FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rv34.c
Go to the documentation of this file.
1 /*
2  * RV30/40 decoder common data
3  * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * RV30/40 decoder common data
25  */
26 
27 #include "libavutil/imgutils.h"
28 #include "libavutil/internal.h"
29 
30 #include "avcodec.h"
31 #include "error_resilience.h"
32 #include "mpegutils.h"
33 #include "mpegvideo.h"
34 #include "golomb.h"
35 #include "internal.h"
36 #include "mathops.h"
37 #include "mpeg_er.h"
38 #include "qpeldsp.h"
39 #include "rectangle.h"
40 #include "thread.h"
41 
42 #include "rv34vlc.h"
43 #include "rv34data.h"
44 #include "rv34.h"
45 
46 static inline void ZERO8x2(void* dst, int stride)
47 {
48  fill_rectangle(dst, 1, 2, stride, 0, 4);
49  fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
50 }
51 
52 /** translation of RV30/40 macroblock types to lavc ones */
53 static const int rv34_mb_type_to_lavc[12] = {
66 };
67 
68 
70 
71 static int rv34_decode_mv(RV34DecContext *r, int block_type);
72 
73 /**
74  * @name RV30/40 VLC generating functions
75  * @{
76  */
77 
78 static const int table_offs[] = {
79  0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
80  5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
81  14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
82  18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
83  28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
84  31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
85  41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
86  43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
87  54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
88  56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
89  64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
90  72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
91  79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
92  84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
93  91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
94  98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
95  103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
96  111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
97 };
98 
99 static VLC_TYPE table_data[117592][2];
100 
101 /**
102  * Generate VLC from codeword lengths.
103  * @param bits codeword lengths (zeroes are accepted)
104  * @param size length of input data
105  * @param vlc output VLC
106  * @param insyms symbols for input codes (NULL for default ones)
107  * @param num VLC table number (for static initialization)
108  */
109 static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
110  const int num)
111 {
112  int i;
113  int counts[17] = {0}, codes[17];
114  uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
116  int maxbits = 0, realsize = 0;
117 
118  for(i = 0; i < size; i++){
119  if(bits[i]){
120  bits2[realsize] = bits[i];
121  syms[realsize] = insyms ? insyms[i] : i;
122  realsize++;
123  maxbits = FFMAX(maxbits, bits[i]);
124  counts[bits[i]]++;
125  }
126  }
127 
128  codes[0] = 0;
129  for(i = 0; i < 16; i++)
130  codes[i+1] = (codes[i] + counts[i]) << 1;
131  for(i = 0; i < realsize; i++)
132  cw[i] = codes[bits2[i]]++;
133 
134  vlc->table = &table_data[table_offs[num]];
135  vlc->table_allocated = table_offs[num + 1] - table_offs[num];
136  ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
137  bits2, 1, 1,
138  cw, 2, 2,
139  syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
140 }
141 
142 /**
143  * Initialize all tables.
144  */
145 static av_cold void rv34_init_tables(void)
146 {
147  int i, j, k;
148 
149  for(i = 0; i < NUM_INTRA_TABLES; i++){
150  for(j = 0; j < 2; j++){
151  rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
152  rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
153  rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
154  for(k = 0; k < 4; k++){
155  rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
156  }
157  }
158  for(j = 0; j < 4; j++){
159  rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
160  }
161  rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
162  }
163 
164  for(i = 0; i < NUM_INTER_TABLES; i++){
165  rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
166  for(j = 0; j < 4; j++){
167  rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
168  }
169  for(j = 0; j < 2; j++){
170  rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
171  rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
172  rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
173  }
174  rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
175  }
176 }
177 
178 /** @} */ // vlc group
179 
180 /**
181  * @name RV30/40 4x4 block decoding functions
182  * @{
183  */
184 
185 /**
186  * Decode coded block pattern.
