FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
diracdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3  * Copyright (C) 2009 David Conrad
4  * Copyright (C) 2011 Jordi Ortiz
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Dirac Decoder
26  * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27  */
28 
29 #include "libavutil/pixdesc.h"
30 #include "libavutil/thread.h"
31 #include "avcodec.h"
32 #include "get_bits.h"
33 #include "bytestream.h"
34 #include "internal.h"
35 #include "golomb.h"
36 #include "dirac_arith.h"
37 #include "dirac_vlc.h"
38 #include "mpeg12data.h"
39 #include "libavcodec/mpegvideo.h"
40 #include "mpegvideoencdsp.h"
41 #include "dirac_dwt.h"
42 #include "dirac.h"
43 #include "diractab.h"
44 #include "diracdsp.h"
45 #include "videodsp.h"
46 
47 /**
48  * The spec limits this to 3 for frame coding, but in practice can be as high as 6
49  */
50 #define MAX_REFERENCE_FRAMES 8
51 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
52 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
53 #define MAX_QUANT 255 /* max quant for VC-2 */
54 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
55 
56 /**
57  * DiracBlock->ref flags, if set then the block does MC from the given ref
58  */
59 #define DIRAC_REF_MASK_REF1 1
60 #define DIRAC_REF_MASK_REF2 2
61 #define DIRAC_REF_MASK_GLOBAL 4
62 
63 /**
64  * Value of Picture.reference when Picture is not a reference picture, but
65  * is held for delayed output.
66  */
67 #define DELAYED_PIC_REF 4
68 
69 #define CALC_PADDING(size, depth) \
70  (((size + (1 << depth) - 1) >> depth) << depth)
71 
72 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
73 
74 typedef struct {
76  int interpolated[3]; /* 1 if hpel[] is valid */
77  uint8_t *hpel[3][4];
78  uint8_t *hpel_base[3][4];
79  int reference;
80 } DiracFrame;
81 
82 typedef struct {
83  union {
84  int16_t mv[2][2];
85  int16_t dc[3];
86  } u; /* anonymous unions aren't in C99 :( */
88 } DiracBlock;
89 
90 typedef struct SubBand {
91  int level;
92  int orientation;
93  int stride; /* in bytes */
94  int width;
95  int height;
96  int pshift;
97  int quant;
98  uint8_t *ibuf;
99  struct SubBand *parent;
100 
101  /* for low delay */
102  unsigned length;
104 } SubBand;
105 
106 typedef struct Plane {
108 
109  int width;
110  int height;
111  ptrdiff_t stride;
112 
113  /* block length */
116  /* block separation (block n+1 starts after this many pixels in block n) */
119  /* amount of overspill on each edge (half of the overlap between blocks) */
122 
124 } Plane;
125 
126 /* Used by Low Delay and High Quality profiles */
127 typedef struct DiracSlice {
129  int slice_x;
130  int slice_y;
131  int bytes;
132 } DiracSlice;
133 
134 typedef struct DiracContext {
144  int64_t frame_number; /* number of the next frame to display */
148 
149  int bit_depth; /* bit depth */
150  int pshift; /* pixel shift = bit_depth > 8 */
151 
152  int zero_res; /* zero residue flag */
153  int is_arith; /* whether coeffs use arith or golomb coding */
154  int core_syntax; /* use core syntax only */
155  int low_delay; /* use the low delay syntax */
156  int hq_picture; /* high quality picture, enables low_delay */
157  int ld_picture; /* use low delay picture, turns on low_delay */
158  int dc_prediction; /* has dc prediction */
159  int globalmc_flag; /* use global motion compensation */
160  int num_refs; /* number of reference pictures */
161 
162  /* wavelet decoding */
163  unsigned wavelet_depth; /* depth of the IDWT */
164  unsigned wavelet_idx;
165 
166  /**
167  * schroedinger older than 1.0.8 doesn't store
168  * quant delta if only one codebook exists in a band
169  */
170  unsigned old_delta_quant;
171  unsigned codeblock_mode;
172 
173  unsigned num_x; /* number of horizontal slices */
174  unsigned num_y; /* number of vertical slices */
175 
176  uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
177  int threads_num_buf; /* Current # of buffers allocated */
178  int thread_buf_size; /* Each thread has a buffer this size */
179 
182 
183  struct {
184  unsigned width;
185  unsigned height;
187 
188  struct {
189  AVRational bytes; /* average bytes per slice */
190  uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
191  } lowdelay;
192 
193  struct {
194  unsigned prefix_bytes;
195  uint64_t size_scaler;
196  } highquality;
197 
198  struct {
199  int pan_tilt[2]; /* pan/tilt vector */
200  int zrs[2][2]; /* zoom/rotate/shear matrix */
201  int perspective[2]; /* perspective vector */
202  unsigned zrs_exp;
203  unsigned perspective_exp;
204  } globalmc[2];
205 
206  /* motion compensation */
207  uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
208  int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
209  unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
210 
211  int blwidth; /* number of blocks (horizontally) */
212  int blheight; /* number of blocks (vertically) */
213  int sbwidth; /* number of superblocks (horizontally) */
214  int sbheight; /* number of superblocks (vertically) */
215 
218 
221 
222  uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
225 
227 
228  void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
229  void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
230  void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
233 
236 
240 } DiracContext;
241 
248 };
249 
250 /* magic number division by 3 from schroedinger */
251 static inline int divide3(int x)
252 {
253  return (int)((x+1U)*21845 + 10922) >> 16;
254 }
255 
256 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
257 {
258  DiracFrame *remove_pic = NULL;
259  int i, remove_idx = -1;
260 
261  for (i = 0; framelist[i]; i++)
262  if (framelist[i]->avframe->display_picture_number == picnum) {
263  remove_pic = framelist[i];
264  remove_idx = i;
265  }
266 
267  if (remove_pic)
268  for (i = remove_idx; framelist[i]; i++)
269  framelist[i] = framelist[i+1];
270 
271  return remove_pic;
272 }
273 
274 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
275 {
276  int i;
277  for (i = 0; i < maxframes; i++)
278  if (!framelist[i]) {
279  framelist[i] = frame;
280  return 0;
281  }
282  return -1;
283 }
284 
286 {
287  int sbwidth = DIVRNDUP(s->seq.width, 4);
288  int sbheight = DIVRNDUP(s->seq.height, 4);
289  int i, w, h, top_padding;
290 
291  /* todo: think more about this / use or set Plane here */
292  for (i = 0; i < 3; i++) {
293  int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
294  int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
295  w = s->seq.width >> (i ? s->chroma_x_shift : 0);
296  h = s->seq.height >> (i ? s->chroma_y_shift : 0);
297 
298  /* we allocate the max we support here since num decompositions can
299  * change from frame to frame. Stride is aligned to 16 for SIMD, and
300  * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
301  * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
302  * on each side */
303  top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
304  w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
305  h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
306 
307  s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
308  s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
309  s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
310  if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
311  return AVERROR(ENOMEM);
312  }
313 
314  /* fixme: allocate using real stride here */
315  s->sbsplit = av_malloc_array(sbwidth, sbheight);
316  s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
317 
318  if (!s->sbsplit || !s->blmotion)
319  return AVERROR(ENOMEM);
320  return 0;
321 }
322 
324 {
325  int w = s->seq.width;
326  int h = s->seq.height;
327 
328  av_assert0(stride >= w);
329  stride += 64;
330 
331  if (s->buffer_stride >= stride)
332  return 0;
333  s->buffer_stride = 0;
334 
336  memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
337  av_freep(&s->mctmp);
338  av_freep(&s->mcscratch);
339 
341 
342  s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
344 
345  if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
346  return AVERROR(ENOMEM);
347 
348  s->buffer_stride = stride;
349  return 0;
350 }
351 
353 {
354  int i, j, k;
355 
356  for (i = 0; i < MAX_FRAMES; i++) {
357  if (s->all_frames[i].avframe->data[0]) {
359  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
360  }
361 
362  for (j = 0; j < 3; j++)
363  for (k = 1; k < 4; k++)
364  av_freep(&s->all_frames[i].hpel_base[j][k]);
365  }
366 
367  memset(s->ref_frames, 0, sizeof(s->ref_frames));
368  memset(s->delay_frames, 0, sizeof(s->delay_frames));
369 
370  for (i = 0; i < 3; i++) {
371  av_freep(&s->plane[i].idwt.buf_base);
372  av_freep(&s->plane[i].idwt.tmp);
373  }
374 
375  s->buffer_stride = 0;
376  av_freep(&s->sbsplit);
377  av_freep(&s->blmotion);
379 
380  av_freep(&s->mctmp);
381  av_freep(&s->mcscratch);
382 }
383 
385 
387 {
388  DiracContext *s = avctx->priv_data;
389  int i, ret;
390 
391  s->avctx = avctx;
392  s->frame_number = -1;
393 
394  s->thread_buf = NULL;
395  s->threads_num_buf = -1;
396  s->thread_buf_size = -1;
397 
401  ff_videodsp_init(&s->vdsp, 8);
402 
403  for (i = 0; i < MAX_FRAMES; i++) {
405  if (!s->all_frames[i].avframe) {
406  while (i > 0)
407  av_frame_free(&s->all_frames[--i].avframe);
408  return AVERROR(ENOMEM);
409  }
410  }
412  if (ret != 0)
413  return AVERROR_UNKNOWN;
414 
415  return 0;
416 }
417 
419 {
420  DiracContext *s = avctx->priv_data;
422  s->seen_sequence_header = 0;
423  s->frame_number = -1;
424 }
425 
427 {
428  DiracContext *s = avctx->priv_data;
429  int i;
430 
432 
433  dirac_decode_flush(avctx);
434  for (i = 0; i < MAX_FRAMES; i++)
436 
437  av_freep(&s->thread_buf);
439 
440  return 0;
441 }
442 
443 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
444 {
445  int coeff = dirac_get_se_golomb(gb);
446  const unsigned sign = FFSIGN(coeff);
447  if (coeff)
448  coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
449  return coeff;
450 }
451 
452 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
453 
454 #define UNPACK_ARITH(n, type) \
455  static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
456  SubBand *b, type *buf, int x, int y) \
457  { \
458  int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
459  unsigned coeff; \
460  const int mstride = -(b->stride >> (1+b->pshift)); \
461  if (b->parent) { \
462  const type *pbuf = (type *)b->parent->ibuf; \
463  const int stride = b->parent->stride >> (1+b->parent->pshift); \
464  pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
465  } \
466  if (b->orientation == subband_hl) \
467  sign_pred = buf[mstride]; \
468  if (x) { \
469  pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
470  if (b->orientation == subband_lh) \
471  sign_pred = buf[-1]; \
472  } else { \
473  pred_ctx += !buf[mstride]; \
474  } \
475  coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
476  if (coeff) { \
477  coeff = (coeff * qfactor + qoffset) >> 2; \
478  sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
479  coeff = (coeff ^ -sign) + sign; \
480  } \
481  *buf = coeff; \
482  } \
483 
484 UNPACK_ARITH(8, int16_t)
486 
487 /**
488  * Decode the coeffs in the rectangle defined by left, right, top, bottom
