2714  val = val ^ pred;
2715  *coded_val = val;
2716  }
2717  cbp |= val << (5 - k);
2718 
2719  v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
2720  v->c_avail = !!s->mb_x || (k == 1 || k == 3);
2721 
2722  vc1_decode_i_block_adv(v, v->block[v->cur_blk_idx][block_map[k]], k, val,
2723  (k < 4) ? v->codingset : v->codingset2, mquant);
2724 
2725  if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2726  continue;
2728  }
2729 
2730  if (v->overlap && (v->pq >= 9 || v->condover != CONDOVER_NONE))
2732  vc1_put_blocks_clamped(v, 1);
2733  if (v->s.loop_filter)
2735 
2736  if (get_bits_count(&s->gb) > v->bits) {
2737  // TODO: may need modification to handle slice coding
2738  ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
2739  av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
2740  get_bits_count(&s->gb), v->bits);
2741  return;
2742  }
2747  }
2748  if (!v->s.loop_filter)
2749  ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
2750  else if (s->mb_y)
2751  ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
2752  s->first_slice_line = 0;
2753  }
2754 
2755  if (v->s.loop_filter)
2756  ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
2757  ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
2758  (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
2759 }
2760 
2762 {
2763  MpegEncContext *s = &v->s;
2764  int apply_loop_filter;
2765 
2766  /* select coding mode used for VLC tables selection */
2767  switch (v->c_ac_table_index) {
2768  case 0:
2770  break;
2771  case 1:
2773  break;
2774  case 2:
2776  break;
2777  }
2778 
2779  switch (v->c_ac_table_index) {
2780  case 0:
2782  break;
2783  case 1:
2785  break;
2786  case 2:
2788  break;
2789  }
2790 
2791  apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
2792  s->first_slice_line = 1;
2793  memset(v->cbp_base, 0, sizeof(v->cbp_base[0]) * 3 * s->mb_stride);
2794  for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
2795  s->mb_x = 0;
2796  init_block_index(v);
2797  for (; s->mb_x < s->mb_width; s->mb_x++) {
2799 
2800  if (v->fcm == ILACE_FIELD) {
2802  if (apply_loop_filter)
2804  } else if (v->fcm == ILACE_FRAME) {
2806  if (apply_loop_filter)
2808  } else {
2809  vc1_decode_p_mb(v);
2810  if (apply_loop_filter)
2812  }
2813  if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
2814  // TODO: may need modification to handle slice coding
2815  ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
2816  av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
2817  get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
2818  return;
2819  }
2824  }
2825  memmove(v->cbp_base,
2826  v->cbp - s->mb_stride,
2827  sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
2828  memmove(v->ttblk_base,
2829  v->ttblk - s->mb_stride,
2830  sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
2831  memmove(v->is_intra_base,
2832  v->is_intra - s->mb_stride,
2833  sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
2834  memmove(v->luma_mv_base,
2835  v->luma_mv - s->mb_stride,
2836  sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
2837  if (s->mb_y != s->start_mb_y)
2838  ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
2839  s->first_slice_line = 0;
2840  }
2841  if (s->end_mb_y >= s->start_mb_y)
2842  ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
2843  ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
2844  (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
2845 }
2846 
2848 {
2849  MpegEncContext *s = &v->s;
2850 
2851  /* select coding mode used for VLC tables selection */
2852  switch (v->c_ac_table_index) {
2853  case 0:
2855  break;
2856  case 1:
2858  break;
2859  case 2:
2861  break;
2862  }
2863 
2864  switch (v->c_ac_table_index) {
2865  case 0:
2867  break;
2868  case 1:
2870  break;
2871  case 2:
2873  break;
2874  }
2875 
2876  s->first_slice_line = 1;
2877  for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
2878  s->mb_x = 0;
2879  init_block_index(v);
2880  for (; s->mb_x < s->mb_width; s->mb_x++) {
2882 
2883  if (v->fcm == ILACE_FIELD) {
2885  if (v->s.loop_filter)
2887  } else if (v->fcm == ILACE_FRAME) {
2889  if (v->s.loop_filter)