187  */
188 static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
189 {
190  int pattern, code, cbp=0;
191  int ones;
192  static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
193  static const int shifts[4] = { 0, 2, 8, 10 };
194  const int *curshift = shifts;
195  int i, t, mask;
196 
197  code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
198  pattern = code & 0xF;
199  code >>= 4;
200 
201  ones = rv34_count_ones[pattern];
202 
203  for(mask = 8; mask; mask >>= 1, curshift++){
204  if(pattern & mask)
205  cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
206  }
207 
208  for(i = 0; i < 4; i++){
209  t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
210  if(t == 1)
211  cbp |= cbp_masks[get_bits1(gb)] << i;
212  if(t == 2)
213  cbp |= cbp_masks[2] << i;
214  }
215  return cbp;
216 }
217 
218 /**
219  * Get one coefficient value from the bitstream and store it.
220  */
221 static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
222 {
223  if(coef){
224  if(coef == esc){
225  coef = get_vlc2(gb, vlc->table, 9, 2);
226  if(coef > 23){
227  coef -= 23;
228  coef = 22 + ((1 << coef) | get_bits(gb, coef));
229  }
230  coef += esc;
231  }
232  if(get_bits1(gb))
233  coef = -coef;
234  *dst = (coef*q + 8) >> 4;
235  }
236 }
237 
238 /**
239  * Decode 2x2 subblock of coefficients.
240  */
241 static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
242 {
243  int flags = modulo_three_table[code];
244 
245  decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
246  if(is_block2){
247  decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
248  decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
249  }else{
250  decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
251  decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
252  }
253  decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
254 }
255 
256 /**
257  * Decode a single coefficient.
258  */
259 static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
260 {
261  int coeff = modulo_three_table[code] >> 6;
262  decode_coeff(dst, coeff, 3, gb, vlc, q);
263 }
264 
265 static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
266  int q_dc, int q_ac1, int q_ac2)
267 {
268  int flags = modulo_three_table[code];
269 
270  decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
271  decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
272  decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
273  decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
274 }
275 
276 /**
277  * Decode coefficients for 4x4 block.
278  *
279  * This is done by filling 2x2 subblocks with decoded coefficients
280  * in this order (the same for subblocks and subblock coefficients):
281  * o--o
282  * /
283  * /
284  * o--o
285  */
286 
287 static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
288 {
289  int code, pattern, has_ac = 1;
290 
291  code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
292 
293  pattern = code & 0x7;
294 
295  code >>= 3;
296 
297  if (modulo_three_table[code] & 0x3F) {
298  decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
299  } else {
300  decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
301  if (!pattern)
302  return 0;
303  has_ac = 0;
304  }
305 
306  if(pattern & 4){
307  code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
308  decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
309  }
310  if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
311  code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
312  decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
313  }
314  if(pattern & 1){
315  code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
316  decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
317  }
318  return has_ac | pattern;
319 }
320 
321 /**
322  * @name RV30/40 bitstream parsing
323  * @{
324  */
325 
326 /**
327  * Decode starting slice position.
328  * @todo Maybe replace with ff_h263_decode_mba() ?
329  */
331 {
332  int i;
333  for(i = 0; i < 5; i++)
334  if(rv34_mb_max_sizes[i] >= mb_size - 1)
335  break;
336  return rv34_mb_bits_sizes[i];
337 }
338 
339 /**
340  * Select VLC set for decoding from current quantizer, modifier and frame type.