489  * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
490  */
491 static inline int codeblock(DiracContext *s, SubBand *b,
492  GetBitContext *gb, DiracArith *c,
493  int left, int right, int top, int bottom,
494  int blockcnt_one, int is_arith)
495 {
496  int x, y, zero_block;
497  int qoffset, qfactor;
498  uint8_t *buf;
499 
500  /* check for any coded coefficients in this codeblock */
501  if (!blockcnt_one) {
502  if (is_arith)
503  zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
504  else
505  zero_block = get_bits1(gb);
506 
507  if (zero_block)
508  return 0;
509  }
510 
511  if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
512  int quant;
513  if (is_arith)
515  else
516  quant = dirac_get_se_golomb(gb);
517  if (quant > INT_MAX - b->quant || b->quant + quant < 0) {
518  av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
519  return AVERROR_INVALIDDATA;
520  }
521  b->quant += quant;
522  }
523 
524  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
525  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
526  b->quant = 0;
527  return AVERROR_INVALIDDATA;
528  }
529 
530  qfactor = ff_dirac_qscale_tab[b->quant];
531  /* TODO: context pointer? */
532  if (!s->num_refs)
533  qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
534  else
535  qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
536 
537  buf = b->ibuf + top * b->stride;
538  if (is_arith) {
539  for (y = top; y < bottom; y++) {
540  for (x = left; x < right; x++) {
541  if (b->pshift) {
542  coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
543  } else {
544  coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
545  }
546  }
547  buf += b->stride;
548  }
549  } else {
550  for (y = top; y < bottom; y++) {
551  if (get_bits_left(gb) < 1)
552  return AVERROR_INVALIDDATA;
553  for (x = left; x < right; x++) {
554  int val = coeff_unpack_golomb(gb, qfactor, qoffset);
555  if (b->pshift) {
556  AV_WN32(&buf[4*x], val);
557  } else {
558  AV_WN16(&buf[2*x], val);
559  }
560  }
561  buf += b->stride;
562  }
563  }
564  return 0;
565 }
566 
567 /**
568  * Dirac Specification ->
569  * 13.3 intra_dc_prediction(band)
570  */
571 #define INTRA_DC_PRED(n, type) \
572  static inline void intra_dc_prediction_##n(SubBand *b) \
573  { \
574  type *buf = (type*)b->ibuf; \
575  int x, y; \
576  \
577  for (x = 1; x < b->width; x++) \
578  buf[x] += buf[x-1]; \
579  buf += (b->stride >> (1+b->pshift)); \
580  \
581  for (y = 1; y < b->height; y++) { \
582  buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
583  \
584  for (x = 1; x < b->width; x++) { \
585  int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
586  buf[x] += divide3(pred); \
587  } \
588  buf += (b->stride >> (1+b->pshift)); \
589  } \
590  } \
591 
592 INTRA_DC_PRED(8, int16_t)
593 INTRA_DC_PRED(10, uint32_t)
594 
595 /**
596  * Dirac Specification ->
597  * 13.4.2 Non-skipped subbands. subband_coeffs()
598  */
600 {
601  int cb_x, cb_y, left, right, top, bottom;
602  DiracArith c;
603  GetBitContext gb;
604  int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
605  int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
606  int blockcnt_one = (cb_width + cb_height) == 2;
607  int ret;
608 
609  if (!b->length)
610  return 0;
611 
612  init_get_bits8(&gb, b->coeff_data, b->length);
613 
614  if (is_arith)
615  ff_dirac_init_arith_decoder(&c, &gb, b->length);
616 
617  top = 0;
618  for (cb_y = 0; cb_y < cb_height; cb_y++) {
619  bottom = (b->height * (cb_y+1LL)) / cb_height;
620  left = 0;
621  for (cb_x = 0; cb_x < cb_width; cb_x++) {
622  right = (b->width * (cb_x+1LL)) / cb_width;
623  ret = codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
624  if (ret < 0)
625  return ret;
626  left = right;
627  }
628  top = bottom;
629  }
630 
631  if (b->orientation == subband_ll && s->num_refs == 0) {
632  if (s->pshift) {
633  intra_dc_prediction_10(b);
634  } else {
635  intra_dc_prediction_8(b);
636  }
637  }
638  return 0;
639 }
640 
641 static int decode_subband_arith(AVCodecContext *avctx, void *b)
642 {
643  DiracContext *s = avctx->priv_data;
644  return decode_subband_internal(s, b, 1);
645 }
646 
647 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
648 {
649  DiracContext *s = avctx->priv_data;
650  SubBand **b = arg;
651  return decode_subband_internal(s, *b, 0);
652 }
653 
654 /**
655  * Dirac Specification ->
656  * [DIRAC_STD] 13.4.1 core_transform_data()
657  */
659 {
660  AVCodecContext *avctx = s->avctx;
662  enum dirac_subband orientation;
663  int level, num_bands = 0;
664  int ret[3*MAX_DWT_LEVELS+1];
665  int i;
666  int damaged_count = 0;
667 
668  /* Unpack all subbands at all levels. */
669  for (level = 0; level < s->wavelet_depth; level++) {
670  for (orientation = !!level; orientation < 4; orientation++) {
671  SubBand *b = &s->plane[comp].band[level][orientation];
672  bands[num_bands++] = b;
673 
674  align_get_bits(&s->gb);
675  /* [DIRAC_STD] 13.4.2 subband() */
677  if (b->length) {
679  align_get_bits(&s->gb);
680  b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
681  b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
682  skip_bits_long(&s->gb, b->length*8);
683  }
684  }
685  /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
686  if (s->is_arith)
687  avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
688  ret + 3*level + !!level, 4-!!level, sizeof(SubBand));
689  }
690  /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
691  if (!s->is_arith)
692  avctx->execute(avctx, decode_subband_golomb, bands, ret, num_bands, sizeof(SubBand*));
693 
694  for (i = 0; i < s->wavelet_depth * 3 + 1; i++) {
695  if (ret[i] < 0)
696  damaged_count++;
697  }
698  if (damaged_count > (s->wavelet_depth * 3 + 1) /2)
699  return AVERROR_INVALIDDATA;
700 
701  return 0;
702 }
703 
704 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
705  type *buf = (type *)buf1; \
706  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
707  if (get_bits_count(gb) >= ebits) \
708  return; \
709  if (buf2) { \
710  buf = (type *)buf2; \
711  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
712  if (get_bits_count(gb) >= ebits) \
713  return; \
714  } \
715 
717  int slice_x, int slice_y, int bits_end,
718  SubBand *b1, SubBand *b2)
719 {
720  int left = b1->width * slice_x / s->num_x;
721  int right = b1->width *(slice_x+1) / s->num_x;
722  int top = b1->height * slice_y / s->num_y;
723  int bottom = b1->height *(slice_y+1) / s->num_y;
724 
725  int qfactor, qoffset;
726 
727  uint8_t *buf1 = b1->ibuf + top * b1->stride;
728  uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
729  int x, y;
730 
731  if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
732  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
733  return;
734  }
735  qfactor = ff_dirac_qscale_tab[quant];
736  qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
737  /* we have to constantly check for overread since the spec explicitly
738  requires this, with the meaning that all remaining coeffs are set to 0 */
739  if (get_bits_count(gb) >= bits_end)
740  return;
741 
742  if (s->pshift) {
743  for (y = top; y < bottom; y++) {
744  for (x = left; x < right; x++) {
745  PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
746  }
747  buf1 += b1->stride;
748  if (buf2)
749  buf2 += b2->stride;
750  }
751  }
752  else {
753  for (y = top; y < bottom; y++) {
754  for (x = left; x < right; x++) {
755  PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
756  }
757  buf1 += b1->stride;
758  if (buf2)
759  buf2 += b2->stride;
760  }
761  }
762 }
763 
764 /**
765  * Dirac Specification ->
766  * 13.5.2 Slices. slice(sx,sy)
767  */
768 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
769 {
770  DiracContext *s = avctx->priv_data;
771  DiracSlice *slice = arg;
772  GetBitContext *gb = &slice->gb;
773  enum dirac_subband orientation;
774  int level, quant, chroma_bits, chroma_end;
775 
776  int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
777  int length_bits = av_log2(8 * slice->bytes)+1;
778  int luma_bits = get_bits_long(gb, length_bits);
779  int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
780 
781  /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
782  for (level = 0; level < s->wavelet_depth; level++)
783  for (orientation = !!level; orientation < 4; orientation++) {
784  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
785  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
786  &s->plane[0].band[level][orientation], NULL);
787  }
788 
789  /* consume any unused bits from luma */
790  skip_bits_long(gb, get_bits_count(gb) - luma_end);
791 
792  chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
793  chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
794  /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
795  for (level = 0; level < s->wavelet_depth; level++)
796  for (orientation = !!level; orientation < 4; orientation++) {
797  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
798  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
799  &s->plane[1].band[level][orientation],
800  &s->plane[2].band[level][orientation]);
801  }
802 
803  return 0;
804 }
805 
806 typedef struct SliceCoeffs {
807  int left;
808  int top;
809  int tot_h;
810  int tot_v;
811  int tot;
812 } SliceCoeffs;
813 
814 static int subband_coeffs(DiracContext *s, int x, int y, int p,
816 {
817  int level, coef = 0;
818  for (level = 0; level < s->wavelet_depth; level++) {
819  SliceCoeffs *o = &c[level];
820  SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
821  o->top = b->height * y / s->num_y;
822  o->left = b->width * x / s->num_x;
823  o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
824  o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
825  o->tot = o->tot_h*o->tot_v;
826  coef += o->tot * (4 - !!level);
827  }
828  return coef;
829 }
830 
831 /**
832  * VC-2 Specification ->
833  * 13.5.3 hq_slice(sx,sy)
834  */
835 static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
836 {
837  int i, level, orientation, quant_idx;
838  int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
839  GetBitContext *gb = &slice->gb;
840  SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
841 
843  quant_idx = get_bits(gb, 8);
844 
845  if (quant_idx > DIRAC_MAX_QUANT_INDEX - 1) {
846  av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
847  return AVERROR_INVALIDDATA;
848  }
849 
850  /* Slice quantization (slice_quantizers() in the specs) */
851  for (level = 0; level < s->wavelet_depth; level++) {
852  for (orientation = !!level; orientation < 4; orientation++) {
853  const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
854  qfactor[level][orientation] = ff_dirac_qscale_tab[quant];
855  qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2;
856  }
857  }
858 
859  /* Luma + 2 Chroma planes */
860  for (i = 0; i < 3; i++) {
861  int coef_num, coef_par, off = 0;
862  int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
863  int64_t bits_end = get_bits_count(gb) + 8*length;
864  const uint8_t *addr = align_get_bits(gb);
865 
866  if (length*8 > get_bits_left(gb)) {
867  av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
868  return AVERROR_INVALIDDATA;
869  }
870 
871  coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