2891  } else {
2892  vc1_decode_b_mb(v);
2893  if (v->s.loop_filter)
2895  }
2896  if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
2897  // TODO: may need modification to handle slice coding
2898  ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
2899  av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
2900  get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
2901  return;
2902  }
2903  }
2904  memmove(v->cbp_base,
2905  v->cbp - s->mb_stride,
2906  sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
2907  memmove(v->ttblk_base,
2908  v->ttblk - s->mb_stride,
2909  sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
2910  memmove(v->is_intra_base,
2911  v->is_intra - s->mb_stride,
2912  sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
2913  if (!v->s.loop_filter)
2914  ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
2915  else if (s->mb_y)
2916  ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
2917  s->first_slice_line = 0;
2918  }
2919  if (v->s.loop_filter)
2920  ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
2921  ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
2922  (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
2923 }
2924 
2926 {
2927  MpegEncContext *s = &v->s;
2928 
2929  if (!v->s.last_picture.f->data[0])
2930  return;
2931 
2932  ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
2933  s->first_slice_line = 1;
2934  for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
2935  s->mb_x = 0;
2936  init_block_index(v);
2938  memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
2939  memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
2940  memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
2941  ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
2942  s->first_slice_line = 0;
2943  }
2945 }
2946 
2948 {
2949 
2950  v->s.esc3_level_length = 0;
2951  if (v->x8_type) {
2953  &v->s.gb, &v->s.mb_x, &v->s.mb_y,
2954  2 * v->pq + v->halfpq, v->pq * !v->pquantizer,
2955  v->s.loop_filter, v->s.low_delay);
2956 
2957  ff_er_add_slice(&v->s.er, 0, 0,
2958  (v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1,
2959  ER_MB_END);
2960  } else {
2961  v->cur_blk_idx = 0;
2962  v->left_blk_idx = -1;
2963  v->topleft_blk_idx = 1;
2964  v->top_blk_idx = 2;
2965  switch (v->s.pict_type) {
2966  case AV_PICTURE_TYPE_I:
2967  if (v->profile == PROFILE_ADVANCED)
2969  else
2971  break;
2972  case AV_PICTURE_TYPE_P:
2973  if (v->p_frame_skipped)
2975  else
2977  break;
2978  case AV_PICTURE_TYPE_B:
2979  if (v->bi_type) {
2980  if (v->profile == PROFILE_ADVANCED)
2982  else
2984  } else
2986  break;
2987  }
2988  }
2989 }
in the bitstream is reported as 00b
Definition: vc1.h:149
const int ff_vc1_ttblk_to_tt[3][8]
Table for conversion between TTBLK and TTMB.
Definition: vc1data.c:34
#define VC1_TTBLK_VLC_BITS
Definition: vc1data.c:126
IDCTDSPContext idsp
Definition: mpegvideo.h:230
#define NULL
Definition: coverity.c:32
void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t *is_intra, int pred_flag, int dir)
Predict and set motion vector.
Definition: vc1_pred.c:211
int topleft_blk_idx
Definition: vc1.h:391
const char const char void * val
Definition: avisynth_c.h:771
discard all frames except keyframes
Definition: avcodec.h:802
void ff_init_block_index(MpegEncContext *s)
Definition: mpegvideo.c:2272
#define VC1_IF_MBMODE_VLC_BITS
Definition: vc1data.c:145
int p_frame_skipped
Definition: vc1.h:386
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
The VC1 Context.
Definition: vc1.h:173
int esc3_level_length
Definition: mpegvideo.h:440
VLC ff_vc1_ttblk_vlc[3]
Definition: vc1data.c:127
#define VC1_ICBPCY_VLC_BITS
Definition: vc1data.c:120
int k_x
Number of bits for MVs (depends on MV range)
Definition: vc1.h:235
int start_mb_y
start mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y) ...
Definition: mpegvideo.h:153
const uint8_t * y_dc_scale_table
qscale -> y_dc_scale table
Definition: mpegvideo.h:188
void(* clear_block)(int16_t *block)
Definition: blockdsp.h:36
int mv_type_is_raw
mv type mb plane is not coded
Definition: vc1.h:289
uint8_t dmvrange
Frame decoding info for interlaced picture.