341  */
342 static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
343 {
344  if(mod == 2 && quant < 19) quant += 10;
345  else if(mod && quant < 26) quant += 5;
346  return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
347  : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
348 }
349 
350 /**
351  * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
352  */
353 static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
354 {
355  MpegEncContext *s = &r->s;
356  GetBitContext *gb = &s->gb;
357  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
358  int t;
359 
360  r->is16 = get_bits1(gb);
361  if(r->is16){
364  t = get_bits(gb, 2);
365  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
366  r->luma_vlc = 2;
367  }else{
368  if(!r->rv30){
369  if(!get_bits1(gb))
370  av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
371  }
374  if(r->decode_intra_types(r, gb, intra_types) < 0)
375  return -1;
376  r->luma_vlc = 1;
377  }
378 
379  r->chroma_vlc = 0;
380  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
381 
382  return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
383 }
384 
385 /**
386  * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
387  */
388 static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
389 {
390  MpegEncContext *s = &r->s;
391  GetBitContext *gb = &s->gb;
392  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
393  int i, t;
394 
395  r->block_type = r->decode_mb_info(r);
396  if(r->block_type == -1)
397  return -1;
399  r->mb_type[mb_pos] = r->block_type;
400  if(r->block_type == RV34_MB_SKIP){
401  if(s->pict_type == AV_PICTURE_TYPE_P)
402  r->mb_type[mb_pos] = RV34_MB_P_16x16;
403  if(s->pict_type == AV_PICTURE_TYPE_B)
404  r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
405  }
406  r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
407  if (rv34_decode_mv(r, r->block_type) < 0)
408  return -1;
409  if(r->block_type == RV34_MB_SKIP){
410  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
411  return 0;
412  }
413  r->chroma_vlc = 1;
414  r->luma_vlc = 0;
415 
416  if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
417  if(r->is16){
418  t = get_bits(gb, 2);
419  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
420  r->luma_vlc = 2;
421  }else{
422  if(r->decode_intra_types(r, gb, intra_types) < 0)
423  return -1;
424  r->luma_vlc = 1;
425  }
426  r->chroma_vlc = 0;
427  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
428  }else{
429  for(i = 0; i < 16; i++)
430  intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
431  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
432  if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
433  r->is16 = 1;
434  r->chroma_vlc = 1;
435  r->luma_vlc = 2;
436  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
437  }
438  }
439 
440  return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
441 }
442 
443 /** @} */ //bitstream functions
444 
445 /**
446  * @name motion vector related code (prediction, reconstruction, motion compensation)
447  * @{
448  */
449 
450 /** macroblock partition width in 8x8 blocks */
451 static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
452 
453 /** macroblock partition height in 8x8 blocks */
454 static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
455 
456 /** availability index for subblocks */
457 static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
458 
459 /**
460  * motion vector prediction
461  *
462  * Motion prediction performed for the block by using median prediction of
463  * motion vectors from the left, top and right top blocks but in corner cases
464  * some other vectors may be used instead.
465  */
466 static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
467 {
468  MpegEncContext *s = &r->s;
469  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
470  int A[2] = {0}, B[2], C[2];
471  int i, j;
472  int mx, my;
473  int* avail = r->avail_cache + avail_indexes[subblock_no];
474  int c_off = part_sizes_w[block_type];
475 
476  mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
477  if(subblock_no == 3)
478  c_off = -1;
479 
480  if(avail[-1]){
481  A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
482  A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
483  }
484  if(avail[-4]){
485  B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
486  B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
487  }else{
488  B[0] = A[0];
489  B[1] = A[1];
490  }
491  if(!avail[c_off-4]){
492  if(avail[-4] && (avail[-1] || r->rv30)){
493  C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
494  C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
495  }else{
496  C[0] = A[0];
497  C[1] = A[1];
498  }
499  }else{
500  C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
501  C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
502  }
503  mx = mid_pred(A[0], B[0], C[0]);
504  my = mid_pred(A[1], B[1], C[1]);
505  mx += r->dmv[dmv_no][0];
506  my += r->dmv[dmv_no][1];
507  for(j = 0; j < part_sizes_h[block_type]; j++){
508  for(i = 0; i < part_sizes_w[block_type]; i++){
509  s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
510  s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
511  }
512  }
513 }
514 
515 #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
516 
517 /**
518  * Calculate motion vector component that should be added for direct blocks.