872 
873  if (s->pshift)
874  coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr,
875  length, tmp_buf, coef_num);
876  else
877  coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr,
878  length, tmp_buf, coef_num);
879 
880  if (coef_num > coef_par) {
881  const int start_b = coef_par * (1 << (s->pshift + 1));
882  const int end_b = coef_num * (1 << (s->pshift + 1));
883  memset(&tmp_buf[start_b], 0, end_b - start_b);
884  }
885 
886  for (level = 0; level < s->wavelet_depth; level++) {
887  const SliceCoeffs *c = &coeffs_num[level];
888  for (orientation = !!level; orientation < 4; orientation++) {
889  const SubBand *b1 = &s->plane[i].band[level][orientation];
890  uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
891 
892  /* Change to c->tot_h <= 4 for AVX2 dequantization */
893  const int qfunc = s->pshift + 2*(c->tot_h <= 2);
894  s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
895  qfactor[level][orientation],
896  qoffset[level][orientation],
897  c->tot_v, c->tot_h);
898 
899  off += c->tot << (s->pshift + 1);
900  }
901  }
902 
903  skip_bits_long(gb, bits_end - get_bits_count(gb));
904  }
905 
906  return 0;
907 }
908 
909 static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
910 {
911  int i;
912  DiracContext *s = avctx->priv_data;
913  DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
914  uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
915  for (i = 0; i < s->num_x; i++)
916  decode_hq_slice(s, &slices[i], thread_buf);
917  return 0;
918 }
919 
920 /**
921  * Dirac Specification ->
922  * 13.5.1 low_delay_transform_data()
923  */
925 {
926  AVCodecContext *avctx = s->avctx;
927  int slice_x, slice_y, bufsize;
928  int64_t coef_buf_size, bytes = 0;
929  const uint8_t *buf;
930  DiracSlice *slices;
932  int slice_num = 0;
933 
934  if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
936  if (!s->slice_params_buf) {
937  av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
938  s->slice_params_num_buf = 0;
939  return AVERROR(ENOMEM);
940  }
941  s->slice_params_num_buf = s->num_x * s->num_y;
942  }
943  slices = s->slice_params_buf;
944 
945  /* 8 becacuse that's how much the golomb reader could overread junk data
946  * from another plane/slice at most, and 512 because SIMD */
947  coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
948  coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
949 
950  if (s->threads_num_buf != avctx->thread_count ||
951  s->thread_buf_size != coef_buf_size) {
952  s->threads_num_buf = avctx->thread_count;
953  s->thread_buf_size = coef_buf_size;
955  if (!s->thread_buf) {
956  av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
957  return AVERROR(ENOMEM);
958  }
959  }
960 
961  align_get_bits(&s->gb);
962  /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
963  buf = s->gb.buffer + get_bits_count(&s->gb)/8;
964  bufsize = get_bits_left(&s->gb);
965 
966  if (s->hq_picture) {
967  int i;
968 
969  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
970  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
971  bytes = s->highquality.prefix_bytes + 1;
972  for (i = 0; i < 3; i++) {
973  if (bytes <= bufsize/8)
974  bytes += buf[bytes] * s->highquality.size_scaler + 1;
975  }
976  if (bytes >= INT_MAX || bytes*8 > bufsize) {
977  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
978  return AVERROR_INVALIDDATA;
979  }
980 
981  slices[slice_num].bytes = bytes;
982  slices[slice_num].slice_x = slice_x;
983  slices[slice_num].slice_y = slice_y;
984  init_get_bits(&slices[slice_num].gb, buf, bufsize);
985  slice_num++;
986 
987  buf += bytes;
988  if (bufsize/8 >= bytes)
989  bufsize -= bytes*8;
990  else
991  bufsize = 0;
992  }
993  }
994 
995  if (s->num_x*s->num_y != slice_num) {
996  av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
997  return AVERROR_INVALIDDATA;
998  }
999 
1000  avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
1001  } else {
1002  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
1003  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
1004  bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
1005  - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
1006  if (bytes >= INT_MAX || bytes*8 > bufsize) {
1007  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
1008  return AVERROR_INVALIDDATA;
1009  }
1010  slices[slice_num].bytes = bytes;
1011  slices[slice_num].slice_x = slice_x;
1012  slices[slice_num].slice_y = slice_y;
1013  init_get_bits(&slices[slice_num].gb, buf, bufsize);
1014  slice_num++;
1015 
1016  buf += bytes;
1017  if (bufsize/8 >= bytes)
1018  bufsize -= bytes*8;
1019  else
1020  bufsize = 0;
1021  }
1022  }
1023  avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
1024  sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
1025  }
1026 
1027  if (s->dc_prediction) {
1028  if (s->pshift) {
1029  intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1030  intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1031  intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1032  } else {
1033  intra_dc_prediction_8(&s->plane[0].band[0][0]);
1034  intra_dc_prediction_8(&s->plane[1].band[0][0]);
1035  intra_dc_prediction_8(&s->plane[2].band[0][0]);
1036  }
1037  }
1038 
1039  return 0;
1040 }
1041 
1043 {
1044  int i, w, h, level, orientation;
1045 
1046  for (i = 0; i < 3; i++) {
1047  Plane *p = &s->plane[i];
1048 
1049  p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1050  p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1051  p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1052  p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1053  p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1054 
1055  for (level = s->wavelet_depth-1; level >= 0; level--) {
1056  w = w>>1;
1057  h = h>>1;
1058  for (orientation = !!level; orientation < 4; orientation++) {
1059  SubBand *b = &p->band[level][orientation];
1060 
1061  b->pshift = s->pshift;
1062  b->ibuf = p->idwt.buf;
1063  b->level = level;
1064  b->stride = p->idwt.stride << (s->wavelet_depth - level);
1065  b->width = w;
1066  b->height = h;
1067  b->orientation = orientation;
1068 
1069  if (orientation & 1)
1070  b->ibuf += w << (1+b->pshift);
1071  if (orientation > 1)
1072  b->ibuf += (b->stride>>1);
1073 
1074  if (level)
1075  b->parent = &p->band[level-1][orientation];
1076  }
1077  }
1078 
1079  if (i > 0) {
1080  p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1081  p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1082  p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1083  p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1084  }
1085 
1086  p->xoffset = (p->xblen - p->xbsep)/2;
1087  p->yoffset = (p->yblen - p->ybsep)/2;
1088  }
1089 }
1090 
1091 /**
1092  * Unpack the motion compensation parameters
1093  * Dirac Specification ->
1094  * 11.2 Picture prediction data. picture_prediction()
1095  */
1097 {
1098  static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1099 
1100  GetBitContext *gb = &s->gb;
1101  unsigned idx, ref;
1102 
1103  align_get_bits(gb);
1104  /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1105  /* Luma and Chroma are equal. 11.2.3 */
1106  idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1107 
1108  if (idx > 4) {
1109  av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1110  return AVERROR_INVALIDDATA;
1111  }
1112 
1113  if (idx == 0) {
1118  } else {
1119  /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1120  s->plane[0].xblen = default_blen[idx-1];
1121  s->plane[0].yblen = default_blen[idx-1];
1122  s->plane[0].xbsep = 4 * idx;
1123  s->plane[0].ybsep = 4 * idx;
1124  }
1125  /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1126  Calculated in function dirac_unpack_block_motion_data */
1127 
1128  if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1129  s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1130  !s->plane[0].xblen || !s->plane[0].yblen) {
1132  "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1133  s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1134  return AVERROR_INVALIDDATA;
1135  }
1136  if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1137  av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1138  return AVERROR_INVALIDDATA;
1139  }
1140  if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1141  av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1142  return AVERROR_INVALIDDATA;
1143  }
1144  if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1145  av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1146  return AVERROR_PATCHWELCOME;
1147  }
1148 
1149  /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1150  Read motion vector precision */
1152  if (s->mv_precision > 3) {
1153  av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1154  return AVERROR_INVALIDDATA;
1155  }
1156 
1157  /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1158  Read the global motion compensation parameters */
1159  s->globalmc_flag = get_bits1(gb);
1160  if (s->globalmc_flag) {
1161  memset(s->globalmc, 0, sizeof(s->globalmc));
1162  /* [DIRAC_STD] pan_tilt(gparams) */
1163  for (ref = 0; ref < s->num_refs; ref++) {
1164  if (get_bits1(gb)) {
1167  }
1168  /* [DIRAC_STD] zoom_rotate_shear(gparams)
1169  zoom/rotation/shear parameters */
1170  if (get_bits1(gb)) {
1172  s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1173  s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1174  s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1175  s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1176  } else {
1177  s->globalmc[ref].zrs[0][0] = 1;
1178  s->globalmc[ref].zrs[1][1] = 1;
1179  }
1180  /* [DIRAC_STD] perspective(gparams) */
1181  if (get_bits1(gb)) {
1185  }
1186  if (s->globalmc[ref].perspective_exp + (uint64_t)s->globalmc[ref].zrs_exp > 30) {
1187  return AVERROR_INVALIDDATA;
1188  }
1189 
1190  }
1191  }
1192 
1193  /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1194  Picture prediction mode, not currently used. */
1195  if (get_interleaved_ue_golomb(gb)) {
1196  av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1197  return AVERROR_INVALIDDATA;
1198  }
1199 
1200  /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1201  just data read, weight calculation will be done later on. */
1202  s->weight_log2denom = 1;
1203  s->weight[0] = 1;
1204  s->weight[1] = 1;
1205 
1206  if (get_bits1(gb)) {
1208  if (s->weight_log2denom < 1 || s->weight_log2denom > 8) {
1209  av_log(s->avctx, AV_LOG_ERROR, "weight_log2denom unsupported or invalid\n");
1210  s->weight_log2denom = 1;
1211  return AVERROR_INVALIDDATA;
1212  }
1213  s->weight[0] = dirac_get_se_golomb(gb);
1214  if (s->num_refs == 2)
1215  s->weight[1] = dirac_get_se_golomb(gb);
1216  }
1217  return 0;
1218 }
1219 
1220 /**
1221  * Dirac Specification ->
1222  * 11.3 Wavelet transform data. wavelet_transform()
1223  */
1225 {
1226  GetBitContext *gb = &s->gb;
1227  int i, level;
1228  unsigned tmp;
1229 
1230 #define CHECKEDREAD(dst, cond, errmsg) \
1231  tmp = get_interleaved_ue_golomb(gb); \
1232  if (cond) { \
1233  av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1234  return AVERROR_INVALIDDATA; \
1235  }\
1236  dst = tmp;
1237 
1238  align_get_bits(gb);
1239 