Definition: vc1.h:336
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
#define AC_VLC_BITS
Definition: intrax8.c:38
static const uint8_t vc1_index_decode_table[AC_MODES][185][2]
Definition: vc1acdata.h:34
int end_mb_y
end mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y) ...
Definition: mpegvideo.h:154
int16_t(*[3] ac_val)[16]
used for MPEG-4 AC prediction, all 3 arrays must be continuous
Definition: mpegvideo.h:194
static const int vc1_last_decode_table[AC_MODES]
Definition: vc1acdata.h:30
int tt_index
Index for Transform Type tables (to decode TTMB)
Definition: vc1.h:285
#define VC1_2REF_MVDATA_VLC_BITS
Definition: vc1data.c:140
const char * b
Definition: vf_curves.c:116
void(* clear_blocks)(int16_t *blocks)
Definition: blockdsp.h:37
uint8_t rangeredfrm
Frame decoding info for S/M profiles only.
Definition: vc1.h:303
int field_picture
whether or not the picture was encoded in separate fields
Definition: mpegpicture.h:79
#define MB_TYPE_INTRA
Definition: mpegutils.h:73
static int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int a_avail, int c_avail, int16_t **dc_val_ptr, int *dir_ptr)
Get predicted DC value prediction dir: left=0, top=1.
Definition: vc1_block.c:404
uint8_t zz_8x8[4][64]
Zigzag table for TT_8x8, permuted for IDCT.
Definition: vc1.h:239
mpegvideo header.
int top_blk_idx
Definition: vc1.h:391
IntraX8Context x8
Definition: vc1.h:175
VLC * imv_vlc
Definition: vc1.h:342
static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n, int mquant, int ttmb, int first_block, uint8_t *dst, int linesize, int skip_block, int *ttmb_out)
Decode P block.
Definition: vc1_block.c:1114
uint8_t run
Definition: svq3.c:206
static const uint8_t q1[256]
Definition: twofish.c:96
int end_mb_x
Horizontal macroblock limit (used only by mss2)
Definition: vc1.h:399
static int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int16_t **dc_val_ptr, int *dir_ptr)
Get predicted DC value for I-frames only prediction dir: left=0, top=1.
Definition: vc1_block.c:339
int block_wrap[6]
Definition: mpegvideo.h:294
static int vc1_decode_p_mb(VC1Context *v)
Decode one P-frame MB.
Definition: vc1_block.c:1278
const uint8_t ff_vc1_adv_interlaced_4x8_zz[32]
Definition: vc1data.c:1065
int bits
Definition: vc1.h:179
int range_x
Definition: vc1.h:237
#define VC1_4MV_BLOCK_PATTERN_VLC_BITS
Definition: vc1data.c:122
static int16_t block[64]
Definition: dct.c:115
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
void ff_mpeg_draw_horiz_band(MpegEncContext *s, int y, int h)
Definition: mpegvideo.c:2265
int esc3_run_length
Definition: mpegvideo.h:441
uint8_t * acpred_plane
AC prediction flags bitplane.
Definition: vc1.h:322
VC-1 tables.
int bi_type
Definition: vc1.h:387
void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
Definition: vc1_pred.c:884
#define DC_VLC_BITS
Definition: vc1_block.c:40
uint8_t
void(* vc1_inv_trans_8x8)(int16_t *b)
Definition: vc1dsp.h:37
int left_blk_idx
Definition: vc1.h:391
void(* add_pixels_clamped)(const int16_t *block, uint8_t *av_restrict pixels, ptrdiff_t line_size)
Definition: idctdsp.h:61
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int y_ac_table_index
Luma index from AC2FRM element.
Definition: vc1.h:255
int second_field
Definition: vc1.h:355
#define ER_MB_ERROR
int c_ac_table_index
AC coding set indexes.