519  */
520 static int calc_add_mv(RV34DecContext *r, int dir, int val)
521 {
522  int mul = dir ? -r->mv_weight2 : r->mv_weight1;
523 
524  return (int)(val * (SUINT)mul + 0x2000) >> 14;
525 }
526 
527 /**
528  * Predict motion vector for B-frame macroblock.
529  */
530 static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
531  int A_avail, int B_avail, int C_avail,
532  int *mx, int *my)
533 {
534  if(A_avail + B_avail + C_avail != 3){
535  *mx = A[0] + B[0] + C[0];
536  *my = A[1] + B[1] + C[1];
537  if(A_avail + B_avail + C_avail == 2){
538  *mx /= 2;
539  *my /= 2;
540  }
541  }else{
542  *mx = mid_pred(A[0], B[0], C[0]);
543  *my = mid_pred(A[1], B[1], C[1]);
544  }
545 }
546 
547 /**
548  * motion vector prediction for B-frames
549  */
550 static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
551 {
552  MpegEncContext *s = &r->s;
553  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
554  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
555  int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
556  int has_A = 0, has_B = 0, has_C = 0;
557  int mx, my;
558  int i, j;
559  Picture *cur_pic = s->current_picture_ptr;
560  const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
561  int type = cur_pic->mb_type[mb_pos];
562 
563  if((r->avail_cache[6-1] & type) & mask){
564  A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
565  A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
566  has_A = 1;
567  }
568  if((r->avail_cache[6-4] & type) & mask){
569  B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
570  B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
571  has_B = 1;
572  }
573  if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
574  C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
575  C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
576  has_C = 1;
577  }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
578  C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
579  C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
580  has_C = 1;
581  }
582 
583  rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
584 
585  mx += r->dmv[dir][0];
586  my += r->dmv[dir][1];
587 
588  for(j = 0; j < 2; j++){
589  for(i = 0; i < 2; i++){
590  cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
591  cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
592  }
593  }
594  if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
595  ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
596  }
597 }
598 
599 /**
600  * motion vector prediction - RV3 version
601  */
602 static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
603 {
604  MpegEncContext *s = &r->s;
605  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
606  int A[2] = {0}, B[2], C[2];
607  int i, j, k;
608  int mx, my;
609  int* avail = r->avail_cache + avail_indexes[0];
610 
611  if(avail[-1]){
612  A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
613  A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
614  }
615  if(avail[-4]){
616  B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
617  B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
618  }else{
619  B[0] = A[0];
620  B[1] = A[1];
621  }
622  if(!avail[-4 + 2]){
623  if(avail[-4] && (avail[-1])){
624  C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
625  C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
626  }else{
627  C[0] = A[0];
628  C[1] = A[1];
629  }
630  }else{
631  C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
632  C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
633  }
634  mx = mid_pred(A[0], B[0], C[0]);
635  my = mid_pred(A[1], B[1], C[1]);
636  mx += r->dmv[0][0];
637  my += r->dmv[0][1];
638  for(j = 0; j < 2; j++){
639  for(i = 0; i < 2; i++){
640  for(k = 0; k < 2; k++){
641  s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
642  s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
643  }
644  }
645  }
646 }
647 
648 static const int chroma_coeffs[3] = { 0, 3, 5 };
649 
650 /**
651  * generic motion compensation function
652  *
653  * @param r decoder context
654  * @param block_type type of the current block
655  * @param xoff horizontal offset from the start of the current block
656  * @param yoff vertical offset from the start of the current block
657  * @param mv_off offset to the motion vector information
658  * @param width width of the current partition in 8x8 blocks
659  * @param height height of the current partition in 8x8 blocks
660  * @param dir motion compensation direction (i.e. from the last or the next reference frame)
661  * @param thirdpel motion vectors are specified in 1/3 of pixel
662  * @param qpel_mc a set of functions used to perform luma motion compensation
663  * @param chroma_mc a set of functions used to perform chroma motion compensation
664  */
665 static inline void rv34_mc(RV34DecContext *r, const int block_type,