1240  s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1241  if (s->zero_res)
1242  return 0;
1243 
1244  /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1245  CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1246 
1247  CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1248 
1249  if (!s->low_delay) {
1250  /* Codeblock parameters (core syntax only) */
1251  if (get_bits1(gb)) {
1252  for (i = 0; i <= s->wavelet_depth; i++) {
1253  CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1254  CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1255  }
1256 
1257  CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1258  }
1259  else {
1260  for (i = 0; i <= s->wavelet_depth; i++)
1261  s->codeblock[i].width = s->codeblock[i].height = 1;
1262  }
1263  }
1264  else {
1267  if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX ||
1268  s->num_x * (uint64_t)s->avctx->width > INT_MAX ||
1269  s->num_y * (uint64_t)s->avctx->height > INT_MAX
1270  ) {
1271  av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
1272  s->num_x = s->num_y = 0;
1273  return AVERROR_INVALIDDATA;
1274  }
1275  if (s->ld_picture) {
1278  if (s->lowdelay.bytes.den <= 0) {
1279  av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1280  return AVERROR_INVALIDDATA;
1281  }
1282  } else if (s->hq_picture) {
1285  if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1286  av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1287  return AVERROR_INVALIDDATA;
1288  }
1289  }
1290 
1291  /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1292  if (get_bits1(gb)) {
1293  av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1294  /* custom quantization matrix */
1295  for (level = 0; level < s->wavelet_depth; level++) {
1296  for (i = !!level; i < 4; i++) {
1298  }
1299  }
1300  } else {
1301  if (s->wavelet_depth > 4) {
1302  av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1303  return AVERROR_INVALIDDATA;
1304  }
1305  /* default quantization matrix */
1306  for (level = 0; level < s->wavelet_depth; level++)
1307  for (i = 0; i < 4; i++) {
1309  /* haar with no shift differs for different depths */
1310  if (s->wavelet_idx == 3)
1311  s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1312  }
1313  }
1314  }
1315  return 0;
1316 }
1317 
1318 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1319 {
1320  static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1321 
1322  if (!(x|y))
1323  return 0;
1324  else if (!y)
1325  return sbsplit[-1];
1326  else if (!x)
1327  return sbsplit[-stride];
1328 
1329  return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1330 }
1331 
1332 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1333 {
1334  int pred;
1335 
1336  if (!(x|y))
1337  return 0;
1338  else if (!y)
1339  return block[-1].ref & refmask;
1340  else if (!x)
1341  return block[-stride].ref & refmask;
1342 
1343  /* return the majority */
1344  pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1345  return (pred >> 1) & refmask;
1346 }
1347 
1348 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1349 {
1350  int i, n = 0;
1351 
1352  memset(block->u.dc, 0, sizeof(block->u.dc));
1353 
1354  if (x && !(block[-1].ref & 3)) {
1355  for (i = 0; i < 3; i++)
1356  block->u.dc[i] += block[-1].u.dc[i];
1357  n++;
1358  }
1359 
1360  if (y && !(block[-stride].ref & 3)) {
1361  for (i = 0; i < 3; i++)
1362  block->u.dc[i] += block[-stride].u.dc[i];
1363  n++;
1364  }
1365 
1366  if (x && y && !(block[-1-stride].ref & 3)) {
1367  for (i = 0; i < 3; i++)
1368  block->u.dc[i] += block[-1-stride].u.dc[i];
1369  n++;
1370  }
1371 
1372  if (n == 2) {
1373  for (i = 0; i < 3; i++)
1374  block->u.dc[i] = (block->u.dc[i]+1)>>1;
1375  } else if (n == 3) {
1376  for (i = 0; i < 3; i++)
1377  block->u.dc[i] = divide3(block->u.dc[i]);
1378  }
1379 }
1380 
1381 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1382 {
1383  int16_t *pred[3];
1384  int refmask = ref+1;
1385  int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1386  int n = 0;
1387 
1388  if (x && (block[-1].ref & mask) == refmask)
1389  pred[n++] = block[-1].u.mv[ref];
1390 
1391  if (y && (block[-stride].ref & mask) == refmask)
1392  pred[n++] = block[-stride].u.mv[ref];
1393 
1394  if (x && y && (block[-stride-1].ref & mask) == refmask)
1395  pred[n++] = block[-stride-1].u.mv[ref];
1396 
1397  switch (n) {
1398  case 0:
1399  block->u.mv[ref][0] = 0;
1400  block->u.mv[ref][1] = 0;
1401  break;
1402  case 1:
1403  block->u.mv[ref][0] = pred[0][0];
1404  block->u.mv[ref][1] = pred[0][1];
1405  break;
1406  case 2:
1407  block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1408  block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1409  break;
1410  case 3:
1411  block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1412  block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1413  break;
1414  }
1415 }
1416 
1417 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1418 {
1419  int ez = s->globalmc[ref].zrs_exp;
1420  int ep = s->globalmc[ref].perspective_exp;
1421  int (*A)[2] = s->globalmc[ref].zrs;
1422  int *b = s->globalmc[ref].pan_tilt;
1423  int *c = s->globalmc[ref].perspective;
1424 
1425  int m = (1<<ep) - (c[0]*x + c[1]*y);
1426  int64_t mx = m * (int64_t)((A[0][0] * (int64_t)x + A[0][1]*(int64_t)y) + (1<<ez) * b[0]);
1427  int64_t my = m * (int64_t)((A[1][0] * (int64_t)x + A[1][1]*(int64_t)y) + (1<<ez) * b[1]);
1428 
1429  block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1430  block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1431 }
1432 
1434  int stride, int x, int y)
1435 {
1436  int i;
1437 
1438  block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1439  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1440 
1441  if (s->num_refs == 2) {
1442  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1443  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1444  }
1445 
1446  if (!block->ref) {
1447  pred_block_dc(block, stride, x, y);
1448  for (i = 0; i < 3; i++)
1449  block->u.dc[i] += (unsigned)dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1450  return;
1451  }
1452 
1453  if (s->globalmc_flag) {
1454  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1455  block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1456  }
1457 
1458  for (i = 0; i < s->num_refs; i++)
1459  if (block->ref & (i+1)) {
1460  if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1461  global_mv(s, block, x, y, i);
1462  } else {
1463  pred_mv(block, stride, x, y, i);
1464  block->u.mv[i][0] += (unsigned)dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1465  block->u.mv[i][1] += (unsigned)dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1466  }
1467  }
1468 }
1469 
1470 /**
1471  * Copies the current block to the other blocks covered by the current superblock split mode
1472  */
1474 {
1475  int x, y;
1476  DiracBlock *dst = block;
1477 
1478  for (x = 1; x < size; x++)
1479  dst[x] = *block;
1480 
1481  for (y = 1; y < size; y++) {
1482  dst += stride;
1483  for (x = 0; x < size; x++)
1484  dst[x] = *block;
1485  }
1486 }
1487 
1488 /**
1489  * Dirac Specification ->
1490  * 12. Block motion data syntax
1491  */
1493 {
1494  GetBitContext *gb = &s->gb;
1495  uint8_t *sbsplit = s->sbsplit;
1496  int i, x, y, q, p;
1497  DiracArith arith[8];
1498 
1499  align_get_bits(gb);
1500 
1501  /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1502  s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1503  s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1504  s->blwidth = 4 * s->sbwidth;
1505  s->blheight = 4 * s->sbheight;
1506 
1507  /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1508  decode superblock split modes */
1509  ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1510  for (y = 0; y < s->sbheight; y++) {
1511  for (x = 0; x < s->sbwidth; x++) {
1512  unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1513  if (split > 2)
1514  return AVERROR_INVALIDDATA;
1515  sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1516  }
1517  sbsplit += s->sbwidth;
1518  }
1519 
1520  /* setup arith decoding */
1522  for (i = 0; i < s->num_refs; i++) {
1523  ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1524  ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1525  }
1526  for (i = 0; i < 3; i++)
1528 
1529  for (y = 0; y < s->sbheight; y++)
1530  for (x = 0; x < s->sbwidth; x++) {
1531  int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1532  int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1533 
1534  for (q = 0; q < blkcnt; q++)
1535  for (p = 0; p < blkcnt; p++) {
1536  int bx = 4 * x + p*step;
1537  int by = 4 * y + q*step;
1538  DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1539  decode_block_params(s, arith, block, s->blwidth, bx, by);
1540  propagate_block_data(block, s->blwidth, step);
1541  }
1542  }
1543 
1544  return 0;
1545 }
1546 
1547 static int weight(int i, int blen, int offset)
1548 {
1549 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1550  (1 + (6*(i) + offset - 1) / (2*offset - 1))
1551 
1552  if (i < 2*offset)
1553  return ROLLOFF(i);
1554  else if (i > blen-1 - 2*offset)
1555  return ROLLOFF(blen-1 - i);
1556  return 8;
1557 }
1558 
1559 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1560  int left, int right, int wy)
1561 {
1562  int x;
1563  for (x = 0; left && x < p->xblen >> 1; x++)
1564  obmc_weight[x] = wy*8;
1565  for (; x < p->xblen >> right; x++)
1566  obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1567  for (; x < p->xblen; x++)
1568  obmc_weight[x] = wy*8;
1569  for (; x < stride; x++)
1570  obmc_weight[x] = 0;
1571 }
1572 
1573 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1574  int left, int right, int top, int bottom)
1575 {
1576  int y;
1577  for (y = 0; top && y < p->yblen >> 1; y++) {
1578  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1579  obmc_weight += stride;
1580  }
1581  for (; y < p->yblen >> bottom; y++) {
1582  int wy = weight(y, p->yblen, p->yoffset);
1583  init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1584  obmc_weight += stride;
1585  }
1586  for (; y < p->yblen; y++) {
1587  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1588  obmc_weight += stride;
1589  }
1590 }
1591 
1592 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1593 {
1594  int top = !by;
1595  int bottom = by == s->blheight-1;
1596 
1597  /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1598  if (top || bottom || by == 1) {
1599  init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1600  init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1601  init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1602  }
1603 }
1604 
1605 static const uint8_t epel_weights[4][4][4] = {
1606  {{ 16, 0, 0, 0 },
1607  { 12, 4, 0, 0 },
1608  { 8, 8, 0, 0 },
1609  { 4, 12, 0, 0 }},
1610  {{ 12, 0, 4, 0 },
1611  { 9, 3, 3, 1 },
1612  { 6, 6, 2, 2 },
1613  { 3, 9, 1, 3 }},
1614  {{ 8, 0, 8, 0 },
1615  { 6, 2, 6, 2 },
1616  { 4, 4, 4, 4 },
1617  { 2, 6, 2, 6 }},
1618  {{ 4, 0, 12, 0 },
1619  { 3, 1, 9, 3 },
1620  { 2, 2, 6, 6 },
1621  { 1, 3, 3, 9 }}
1622 };
1623 
1624 /**
1625  * For block x,y, determine which of the hpel planes to do bilinear
1626  * interpolation from and set src[] to the location in each hpel plane
1627  * to MC from.