Definition: vc1.h:254
const int ff_vc1_ac_sizes[AC_MODES]
Definition: vc1data.c:1133
int ttfrm
Transform type info present at frame level.
Definition: vc1.h:257
static void vc1_decode_b_mb_intfi(VC1Context *v)
Decode one B-frame MB (in interlaced field B picture)
Definition: vc1_block.c:1991
#define MB_TYPE_16x16
Definition: mpegutils.h:54
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:180
int codingset2
index of current table set from 11.8 to use for chroma block decoding
Definition: vc1.h:261
int16_t bfraction
Relative position % anchors=> how to scale MVs.
Definition: vc1.h:272
int16_t((* luma_mv)[2]
Definition: vc1.h:394
int profile
Sequence header data for all Profiles TODO: choose between ints, uint8_ts and monobit flags...
Definition: vc1.h:218
MSMPEG4 data tables.
static const uint8_t offset_table[2][9]
Definition: vc1_block.c:43
int ff_intrax8_decode_picture(IntraX8Context *w, Picture *pict, GetBitContext *gb, int *mb_x, int *mb_y, int dquant, int quant_offset, int loopfilter, int lowdelay)
Decode single IntraX8 frame.
Definition: intrax8.c:773
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
uint8_t * forward_mb_plane
bitplane for "forward" MBs
Definition: vc1.h:288
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:129
static void vc1_decode_skip_blocks(VC1Context *v)
Definition: vc1_block.c:2925
static const uint8_t size_table[6]
Definition: vc1_block.c:1274
int fieldtx_is_raw
Definition: vc1.h:348
uint8_t * over_flags_plane
Overflags bitplane.
Definition: vc1.h:324
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:870
uint8_t fourmvbp
Definition: vc1.h:346
#define av_log(a,...)
int range_y
MV range.
Definition: vc1.h:237
static void ff_update_block_index(MpegEncContext *s)
Definition: mpegvideo.h:735
static const uint16_t table[]
Definition: prosumer.c:203
uint8_t ttmbf
Transform type flag.
Definition: vc1.h:258
Definition: vc1.h:119
void(* put_pixels_clamped)(const int16_t *block, uint8_t *av_restrict pixels, ptrdiff_t line_size)
Definition: idctdsp.h:55
int k_y
Number of bits for MVs (depends on MV range)
Definition: vc1.h:236
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:814
int16_t * dc_val[3]
used for MPEG-4 DC prediction, all 3 arrays must be continuous
Definition: mpegvideo.h:187
uint8_t twomvbp
Definition: vc1.h:345
int dmb_is_raw
direct mb plane is raw
Definition: vc1.h:290
const uint8_t ff_vc1_simple_progressive_4x4_zz[16]
Definition: vc1data.c:1022
int16_t(* block)[6][64]
Definition: vc1.h:390
#define VC1_CBPCY_P_VLC_BITS
Definition: vc1data.c:118
static void vc1_decode_b_mb(VC1Context *v)
Decode one B-frame MB (in Main profile)
Definition: vc1_block.c:1836
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int overlap
overlapped transforms in use
Definition: vc1.h:226
in the bitstream is reported as 11b
Definition: vc1.h:151
static int vc1_decode_b_mb_intfr(VC1Context *v)
Decode one B-frame MB (in interlaced frame B picture)
Definition: vc1_block.c:2154
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n, int coded, int codingset, int mquant)
Decode intra block in intra frames - should be faster than decode_intra_block.
Definition: vc1_block.c:712
void(* vc1_inv_trans_8x8_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:41
void ff_vc1_mc_4mv_chroma4(VC1Context *v, int dir, int dir2, int avg)
Do motion compensation for 4-MV interlaced frame chroma macroblock (both U and V) ...
Definition: vc1_mc.c:839
ERContext er
Definition: mpegvideo.h:565
static void vc1_put_blocks_clamped(VC1Context *v, int put_signed)
Definition: vc1_block.c:72
void(* vc1_inv_trans_8x4)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:38
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1613
VLC * mbmode_vlc
Definition: vc1.h:341
#define wrap(func)
Definition: neontest.h:65
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:401
int low_delay
no reordering needed / has no B-frames
Definition: mpegvideo.h:406
GetBitContext gb
Definition: mpegvideo.h:448
void ff_vc1_mc_4mv_chroma(VC1Context *v, int dir)
Do motion compensation for 4-MV macroblock - both chroma blocks.