666  const int xoff, const int yoff, int mv_off,
667  const int width, const int height, int dir,
668  const int thirdpel, int weighted,
669  qpel_mc_func (*qpel_mc)[16],
671 {
672  MpegEncContext *s = &r->s;
673  uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
674  int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
675  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
676  int is16x16 = 1;
677  int emu = 0;
678 
679  if(thirdpel){
680  int chroma_mx, chroma_my;
681  mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
682  my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
683  lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
684  ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
685  chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
686  chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
687  umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
688  umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
689  uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
690  uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
691  }else{
692  int cx, cy;
693  mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
694  my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
695  lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
696  ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
697  cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
698  cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
699  umx = cx >> 2;
700  umy = cy >> 2;
701  uvmx = (cx & 3) << 1;
702  uvmy = (cy & 3) << 1;
703  //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
704  if(uvmx == 6 && uvmy == 6)
705  uvmx = uvmy = 4;
706  }
707 
708  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
709  /* wait for the referenced mb row to be finished */
710  int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
711  ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
712  ff_thread_await_progress(f, mb_row, 0);
713  }
714 
715  dxy = ly*4 + lx;
716  srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
717  srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
718  srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
719  src_x = s->mb_x * 16 + xoff + mx;
720  src_y = s->mb_y * 16 + yoff + my;
721  uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
722  uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
723  srcY += src_y * s->linesize + src_x;
724  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
725  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
726  if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
727  (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
728  (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
729  srcY -= 2 + 2*s->linesize;
731  s->linesize, s->linesize,
732  (width << 3) + 6, (height << 3) + 6,
733  src_x - 2, src_y - 2,
734  s->h_edge_pos, s->v_edge_pos);
735  srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize;
736  emu = 1;
737  }
738  if(!weighted){
739  Y = s->dest[0] + xoff + yoff *s->linesize;
740  U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
741  V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
742  }else{
743  Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
744  U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
745  V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
746  }
747 
748  if(block_type == RV34_MB_P_16x8){
749  qpel_mc[1][dxy](Y, srcY, s->linesize);
750  Y += 8;
751  srcY += 8;
752  }else if(block_type == RV34_MB_P_8x16){
753  qpel_mc[1][dxy](Y, srcY, s->linesize);
754  Y += 8 * s->linesize;
755  srcY += 8 * s->linesize;
756  }
757  is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
758  qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
759  if (emu) {
760  uint8_t *uvbuf = s->sc.edge_emu_buffer;
761 
762  s->vdsp.emulated_edge_mc(uvbuf, srcU,
763  s->uvlinesize, s->uvlinesize,
764  (width << 2) + 1, (height << 2) + 1,
765  uvsrc_x, uvsrc_y,
766  s->h_edge_pos >> 1, s->v_edge_pos >> 1);
767  srcU = uvbuf;
768  uvbuf += 9*s->uvlinesize;
769 
770  s->vdsp.emulated_edge_mc(uvbuf, srcV,
771  s->uvlinesize, s->uvlinesize,
772  (width << 2) + 1, (height << 2) + 1,
773  uvsrc_x, uvsrc_y,
774  s->h_edge_pos >> 1, s->v_edge_pos >> 1);
775  srcV = uvbuf;
776  }
777  chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
778  chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
779 }
780 
781 static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
782  const int xoff, const int yoff, int mv_off,
783  const int width, const int height, int dir)
784 {
785  rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
786  r->rdsp.put_pixels_tab,
788 }
789 
790 static void rv4_weight(RV34DecContext *r)
791 {
793  r->tmp_b_block_y[0],
794  r->tmp_b_block_y[1],
795  r->weight1,
796  r->weight2,
797  r->s.linesize);
799  r->tmp_b_block_uv[0],