1628  *
1629  * @return the index of the put_dirac_pixels_tab function to use
1630  * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1631  */
1633  int x, int y, int ref, int plane)
1634 {
1635  Plane *p = &s->plane[plane];
1636  uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1637  int motion_x = block->u.mv[ref][0];
1638  int motion_y = block->u.mv[ref][1];
1639  int mx, my, i, epel, nplanes = 0;
1640 
1641  if (plane) {
1642  motion_x >>= s->chroma_x_shift;
1643  motion_y >>= s->chroma_y_shift;
1644  }
1645 
1646  mx = motion_x & ~(-1U << s->mv_precision);
1647  my = motion_y & ~(-1U << s->mv_precision);
1648  motion_x >>= s->mv_precision;
1649  motion_y >>= s->mv_precision;
1650  /* normalize subpel coordinates to epel */
1651  /* TODO: template this function? */
1652  mx <<= 3 - s->mv_precision;
1653  my <<= 3 - s->mv_precision;
1654 
1655  x += motion_x;
1656  y += motion_y;
1657  epel = (mx|my)&1;
1658 
1659  /* hpel position */
1660  if (!((mx|my)&3)) {
1661  nplanes = 1;
1662  src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1663  } else {
1664  /* qpel or epel */
1665  nplanes = 4;
1666  for (i = 0; i < 4; i++)
1667  src[i] = ref_hpel[i] + y*p->stride + x;
1668 
1669  /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1670  we increment x/y because the edge changes for half of the pixels */
1671  if (mx > 4) {
1672  src[0] += 1;
1673  src[2] += 1;
1674  x++;
1675  }
1676  if (my > 4) {
1677  src[0] += p->stride;
1678  src[1] += p->stride;
1679  y++;
1680  }
1681 
1682  /* hpel planes are:
1683  [0]: F [1]: H
1684  [2]: V [3]: C */
1685  if (!epel) {
1686  /* check if we really only need 2 planes since either mx or my is
1687  a hpel position. (epel weights of 0 handle this there) */
1688  if (!(mx&3)) {
1689  /* mx == 0: average [0] and [2]
1690  mx == 4: average [1] and [3] */
1691  src[!mx] = src[2 + !!mx];
1692  nplanes = 2;
1693  } else if (!(my&3)) {
1694  src[0] = src[(my>>1) ];
1695  src[1] = src[(my>>1)+1];
1696  nplanes = 2;
1697  }
1698  } else {
1699  /* adjust the ordering if needed so the weights work */
1700  if (mx > 4) {
1701  FFSWAP(const uint8_t *, src[0], src[1]);
1702  FFSWAP(const uint8_t *, src[2], src[3]);
1703  }
1704  if (my > 4) {
1705  FFSWAP(const uint8_t *, src[0], src[2]);
1706  FFSWAP(const uint8_t *, src[1], src[3]);
1707  }
1708  src[4] = epel_weights[my&3][mx&3];
1709  }
1710  }
1711 
1712  /* fixme: v/h _edge_pos */
1713  if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1714  y + p->yblen > p->height+EDGE_WIDTH/2 ||
1715  x < 0 || y < 0) {
1716  for (i = 0; i < nplanes; i++) {
1717  s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1718  p->stride, p->stride,
1719  p->xblen, p->yblen, x, y,
1720  p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1721  src[i] = s->edge_emu_buffer[i];
1722  }
1723  }
1724  return (nplanes>>1) + epel;
1725 }
1726 
1727 static void add_dc(uint16_t *dst, int dc, int stride,
1728  uint8_t *obmc_weight, int xblen, int yblen)
1729 {
1730  int x, y;
1731  dc += 128;
1732 
1733  for (y = 0; y < yblen; y++) {
1734  for (x = 0; x < xblen; x += 2) {
1735  dst[x ] += dc * obmc_weight[x ];
1736  dst[x+1] += dc * obmc_weight[x+1];
1737  }
1738  dst += stride;
1739  obmc_weight += MAX_BLOCKSIZE;
1740  }
1741 }
1742 
1744  uint16_t *mctmp, uint8_t *obmc_weight,
1745  int plane, int dstx, int dsty)
1746 {
1747  Plane *p = &s->plane[plane];
1748  const uint8_t *src[5];
1749  int idx;
1750 
1751  switch (block->ref&3) {
1752  case 0: /* DC */
1753  add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1754  return;
1755  case 1:
1756  case 2:
1757  idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1758  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1759  if (s->weight_func)
1761  s->weight[0] + s->weight[1], p->yblen);
1762  break;
1763  case 3:
1764  idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1765  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1766  idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1767  if (s->biweight_func) {
1768  /* fixme: +32 is a quick hack */
1769  s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1771  s->weight[0], s->weight[1], p->yblen);
1772  } else
1773  s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1774  break;
1775  }
1776  s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1777 }
1778 
1779 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1780 {
1781  Plane *p = &s->plane[plane];
1782  int x, dstx = p->xbsep - p->xoffset;
1783 
1784  block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1785  mctmp += p->xbsep;
1786 
1787  for (x = 1; x < s->blwidth-1; x++) {
1788  block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1789  dstx += p->xbsep;
1790  mctmp += p->xbsep;
1791  }
1792  block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1793 }
1794 
1795 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1796 {
1797  int idx = 0;
1798  if (xblen > 8)
1799  idx = 1;
1800  if (xblen > 16)
1801  idx = 2;
1802 
1803  memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1804  memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1805  s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1806  if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1809  } else {
1810  s->weight_func = NULL;
1811  s->biweight_func = NULL;
1812  }
1813 }
1814 
1816 {
1817  /* chroma allocates an edge of 8 when subsampled
1818  which for 4:2:2 means an h edge of 16 and v edge of 8
1819  just use 8 for everything for the moment */
1820  int i, edge = EDGE_WIDTH/2;
1821 
1822  ref->hpel[plane][0] = ref->avframe->data[plane];
1823  s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1824 
1825  /* no need for hpel if we only have fpel vectors */
1826  if (!s->mv_precision)
1827  return 0;
1828 
1829  for (i = 1; i < 4; i++) {
1830  if (!ref->hpel_base[plane][i])
1831  ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1832  if (!ref->hpel_base[plane][i]) {
1833  return AVERROR(ENOMEM);
1834  }
1835  /* we need to be 16-byte aligned even for chroma */
1836  ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1837  }
1838 
1839  if (!ref->interpolated[plane]) {
1840  s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1841  ref->hpel[plane][3], ref->hpel[plane][0],
1842  ref->avframe->linesize[plane], width, height);
1843  s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1844  s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1845  s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1846  }
1847  ref->interpolated[plane] = 1;
1848 
1849  return 0;
1850 }
1851 
1852 /**
1853  * Dirac Specification ->
1854  * 13.0 Transform data syntax. transform_data()
1855  */
1857 {
1858  DWTContext d;
1859  int y, i, comp, dsty;
1860  int ret;
1861 
1862  if (s->low_delay) {
1863  /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1864  if (!s->hq_picture) {
1865  for (comp = 0; comp < 3; comp++) {
1866  Plane *p = &s->plane[comp];
1867  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1868  }
1869  }
1870  if (!s->zero_res) {
1871  if ((ret = decode_lowdelay(s)) < 0)
1872  return ret;
1873  }
1874  }
1875 
1876  for (comp = 0; comp < 3; comp++) {
1877  Plane *p = &s->plane[comp];
1879 
1880  /* FIXME: small resolutions */
1881  for (i = 0; i < 4; i++)
1882  s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1883 
1884  if (!s->zero_res && !s->low_delay)
1885  {
1886  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1887  ret = decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1888  if (ret < 0)
1889  return ret;
1890  }
1891  ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1892  s->wavelet_depth, s->bit_depth);
1893  if (ret < 0)
1894  return ret;
1895 
1896  if (!s->num_refs) { /* intra */
1897  for (y = 0; y < p->height; y += 16) {
1898  int idx = (s->bit_depth - 8) >> 1;
1899  ff_spatial_idwt_slice2(&d, y+16); /* decode */
1900  s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1901  p->stride,
1902  p->idwt.buf + y*p->idwt.stride,
1903  p->idwt.stride, p->width, 16);
1904  }
1905  } else { /* inter */
1906  int rowheight = p->ybsep*p->stride;
1907 
1908  select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1909 
1910  for (i = 0; i < s->num_refs; i++) {
1911  int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1912  if (ret < 0)
1913  return ret;
1914  }
1915 
1916  memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1917 
1918  dsty = -p->yoffset;
1919  for (y = 0; y < s->blheight; y++) {
1920  int h = 0,
1921  start = FFMAX(dsty, 0);
1922  uint16_t *mctmp = s->mctmp + y*rowheight;
1923  DiracBlock *blocks = s->blmotion + y*s->blwidth;
1924 
1925  init_obmc_weights(s, p, y);
1926 
1927  if (y == s->blheight-1 || start+p->ybsep > p->height)
1928  h = p->height - start;
1929  else
1930  h = p->ybsep - (start - dsty);
1931  if (h < 0)
1932  break;
1933 
1934  memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1935  mc_row(s, blocks, mctmp, comp, dsty);
1936 
1937  mctmp += (start - dsty)*p->stride + p->xoffset;
1938  ff_spatial_idwt_slice2(&d, start + h); /* decode */
1939  /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1940  * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1941  s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1942  (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1943 
1944  dsty += p->ybsep;
1945  }
1946  }
1947  }
1948 
1949 
1950  return 0;
1951 }
1952 
1954 {
1955  int ret, i;
1956  int chroma_x_shift, chroma_y_shift;
1957  ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift,
1958  &chroma_y_shift);
1959  if (ret < 0)
1960  return ret;
1961 
1962  f->width = avctx->width + 2 * EDGE_WIDTH;
1963  f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1964  ret = ff_get_buffer(avctx, f, flags);
1965  if (ret < 0)
1966  return ret;
1967 
1968  for (i = 0; f->data[i]; i++) {
1969  int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1970  f->linesize[i] + 32;
1971  f->data[i] += offset;
1972  }
1973  f->width = avctx->width;
1974  f->height = avctx->height;
1975 
1976  return 0;
1977 }
1978 
1979 /**
1980  * Dirac Specification ->
1981  * 11.1.1 Picture Header. picture_header()
1982  */
1984 {
1985  unsigned retire, picnum;
1986  int i, j, ret;
1987  int64_t refdist, refnum;
1988  GetBitContext *gb = &s->gb;
1989 