Definition: vc1_mc.c:634
#define scale_mv(n, dim)
const uint8_t * zz_8x4
Zigzag scan table for TT_8x4 coding mode.
Definition: vc1.h:241
int res_rtm_flag
reserved, set to 1
Definition: vc1.h:191
int a_avail
Definition: vc1.h:263
uint8_t * blk_mv_type
0: frame MV, 1: field MV (interlaced frame)
Definition: vc1.h:350
const uint8_t ff_vc1_adv_interlaced_8x4_zz[32]
Definition: vc1data.c:1058
#define B_FRACTION_DEN
Definition: vc1data.h:99
VLC ff_vc1_ttmb_vlc[3]
Definition: vc1data.c:115
void ff_vc1_i_loop_filter(VC1Context *v)
VLC * twomvbp_vlc
Definition: vc1.h:343
static void vc1_decode_b_blocks(VC1Context *v)
Definition: vc1_block.c:2847
const uint8_t * zz_4x8
Zigzag scan table for TT_4x8 coding mode.
Definition: vc1.h:242
void ff_vc1_decode_blocks(VC1Context *v)
Definition: vc1_block.c:2947
static int vc1_decode_p_mb_intfr(VC1Context *v)
Definition: vc1_block.c:1506
int x8_type
Definition: vc1.h:388
#define MB_INTRA_VLC_BITS
Definition: vc1_block.c:39
int field_mode
1 for interlaced field pictures
Definition: vc1.h:353
#define VC1_SUBBLKPAT_VLC_BITS
Definition: vc1data.c:128
uint8_t * mbskip_table
used to avoid copy if macroblock skipped (for black regions for example) and used for B-frame encodin...
Definition: mpegvideo.h:196
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
Picture * current_picture_ptr
pointer to the current picture
Definition: mpegvideo.h:184
int fourmvswitch
Definition: vc1.h:337
int mb_off
Definition: vc1.h:365
void ff_vc1_b_intfi_loop_filter(VC1Context *v)
static void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
Reconstruct motion vector for B-frame and do motion compensation.
Definition: vc1_block.c:313
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:762
void(* vc1_inv_trans_4x4)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:40
#define inc_blk_idx(idx)
Definition: vc1_block.c:164
int block_last_index[12]
last non zero coefficient in block
Definition: mpegvideo.h:86
int n
Definition: avisynth_c.h:684
static const int block_map[6]
Definition: vc1_block.c:49
void ff_vc1_p_loop_filter(VC1Context *v)
void(* vc1_inv_trans_8x4_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:42
uint32_t * cbp
Definition: vc1.h:392
int left_blk_sh
Definition: vc1.h:240
int16_t(* luma_mv_base)[2]
Definition: vc1.h:394
uint8_t * fieldtx_plane
Definition: vc1.h:347
int block_index[6]
index to current MB in block based arrays with edges
Definition: mpegvideo.h:293
int * ttblk_base
Definition: vc1.h:259
VLC * cbpcy_vlc
CBPCY VLC table.
Definition: vc1.h:284
static int decode210(GetBitContext *gb)
Definition: get_bits.h:806
static const float pred[4]
Definition: siprdata.h:259
void(* vc1_inv_trans_4x8)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:39
int first_slice_line
used in MPEG-4 too to handle resync markers
Definition: mpegvideo.h:436
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1350
void(* vc1_inv_trans_4x8_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:43
int top_blk_sh
Either 3 or 0, positions of l/t in blk[].
Definition: vc1.h:240
Libavcodec external API header.
void(* vc1_inv_trans_4x4_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vc1dsp.h:44
void ff_vc1_mc_1mv(VC1Context *v, int dir)
Do motion compensation over 1 macroblock Mostly adapted hpel_motion and qpel_motion from mpegvideo...