800  r->tmp_b_block_uv[2],
801  r->weight1,
802  r->weight2,
803  r->s.uvlinesize);
805  r->tmp_b_block_uv[1],
806  r->tmp_b_block_uv[3],
807  r->weight1,
808  r->weight2,
809  r->s.uvlinesize);
810 }
811 
812 static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
813 {
814  int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
815 
816  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
817  r->rdsp.put_pixels_tab,
819  if(!weighted){
820  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
821  r->rdsp.avg_pixels_tab,
823  }else{
824  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
825  r->rdsp.put_pixels_tab,
827  rv4_weight(r);
828  }
829 }
830 
832 {
833  int i, j;
834  int weighted = !r->rv30 && r->weight1 != 8192;
835 
836  for(j = 0; j < 2; j++)
837  for(i = 0; i < 2; i++){
838  rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
839  weighted,
840  r->rdsp.put_pixels_tab,
842  rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
843  weighted,
844  weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
846  }
847  if(weighted)
848  rv4_weight(r);
849 }
850 
851 /** number of motion vectors in each macroblock type */
852 static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
853 
854 /**
855  * Decode motion vector differences
856  * and perform motion vector reconstruction and motion compensation.
857  */
858 static int rv34_decode_mv(RV34DecContext *r, int block_type)
859 {
860  MpegEncContext *s = &r->s;
861  GetBitContext *gb = &s->gb;
862  int i, j, k, l;
863  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
864  int next_bt;
865 
866  memset(r->dmv, 0, sizeof(r->dmv));
867  for(i = 0; i < num_mvs[block_type]; i++){
868  r->dmv[i][0] = get_interleaved_se_golomb(gb);
869  r->dmv[i][1] = get_interleaved_se_golomb(gb);
870  if (r->dmv[i][0] == INVALID_VLC ||
871  r->dmv[i][1] == INVALID_VLC) {
872  r->dmv[i][0] = r->dmv[i][1] = 0;
873  return AVERROR_INVALIDDATA;
874  }
875  }
876  switch(block_type){
877  case RV34_MB_TYPE_INTRA:
879  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
880  return 0;
881  case RV34_MB_SKIP:
882  if(s->pict_type == AV_PICTURE_TYPE_P){
883  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
884  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
885  break;
886  }
887  case RV34_MB_B_DIRECT:
888  //surprisingly, it uses motion scheme from next reference frame
889  /* wait for the current mb row to be finished */
890  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
892 
893  next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
894  if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
895  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
896  ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
897  }else
898  for(j = 0; j < 2; j++)
899  for(i = 0; i < 2; i++)
900  for(k = 0; k < 2; k++)
901  for(l = 0; l < 2; l++)
902  s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
903  if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
904  rv34_mc_2mv(r, block_type);
905  else
906  rv34_mc_2mv_skip(r);
907  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
908  break;
909  case RV34_MB_P_16x16:
910  case RV34_MB_P_MIX16x16:
911  rv34_pred_mv(r, block_type, 0, 0);
912  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
913  break;
914  case RV34_MB_B_FORWARD:
915  case RV34_MB_B_BACKWARD:
916  r->dmv[1][0] = r->dmv[0][0];
917  r->dmv[1][1] = r->dmv[0][1];
918  if(r->rv30)
919  rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
920  else
921  rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
922  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
923  break;
924  case RV34_MB_P_16x8:
925  case RV34_MB_P_8x16:
926  rv34_pred_mv(r, block_type, 0, 0);
927  rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
928  if(block_type == RV34_MB_P_16x8){
929  rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
930  rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
931  }
932  if(block_type == RV34_MB_P_8x16){
933  rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
934  rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
935  }
936  break;
937  case RV34_MB_B_BIDIR:
938  rv34_pred_mv_b (r, block_type, 0);
939  rv34_pred_mv_b (r, block_type, 1);
940  rv34_mc_2mv (r, block_type);
941  break;
942  case RV34_MB_P_8x8:
943  for(i=0;i< 4;i++){
944  rv34_pred_mv(r, block_type, i, i);
945  rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
946  }
947  break;
948  }
949 
950  return 0;
951 }
952 /** @} */ // mv group
953 
954 /**
955  * @name Macroblock reconstruction functions
956  * @{
957  */
958 /** mapping of RV30/40 intra prediction types to standard H.264 types */
959 static const int ittrans[9] = {
962 };
963 
964 /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
965 static const int ittrans16[4] = {
967 };
968 
969 /**
970  * Perform 4x4 intra prediction.