1990  /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
1992 
1993 
1994  av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
1995 
1996  /* if this is the first keyframe after a sequence header, start our
1997  reordering from here */
1998  if (s->frame_number < 0)
1999  s->frame_number = picnum;
2000 
2001  s->ref_pics[0] = s->ref_pics[1] = NULL;
2002  for (i = 0; i < s->num_refs; i++) {
2003  refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2004  refdist = INT64_MAX;
2005 
2006  /* find the closest reference to the one we want */
2007  /* Jordi: this is needed if the referenced picture hasn't yet arrived */
2008  for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
2009  if (s->ref_frames[j]
2010  && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
2011  s->ref_pics[i] = s->ref_frames[j];
2012  refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
2013  }
2014 
2015  if (!s->ref_pics[i] || refdist)
2016  av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
2017 
2018  /* if there were no references at all, allocate one */
2019  if (!s->ref_pics[i])
2020  for (j = 0; j < MAX_FRAMES; j++)
2021  if (!s->all_frames[j].avframe->data[0]) {
2022  s->ref_pics[i] = &s->all_frames[j];
2024  if (ret < 0)
2025  return ret;
2026  break;
2027  }
2028 
2029  if (!s->ref_pics[i]) {
2030  av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
2031  return AVERROR_INVALIDDATA;
2032  }
2033 
2034  }
2035 
2036  /* retire the reference frames that are not used anymore */
2037  if (s->current_picture->reference) {
2038  retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2039  if (retire != picnum) {
2040  DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
2041 
2042  if (retire_pic)
2043  retire_pic->reference &= DELAYED_PIC_REF;
2044  else
2045  av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
2046  }
2047 
2048  /* if reference array is full, remove the oldest as per the spec */
2050  av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
2052  }
2053  }
2054 
2055  if (s->num_refs) {
2056  ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2057  if (ret < 0)
2058  return ret;
2059  ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2060  if (ret < 0)
2061  return ret;
2062  }
2063  ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2064  if (ret < 0)
2065  return ret;
2066 
2067  init_planes(s);
2068  return 0;
2069 }
2070 
2071 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2072 {
2073  DiracFrame *out = s->delay_frames[0];
2074  int i, out_idx = 0;
2075  int ret;
2076 
2077  /* find frame with lowest picture number */
2078  for (i = 1; s->delay_frames[i]; i++)
2080  out = s->delay_frames[i];
2081  out_idx = i;
2082  }
2083 
2084  for (i = out_idx; s->delay_frames[i]; i++)
2085  s->delay_frames[i] = s->delay_frames[i+1];
2086 
2087  if (out) {
2088  out->reference ^= DELAYED_PIC_REF;
2089  if((ret = av_frame_ref(picture, out->avframe)) < 0)
2090  return ret;
2091  *got_frame = 1;
2092  }
2093 
2094  return 0;
2095 }
2096 
2097 /**
2098  * Dirac Specification ->
2099  * 9.6 Parse Info Header Syntax. parse_info()
2100  * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2101  */
2102 #define DATA_UNIT_HEADER_SIZE 13
2103 
2104 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2105  inside the function parse_sequence() */
2106 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2107 {
2108  DiracContext *s = avctx->priv_data;
2109  DiracFrame *pic = NULL;
2110  AVDiracSeqHeader *dsh;
2111  int ret, i;
2112  uint8_t parse_code;
2113  unsigned tmp;
2114 
2115  if (size < DATA_UNIT_HEADER_SIZE)
2116  return AVERROR_INVALIDDATA;
2117 
2118  parse_code = buf[4];
2119 
2120  init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2121 
2122  if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2123  if (s->seen_sequence_header)
2124  return 0;
2125 
2126  /* [DIRAC_STD] 10. Sequence header */
2128  if (ret < 0) {
2129  av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2130  return ret;
2131  }
2132 
2133  if (CALC_PADDING((int64_t)dsh->width, MAX_DWT_LEVELS) * CALC_PADDING((int64_t)dsh->height, MAX_DWT_LEVELS) > avctx->max_pixels)
2134  ret = AVERROR(ERANGE);
2135  if (ret >= 0)
2136  ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2137  if (ret < 0) {
2138  av_freep(&dsh);
2139  return ret;
2140  }
2141 
2142  ff_set_sar(avctx, dsh->sample_aspect_ratio);
2143  avctx->pix_fmt = dsh->pix_fmt;
2144  avctx->color_range = dsh->color_range;
2145  avctx->color_trc = dsh->color_trc;
2146  avctx->color_primaries = dsh->color_primaries;
2147  avctx->colorspace = dsh->colorspace;
2148  avctx->profile = dsh->profile;
2149  avctx->level = dsh->level;
2150  avctx->framerate = dsh->framerate;
2151  s->bit_depth = dsh->bit_depth;
2152  s->version.major = dsh->version.major;
2153  s->version.minor = dsh->version.minor;
2154  s->seq = *dsh;
2155  av_freep(&dsh);
2156 
2157  s->pshift = s->bit_depth > 8;
2158 
2160  &s->chroma_x_shift,
2161  &s->chroma_y_shift);
2162  if (ret < 0)
2163  return ret;
2164 
2165  ret = alloc_sequence_buffers(s);
2166  if (ret < 0)
2167  return ret;
2168 
2169  s->seen_sequence_header = 1;
2170  } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2172  s->seen_sequence_header = 0;
2173  } else if (parse_code == DIRAC_PCODE_AUX) {
2174  if (buf[13] == 1) { /* encoder implementation/version */
2175  int ver[3];
2176  /* versions older than 1.0.8 don't store quant delta for
2177  subbands with only one codeblock */
2178  if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2179  if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2180  s->old_delta_quant = 1;
2181  }
2182  } else if (parse_code & 0x8) { /* picture data unit */
2183  if (!s->seen_sequence_header) {
2184  av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2185  return AVERROR_INVALIDDATA;
2186  }
2187 
2188  /* find an unused frame */
2189  for (i = 0; i < MAX_FRAMES; i++)
2190  if (s->all_frames[i].avframe->data[0] == NULL)
2191  pic = &s->all_frames[i];
2192  if (!pic) {
2193  av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2194  return AVERROR_INVALIDDATA;
2195  }
2196 
2197  av_frame_unref(pic->avframe);
2198 
2199  /* [DIRAC_STD] Defined in 9.6.1 ... */
2200  tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2201  if (tmp > 2) {
2202  av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2203  return AVERROR_INVALIDDATA;
2204  }
2205  s->num_refs = tmp;
2206  s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2207  s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2208  s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2209  s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2210  s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2211  s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2212  pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2213  pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2214  pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2215 
2216  /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2217  if (s->version.minor == 2 && parse_code == 0x88)
2218  s->ld_picture = 1;
2219 
2220  if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2221  av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2222  return AVERROR_INVALIDDATA;
2223  }
2224 
2225  if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2226  return ret;
2227  s->current_picture = pic;
2228  s->plane[0].stride = pic->avframe->linesize[0];
2229  s->plane[1].stride = pic->avframe->linesize[1];
2230  s->plane[2].stride = pic->avframe->linesize[2];
2231 
2232  if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2233  return AVERROR(ENOMEM);
2234 
2235  /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2236  ret = dirac_decode_picture_header(s);
2237  if (ret < 0)
2238  return ret;
2239 
2240  /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2241  ret = dirac_decode_frame_internal(s);
2242  if (ret < 0)
2243  return ret;
2244  }
2245  return 0;
2246 }
2247 
2248 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2249 {
2250  DiracContext *s = avctx->priv_data;
2251  AVFrame *picture = data;
2252  uint8_t *buf = pkt->data;
2253  int buf_size = pkt->size;
2254  int i, buf_idx = 0;
2255  int ret;
2256  unsigned data_unit_size;
2257 
2258  /* release unused frames */
2259  for (i = 0; i < MAX_FRAMES; i++)
2260  if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2262  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2263  }
2264 
2265  s->current_picture = NULL;
2266  *got_frame = 0;
2267 
2268  /* end of stream, so flush delayed pics */
2269  if (buf_size == 0)
2270  return get_delayed_pic(s, (AVFrame *)data, got_frame);
2271 
2272  for (;;) {
2273  /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2274  [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2275  BBCD start code search */
2276  for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2277  if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2278  buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2279  break;
2280  }
2281  /* BBCD found or end of data */
2282  if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2283  break;
2284 
2285  data_unit_size = AV_RB32(buf+buf_idx+5);
2286  if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2287  if(data_unit_size > buf_size - buf_idx)
2289  "Data unit with size %d is larger than input buffer, discarding\n",
2290  data_unit_size);
2291  buf_idx += 4;
2292  continue;
2293  }
2294  /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2295  ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2296  if (ret < 0)
2297  {
2298  av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2299  return ret;
2300  }
2301  buf_idx += data_unit_size;
2302  }
2303 
2304  if (!s->current_picture)
2305  return buf_size;
2306 
2308  DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2309 
2311 
2313  int min_num = s->delay_frames[0]->avframe->display_picture_number;
2314  /* Too many delayed frames, so we display the frame with the lowest pts */
2315  av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2316 
2317  for (i = 1; s->delay_frames[i]; i++)
2318  if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2319  min_num = s->delay_frames[i]->avframe->display_picture_number;
2320 
2321  delayed_frame = remove_frame(s->delay_frames, min_num);