Definition: vc1_mc.c:172
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:134
BlockDSPContext bdsp
Definition: mpegvideo.h:226
int c_avail
Definition: vc1.h:263
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:257
static const uint8_t vc1_delta_run_table[AC_MODES][57]
Definition: vc1acdata.h:295
#define GET_MVDATA(_dmv_x, _dmv_y)
Get MV differentials.
Definition: vc1_block.c:224
uint32_t * cbp_base
Definition: vc1.h:392
uint8_t * is_intra
Definition: vc1.h:393
uint8_t * coded_block
used for coded block pattern prediction (msmpeg4v3, wmv1)
Definition: mpegvideo.h:192
void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
Definition: vc1_pred.c:684
const uint8_t ff_vc1_mbmode_intfrp[2][15][4]
Definition: vc1data.c:53
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
static void vc1_decode_i_blocks_adv(VC1Context *v)
Decode blocks of I-frame for advanced profile.
Definition: vc1_block.c:2627
int fmb_is_raw
forward mb plane is raw
Definition: vc1.h:291
uint8_t * is_intra_base
Definition: vc1.h:393
Definition: vc1.h:115
int index
Definition: gxfenc.c:89
struct AVFrame * f
Definition: mpegpicture.h:46
#define VC1_2MV_BLOCK_PATTERN_VLC_BITS
Definition: vc1data.c:124
static int vc1_coded_block_pred(MpegEncContext *s, int n, uint8_t **coded_block_ptr)
Definition: vc1_block.c:475
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:135
int skip_is_raw
skip mb plane is not coded
Definition: vc1.h:292
static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x, int *dmv_y, int *pred_flag)
Definition: vc1_block.c:262
#define MB_TYPE_SKIP
Definition: mpegutils.h:62
void ff_vc1_p_overlap_filter(VC1Context *v)
uint8_t * direct_mb_plane
bitplane for "direct" MBs
Definition: vc1.h:287
static const uint8_t vc1_last_delta_run_table[AC_MODES][10]
Definition: vc1acdata.h:339
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:212
uint8_t * mv_type_mb_plane
bitplane for mv_type == (4MV)
Definition: vc1.h:286
const uint8_t * quant
int numref
number of past field pictures used as reference
Definition: vc1.h:357
const int32_t ff_vc1_dqscale[63]
Definition: vc1data.c:1085
int blocks_off
Definition: vc1.h:365
uint8_t tff
Definition: vc1.h:312
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
const uint8_t * c_dc_scale_table
qscale -> c_dc_scale table
Definition: mpegvideo.h:189
uint8_t level
Definition: svq3.c:207
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
Definition: mpegvideo.h:276
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:131
MpegEncContext s
Definition: vc1.h:174
in the bitstream is reported as 10b
Definition: vc1.h:150
MpegEncContext.
Definition: mpegvideo.h:81
Picture * next_picture_ptr
pointer to the next picture (for bidir pred)
Definition: mpegvideo.h:183
void ff_vc1_i_overlap_filter(VC1Context *v)
int8_t * qscale_table
Definition: mpegpicture.h:50
struct AVCodecContext * avctx
Definition: mpegvideo.h:98
int cur_blk_idx
Definition: vc1.h:391
uint8_t pq
Definition: vc1.h:238
void ff_vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg)
Do motion compensation for 4-MV macroblock - luminance block.
Definition: vc1_mc.c:452
static int vc1_decode_p_mb_intfi(VC1Context *v)
Definition: vc1_block.c:1714
#define GET_MQUANT()
Get macroblock-level quantizer scale.
Definition: vc1_block.c:181
int pqindex
raw pqindex used in coding set selection
Definition: vc1.h:262
static const uint8_t vc1_last_delta_level_table[AC_MODES][44]
Definition: vc1acdata.h:246
#define VC1_1REF_MVDATA_VLC_BITS
Definition: vc1data.c:138
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
Decode one AC coefficient.