971  */
972 static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
973 {
974  uint8_t *prev = dst - stride + 4;
975  uint32_t topleft;
976 
977  if(!up && !left)
978  itype = DC_128_PRED;
979  else if(!up){
980  if(itype == VERT_PRED) itype = HOR_PRED;
981  if(itype == DC_PRED) itype = LEFT_DC_PRED;
982  }else if(!left){
983  if(itype == HOR_PRED) itype = VERT_PRED;
984  if(itype == DC_PRED) itype = TOP_DC_PRED;
986  }
987  if(!down){
989  if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
990  if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
991  }
992  if(!right && up){
993  topleft = dst[-stride + 3] * 0x01010101u;
994  prev = (uint8_t*)&topleft;
995  }
996  r->h.pred4x4[itype](dst, prev, stride);
997 }
998 
999 static inline int adjust_pred16(int itype, int up, int left)
1000 {
1001  if(!up && !left)
1002  itype = DC_128_PRED8x8;
1003  else if(!up){
1004  if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
1005  if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
1006  if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
1007  }else if(!left){
1008  if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
1009  if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
1010  if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
1011  }
1012  return itype;
1013 }
1014 
1015 static inline void rv34_process_block(RV34DecContext *r,
1016  uint8_t *pdst, int stride,
1017  int fc, int sc, int q_dc, int q_ac)
1018 {
1019  MpegEncContext *s = &r->s;
1020  int16_t *ptr = s->block[0];
1021  int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
1022  fc, sc, q_dc, q_ac, q_ac);
1023  if(has_ac){
1024  r->rdsp.rv34_idct_add(pdst, stride, ptr);
1025  }else{
1026  r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
1027  ptr[0] = 0;
1028  }
1029 }
1030 
1031 static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
1032 {
1033  LOCAL_ALIGNED_16(int16_t, block16, [16]);
1034  MpegEncContext *s = &r->s;
1035  GetBitContext *gb = &s->gb;
1036  int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
1037  q_ac = rv34_qscale_tab[s->qscale];
1038  uint8_t *dst = s->dest[0];
1039  int16_t *ptr = s->block[0];
1040  int i, j, itype, has_ac;
1041 
1042  memset(block16, 0, 16 * sizeof(*block16));
1043 
1044  has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
1045  if(has_ac)
1046  r->rdsp.rv34_inv_transform(block16);
1047  else
1048  r->rdsp.rv34_inv_transform_dc(block16);
1049 
1050  itype = ittrans16[intra_types[0]];
1051  itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
1052  r->h.pred16x16[itype](dst, s->linesize);
1053 
1054  for(j = 0; j < 4; j++){
1055  for(i = 0; i < 4; i++, cbp >>= 1){
1056  int dc = block16[i + j*4];
1057 
1058  if(cbp & 1){
1059  has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
1060  }else
1061  has_ac = 0;
1062 
1063  if(has_ac){
1064  ptr[0] = dc;
1065  r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
1066  }else
1067  r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
1068  }
1069 
1070  dst += 4*s->linesize;
1071  }
1072 
1073  itype = ittrans16[intra_types[0]];
1074  if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
1075  itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
1076 
1077  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1078  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1079 
1080  for(j = 1; j < 3; j++){
1081  dst = s->dest[j];
1082  r->h.pred8x8[itype](dst, s->uvlinesize);
1083  for(i = 0; i < 4; i++, cbp >>= 1){
1084  uint8_t *pdst;
1085  if(!(cbp & 1)) continue;
1086  pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
1087 
1088  rv34_process_block(r, pdst, s->uvlinesize,
1089  r->chroma_vlc, 1, q_dc, q_ac);
1090  }
1091  }
1092 }
1093 
1094 static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
1095 {
1096  MpegEncContext *s = &r->s;
1097  uint8_t *dst = s->dest[0];
1098  int avail[6*8] = {0};
1099  int i, j, k;
1100  int idx, q_ac, q_dc;
1101 
1102  // Set neighbour information.