2323  }
2324 
2325  if (delayed_frame) {
2326  delayed_frame->reference ^= DELAYED_PIC_REF;
2327  if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2328  return ret;
2329  *got_frame = 1;
2330  }
2332  /* The right frame at the right time :-) */
2333  if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2334  return ret;
2335  *got_frame = 1;
2336  }
2337 
2338  if (*got_frame)
2339  s->frame_number = picture->display_picture_number + 1LL;
2340 
2341  return buf_idx;
2342 }
2343 
2345  .name = "dirac",
2346  .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2347  .type = AVMEDIA_TYPE_VIDEO,
2348  .id = AV_CODEC_ID_DIRAC,
2349  .priv_data_size = sizeof(DiracContext),
2351  .close = dirac_decode_end,
2354  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
2356 };
#define CHECKEDREAD(dst, cond, errmsg)
int ff_dirac_golomb_read_32bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:42
int quant
Definition: cfhd.h:53
int plane
Definition: avisynth_c.h:422
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdec.c:230
uint8_t * thread_buf
Definition: diracdec.c:176
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
#define UNPACK_ARITH(n, type)
Definition: diracdec.c:454
AVRational framerate
Definition: avcodec.h:3056
const char const char void * val
Definition: avisynth_c.h:771
const int32_t ff_dirac_qscale_tab[116]
Definition: diractab.c:34
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
Definition: diracdec.c:704
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int blheight
Definition: diracdec.c:212
static av_cold int dirac_decode_end(AVCodecContext *avctx)
Definition: diracdec.c:426
enum AVColorRange color_range
Definition: dirac.h:107
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:226
dirac_weight_func weight_func
Definition: diracdec.c:231
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static void flush(AVCodecContext *avctx)
uint8_t * sbsplit
Definition: diracdec.c:216
#define CTX_SB_DATA
Definition: dirac_arith.h:66
#define CTX_PMODE_REF2
Definition: dirac_arith.h:68
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
enum AVColorTransferCharacteristic color_trc
Definition: dirac.h:109
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
Definition: diracdec.c:237
static int divide3(int x)
Definition: diracdec.c:251
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
Definition: diracdec.c:1856
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
DiracVersionInfo version
Definition: dirac.h:112
int ld_picture
Definition: diracdec.c:157
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:293
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int bit_depth
Definition: diracdec.c:149
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode...
Definition: diracdec.c:1473
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2164
dirac_weight_func weight_dirac_pixels_tab[3]
Definition: diracdsp.h:53
int num
Numerator.
Definition: rational.h:59
int size
Definition: avcodec.h:1446
const char * b
Definition: vf_curves.c:116
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:67
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
Definition: dirac_arith.c:96
static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
Definition: diracdec.c:814
unsigned width
Definition: diracdec.c:184
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
Definition: diracdec.c:2102
const uint8_t * buffer
Definition: get_bits.h:62
int av_log2(unsigned v)
Definition: intmath.c:26
uint8_t * buf
Definition: dirac_dwt.h:41
uint8_t yoffset
Definition: diracdec.c:121
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
Definition: diracdec.c:1417
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1743
GetBitContext gb
Definition: diracdec.c:128
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:170
static int alloc_buffers(DiracContext *s, int stride)
Definition: diracdec.c:323
int ff_dirac_golomb_read_16bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:82
mpegvideo header.
DiracVersionInfo version
Definition: diracdec.c:140
ptrdiff_t stride
Definition: cfhd.h:47
unsigned height
Definition: diracdec.c:185
static AVPacket pkt
#define EDGE_TOP
static void dirac_decode_flush(AVCodecContext *avctx)
Definition: diracdec.c:418
const uint8_t * coeff_data
Definition: diracdec.c:103
#define src
Definition: vp8dsp.c:254
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
Definition: diracdec.c:2071
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
Definition: diracdec.c:1224
int profile
profile
Definition: avcodec.h:2859
#define DIRAC_REF_MASK_REF2
Definition: diracdec.c:60
AVCodec.
Definition: avcodec.h:3424
int zrs[2][2]
Definition: diracdec.c:200
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
Definition: diracdec.c:835
unsigned codeblock_mode
Definition: diracdec.c:171
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
int num_refs
Definition: diracdec.c:160
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
Definition: dirac.c:402
uint8_t xoffset
Definition: diracdec.c:120
uint8_t * tmp
Definition: dirac_dwt.h:43
unsigned weight_log2denom
Definition: diracdec.c:209
#define CTX_GLOBAL_BLOCK
Definition: dirac_arith.h:69
int width
Definition: cfhd.h:49
static int16_t block[64]
Definition: dct.c:115
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:993
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DiracFrame * delay_frames[MAX_DELAY+1]
Definition: diracdec.c:238
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t * mcscratch
Definition: diracdec.c:223
int dc_prediction
Definition: diracdec.c:158
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
void(* add_rect_clamped)(uint8_t *dst, const uint16_t *src, int stride, const int16_t *idwt, int idwt_stride, int width, int height)
Definition: diracdsp.h:47
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
uint8_t
#define av_cold
Definition: attributes.h:82
unsigned wavelet_idx
Definition: diracdec.c:164
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:189
Interface to Dirac Decoder/Encoder.
#define CTX_PMODE_REF1
Definition: dirac_arith.h:67
static int decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
Definition: diracdec.c:658
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
Definition: diracdec.c:443
#define DIVRNDUP(a, b)
Definition: diracdec.c:72
int hq_picture
Definition: diracdec.c:156
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int dirac_decode_init(AVCodecContext *avctx)
Definition: diracdec.c:386
uint8_t quant[MAX_DWT_LEVELS][4]
Definition: diracdec.c:190
unsigned prefix_bytes
Definition: diracdec.c:194
AVRational sample_aspect_ratio
Definition: dirac.h:104
unsigned num_x
Definition: diracdec.c:173
int low_delay
Definition: diracdec.c:155
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
Plane plane[3]
Definition: diracdec.c:145
static int dirac_get_se_golomb(GetBitContext *gb)
Definition: golomb.h:357
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:253
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
static AVFrame * frame
DiracSlice * slice_params_buf
Definition: diracdec.c:180
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
#define height
static AVOnce dirac_arith_init
Definition: diracdec.c:384
uint8_t * data
Definition: avcodec.h:1445
static void free_sequence_buffers(DiracContext *s)
Definition: diracdec.c:352
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
int height
Definition: dirac_dwt.h:39
bitstream reader API header.
static const uint8_t epel_weights[4][4][4]
Definition: diracdec.c:1605
ptrdiff_t size
Definition: opengl_enc.c:101
uint8_t xblen
Definition: diracdec.c:114
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
Definition: diracdec.c:768
#define CTX_DC_DATA
Definition: dirac_arith.h:73
#define AVOnce
Definition: thread.h:159
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
struct DiracContext::@76 highquality
Definition: cfhd.h:44
void(* avg_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdsp.h:43
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1348
AVRational framerate
Definition: dirac.h:103
int pan_tilt[2]
Definition: diracdec.c:199
int interpolated[3]
Definition: diracdec.c:76
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define ROLLOFF(i)
#define U(x)
Definition: vp56_arith.h:37
av_cold int ff_dirac_golomb_reader_init(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:232
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:814
dirac_subband
Definition: diracdec.c:242
const int32_t ff_dirac_qoffset_intra_tab[120]
Definition: diractab.c:53
av_cold void ff_diracdsp_init(DiracDSPContext *c)
Definition: diracdsp.c:219
int width
Definition: frame.h:284
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
unsigned length
Definition: diracdec.c:102
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Definition: diracdec.c:2248
void(* dirac_hpel_filter)(uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, const uint8_t *src, int stride, int width, int height)
Definition: diracdsp.h:31
uint8_t * hpel[3][4]
Definition: diracdec.c:77
int slice_x
Definition: diracdec.c:129
static const uint16_t mask[17]
Definition: lzw.c:38
uint16_t * mctmp
Definition: diracdec.c:222
static av_always_inline int decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
Definition: diracdec.c:599
#define AVERROR(e)
Definition: error.h:43
#define DIRAC_REF_MASK_GLOBAL
Definition: diracdec.c:61
int width
Definition: dirac_dwt.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
Definition: diracdec.c:1318
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2474
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
Definition: diracdec.c:274
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1381
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const char * arg
Definition: jacosubdec.c:66
const uint8_t ff_dirac_default_qmat[7][4][4]
Definition: diractab.c:24
unsigned num_y
Definition: diracdec.c:174
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
Definition: diracdec.c:1815
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
Definition: diracdec.c:1632
unsigned wavelet_depth
Definition: diracdec.c:163
#define CTX_MV_DATA
Definition: dirac_arith.h:71
int stride
Definition: diracdec.c:93
GLsizei GLsizei * length
Definition: opengl_enc.c:115
const char * name
Name of the codec implementation.