Definition: vc1_block.c:511
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:130
if(ret< 0)
Definition: vf_mcdeint.c:279
void(* put_signed_pixels_clamped)(const int16_t *block, uint8_t *av_restrict pixels, ptrdiff_t line_size)
Definition: idctdsp.h:58
#define VC1_TTMB_VLC_BITS
Definition: vc1data.c:114
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
uint8_t * dest[3]
Definition: mpegvideo.h:295
static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n, int coded, int mquant, int codingset)
Decode intra block in inter frames - more generic version than vc1_decode_i_block.
Definition: vc1_block.c:905
enum FrameCodingMode fcm
Frame decoding info for Advanced profile.
Definition: vc1.h:309
static double c[64]
Picture last_picture
copy of the previous picture structure.
Definition: mpegvideo.h:162
uint8_t dquantfrm
pquant parameters
Definition: vc1.h:245
Bi-dir predicted.
Definition: avutil.h:276
const uint8_t ff_vc1_adv_interlaced_4x4_zz[16]
Definition: vc1data.c:1076
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:2977
int * ttblk
Transform type at the block level.
Definition: vc1.h:259
VLC ff_vc1_ac_coeff_table[8]
Definition: vc1data.c:143
void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y, int mvn, int r_x, int r_y, uint8_t *is_intra, int dir)
Predict and set motion vector for interlaced frame picture MBs.
Definition: vc1_pred.c:463
uint8_t condover
Definition: vc1.h:326
#define VC1_INTFR_4MV_MBMODE_VLC_BITS
Definition: vc1data.c:130
static void vc1_decode_p_blocks(VC1Context *v)
Definition: vc1_block.c:2761
uint8_t pquantizer
Uniform (over sequence) quantizer in use.
Definition: vc1.h:283
#define xf(width, name, var, range_min, range_max, subs,...)
Definition: cbs_av1.c:698
static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n, int coded, int codingset)
Decode intra block in intra frames - should be faster than decode_intra_block.
Definition: vc1_block.c:572
Definition: vc1.h:118
void ff_vc1_p_intfr_loop_filter(VC1Context *v)
int acpred_is_raw
Definition: vc1.h:323
uint8_t zzi_8x8[64]
Definition: vc1.h:349
void ff_vc1_interp_mc(VC1Context *v)
Motion compensation for direct or interpolated blocks in B-frames.
Definition: vc1_mc.c:1004
int16_t(* block)[64]
points to one of the following blocks
Definition: mpegvideo.h:507
static int decode012(GetBitContext *gb)
Definition: get_bits.h:796
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
int bmvtype
Definition: vc1.h:367
Picture next_picture
copy of the next picture structure.
Definition: mpegvideo.h:168
int overflg_is_raw
Definition: vc1.h:325
Definition: vc1.h:112
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
VLC ff_msmp4_mb_i_vlc
Definition: msmpeg4data.c:38
#define av_always_inline
Definition: attributes.h:39
static void vc1_decode_i_blocks(VC1Context *v)
Decode blocks of I-frame.
Definition: vc1_block.c:2502
int codingset
index of current table set from 11.8 to use for luma block decoding
Definition: vc1.h:260
uint8_t * mb_type[3]
Definition: vc1.h:264
#define VC1_INTFR_NON4MV_MBMODE_VLC_BITS
Definition: vc1data.c:132
VLC * fourmvbp_vlc
Definition: vc1.h:344
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
int dc_table_index
Definition: mpegvideo.h:433
VLC ff_msmp4_dc_luma_vlc[2]
Definition: msmpeg4data.c:39
VLC ff_vc1_subblkpat_vlc[3]
Definition: vc1data.c:129
uint8_t halfpq
Uniform quant over image and qp+.5.
Definition: vc1.h:273
static const uint8_t vc1_delta_level_table[AC_MODES][31]
Definition: vc1acdata.h:203
VC1DSPContext vc1dsp
Definition: vc1.h:177
Predicted.
Definition: avutil.h:275
static void init_block_index(VC1Context *v)
Definition: vc1_block.c:59
VLC ff_msmp4_dc_chroma_vlc[2]
Definition: msmpeg4data.c:40