Definition: avcodec.h:3431
DiracFrame * current_picture
Definition: diracdec.c:234
int64_t max_pixels
The number of pixels per image to maximally accept.
Definition: avcodec.h:3243
#define DIRAC_MAX_QUANT_INDEX
Definition: diractab.h:41
int slice_y
Definition: diracdec.c:130
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn't store quant delta if only one codebook exists in a band ...
Definition: diracdec.c:170
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
Definition: diracdec.c:2106
DiracDSPContext diracdsp
Definition: diracdec.c:138
int orientation
Definition: cfhd.h:46
#define MAX_BLOCKSIZE
Definition: diracdec.c:54
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
int bytes
Definition: diracdec.c:131
int slice_params_num_buf
Definition: diracdec.c:181
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
Definition: diracdec.c:571
static int codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13...
Definition: diracdec.c:491
static void init_planes(DiracContext *s)
Definition: diracdec.c:1042
int globalmc_flag
Definition: diracdec.c:159
AVCodec ff_dirac_decoder
Definition: diracdec.c:2344
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1433
SubBand band[DWT_LEVELS][4]
Definition: cfhd.h:69
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:309
uint8_t * ibuf
Definition: cfhd.h:54
#define FFMIN(a, b)
Definition: common.h:96
int display_picture_number
picture number in display order
Definition: frame.h:344
#define CALC_PADDING(size, depth)
Definition: diracdec.c:69
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: diracdec.c:909
DiracFrame * ref_pics[2]
Definition: diracdec.c:235
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:229
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)
Definition: diracdec.c:1743
enum AVColorSpace colorspace
Definition: dirac.h:110
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Definition: diracdec.c:256
#define width
void ff_spatial_idwt_slice2(DWTContext *d, int y)
Definition: dirac_dwt.c:67
#define FFSIGN(a)
Definition: common.h:73
int width
picture width / height.
Definition: avcodec.h:1706
uint8_t w
Definition: llviddspenc.c:38
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
int perspective[2]
Definition: diracdec.c:201
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data...
Definition: diracdec.c:1096
int32_t
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2143
av_cold void ff_dirac_golomb_reader_end(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:249
MpegvideoEncDSPContext mpvencdsp
Definition: diracdec.c:136
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
Definition: diracdec.c:1779
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int level
level
Definition: avcodec.h:2969
unsigned perspective_exp
Definition: diracdec.c:203
int64_t frame_number
Definition: diracdec.c:144
int chroma_y_shift
Definition: diracdec.c:147
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
Definition: diracdec.c:1795
int n
Definition: avisynth_c.h:684
int16_t dc[3]
Definition: diracdec.c:85
uint8_t * edge_emu_buffer_base
Definition: diracdec.c:220
struct DiracContext::@77 globalmc[2]
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:2785
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
Definition: diracdec.c:1592
static const float pred[4]
Definition: siprdata.h:259
void(* add_dirac_obmc[3])(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdsp.h:48
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
Definition: eamad.c:83
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
uint8_t * buf_base
Definition: dirac_dwt.h:42
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1028
static const int8_t mv[256][2]
Definition: 4xm.c:77
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
Definition: diracdec.c:1953
VideoDSPContext vdsp
Definition: diracdec.c:137
uint8_t ybsep
Definition: diracdec.c:118
#define AV_ONCE_INIT
Definition: thread.h:160
Libavcodec external API header.
uint8_t * edge_emu_buffer[4]
Definition: diracdec.c:219
int seen_sequence_header
Definition: diracdec.c:143
enum AVPixelFormat pix_fmt
Definition: dirac.h:106
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:257
const int ff_dirac_qoffset_inter_tab[122]
Definition: diractab.c:72
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:650
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
Definition: diracdsp.h:27
main external API structure.
Definition: avcodec.h:1533
int buffer_stride
Definition: diracdec.c:224
MPEG-1/2 tables.
DiracFrame all_frames[MAX_FRAMES]
Definition: diracdec.c:239
static const float bands[]
int reference
Definition: diracdec.c:79
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1918
Arithmetic decoder for Dirac.
struct SubBand * parent
Definition: diracdec.c:99
void * buf
Definition: avisynth_c.h:690
dirac_biweight_func biweight_dirac_pixels_tab[3]
Definition: diracdsp.h:54
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
Definition: dirac.h:45
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Definition: diracdec.c:924
int core_syntax
Definition: diracdec.c:154
static int dirac_get_arith_bit(DiracArith *c, int ctx)
Definition: dirac_arith.h:129
AVCodecContext * avctx
Definition: diracdec.c:135
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2157
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2150
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:615
GetBitContext gb
Definition: diracdec.c:141
#define mid_pred
Definition: mathops.h:97
dirac_biweight_func biweight_func
Definition: diracdec.c:232
uint8_t xbsep
Definition: diracdec.c:117
int thread_buf_size
Definition: diracdec.c:178
int chroma_x_shift
Definition: diracdec.c:146
AVRational bytes
Definition: diracdec.c:189
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:531
static int decode_subband_arith(AVCodecContext *avctx, void *b)
Definition: diracdec.c:641
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1547
#define MAX_DELAY
Definition: diracdec.c:51
unsigned height
Definition: dirac.h:83
int zero_res
Definition: diracdec.c:152
const uint8_t * quant
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
#define MAX_FRAMES
Definition: diracdec.c:52
#define flags(name, subs,...)
Definition: cbs_av1.c:596
int pshift
Definition: cfhd.h:52
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
uint8_t level
Definition: svq3.c:207
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
Definition: diracdec.c:1332
AVFrame * avframe
Definition: diracdec.c:75
DiracBlock * blmotion
Definition: diracdec.c:217
DiracGolombLUT * reader_ctx
Definition: diracdec.c:139
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
Definition: diracdec.c:50
int
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
Definition: diracdec.c:1983
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVDiracSeqHeader seq
Definition: diracdec.c:142
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
ptrdiff_t stride
Definition: cfhd.h:60
static double c[64]
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
Definition: diracdec.c:716
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
Definition: diracdec.c:647
int16_t weight[2]
Definition: diracdec.c:208
int16_t mv[2][2]
Definition: diracdec.c:84
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:185
#define CTX_MV_F1
Definition: dirac_arith.h:70
int sbheight
Definition: diracdec.c:214
int den
Denominator.
Definition: rational.h:60
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
Definition: diracdec.c:1559
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
Definition: error.h:71
Core video DSP helper functions.
void(* put_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
dirac_pixels_tab[width][subpel] width is 2 for 32, 1 for 16, 0 for 8 subpel is 0 for fpel and hpel (o...
Definition: diracdsp.h:42
#define CTX_DC_F1
Definition: dirac_arith.h:72
void * priv_data
Definition: avcodec.h:1560
DWTPlane idwt
Definition: diracdec.c:107
static int alloc_sequence_buffers(DiracContext *s)
Definition: diracdec.c:285
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:228
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
Definition: diracdec.c:1573
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2825
void(* dequant_subband[4])(uint8_t *src, uint8_t *dst, ptrdiff_t stride, const int qf, const int qs, int tot_v, int tot_h)
Definition: diracdsp.h:51
int threads_num_buf
Definition: diracdec.c:177
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:2845
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
#define CTX_SB_F1
Definition: dirac_arith.h:65
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:162
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
Definition: diracdsp.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:304
int height
Definition: cfhd.h:51
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:658
#define EDGE_BOTTOM
int width
Definition: cfhd.h:58
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
int height
Definition: frame.h:284
FILE * out
Definition: movenc.c:54
uint8_t ref
Definition: diracdec.c:87
int is_arith
Definition: diracdec.c:153
#define av_freep(p)
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
Definition: diracdec.c:1727
enum AVColorPrimaries color_primaries
Definition: dirac.h:108
void INT64 start
Definition: avisynth_c.h:690
#define AV_WN16(p, v)
Definition: intreadwrite.h:372
#define av_always_inline
Definition: attributes.h:39
#define av_malloc_array(a, b)
struct DiracContext::@75 lowdelay
uint8_t * hpel_base[3][4]
Definition: diracdec.c:78
unsigned width
Definition: dirac.h:82
#define FFSWAP(type, a, b)
Definition: common.h:99
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
Definition: golomb.h:141
#define stride
int stride
Definition: dirac_dwt.h:40
int height
Definition: cfhd.h:59
struct DiracContext::@74 codeblock[MAX_DWT_LEVELS+1]
exp golomb vlc stuff
This structure stores compressed data.
Definition: avcodec.h:1422
void(* put_signed_rect_clamped[3])(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int width, int height)
Definition: diracdsp.h:45
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1144
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:968
union DiracBlock::@73 u
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
Definition: diracdec.c:59
uint64_t size_scaler
Definition: diracdec.c:195
unsigned zrs_exp
Definition: diracdec.c:202
#define FFMAX3(a, b, c)
Definition: common.h:95
uint8_t mv_precision
Definition: diracdec.c:207
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
Definition: diracdec.c:1492
Definition: cfhd.h:57
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
Definition: diracdec.c:226
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
Definition: dirac_dwt.c:36
av_cold void ff_dirac_init_arith_tables(void)
Definition: dirac_arith.c:86
int level
Definition: cfhd.h:45
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:191
uint8_t yblen
Definition: diracdec.c:115
static uint8_t tmp[11]
Definition: aes_ctr.c:26