1103  if(r->avail_cache[1])
1104  avail[0] = 1;
1105  if(r->avail_cache[2])
1106  avail[1] = avail[2] = 1;
1107  if(r->avail_cache[3])
1108  avail[3] = avail[4] = 1;
1109  if(r->avail_cache[4])
1110  avail[5] = 1;
1111  if(r->avail_cache[5])
1112  avail[8] = avail[16] = 1;
1113  if(r->avail_cache[9])
1114  avail[24] = avail[32] = 1;
1115 
1116  q_ac = rv34_qscale_tab[s->qscale];
1117  for(j = 0; j < 4; j++){
1118  idx = 9 + j*8;
1119  for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
1120  rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
1121  avail[idx] = 1;
1122  if(!(cbp & 1)) continue;
1123 
1124  rv34_process_block(r, dst, s->linesize,
1125  r->luma_vlc, 0, q_ac, q_ac);
1126  }
1127  dst += s->linesize * 4 - 4*4;
1128  intra_types += r->intra_types_stride;
1129  }
1130 
1131  intra_types -= r->intra_types_stride * 4;
1132 
1133  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1134  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1135 
1136  for(k = 0; k < 2; k++){
1137  dst = s->dest[1+k];
1138  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
1139 
1140  for(j = 0; j < 2; j++){
1141  int* acache = r->avail_cache + 6 + j*4;
1142  for(i = 0; i < 2; i++, cbp >>= 1, acache++){
1143  int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
1144  rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
1145  acache[0] = 1;
1146 
1147  if(!(cbp&1)) continue;
1148 
1149  rv34_process_block(r, dst + 4*i, s->uvlinesize,
1150  r->chroma_vlc, 1, q_dc, q_ac);
1151  }
1152 
1153  dst += 4*s->uvlinesize;
1154  }
1155  }
1156 }
1157 
1158 static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
1159 {
1160  int d;
1161  d = motion_val[0][0] - motion_val[-step][0];
1162  if(d < -3 || d > 3)
1163  return 1;
1164  d = motion_val[0][1] - motion_val[-step][1];
1165  if(d < -3 || d > 3)
1166  return 1;
1167  return 0;
1168 }
1169 
1171 {
1172  MpegEncContext *s = &r->s;
1173  int hmvmask = 0, vmvmask = 0, i, j;
1174  int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
1175  int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
1176  for(j = 0; j < 16; j += 8){
1177  for(i = 0; i < 2; i++){
1178  if(is_mv_diff_gt_3(motion_val + i, 1))
1179  vmvmask |= 0x11 << (j + i*2);
1180  if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
1181  hmvmask |= 0x03 << (j + i*2);
1182  }
1183  motion_val += s->b8_stride;
1184  }
1185  if(s->first_slice_line)
1186  hmvmask &= ~0x000F;
1187  if(!s->mb_x)
1188  vmvmask &= ~0x1111;
1189  if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
1190  vmvmask |= (vmvmask & 0x4444) >> 1;
1191  hmvmask |= (hmvmask & 0x0F00) >> 4;
1192  if(s->mb_x)
1193  r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
1194  if(!s->first_slice_line)
1195  r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
1196  }
1197  return hmvmask | vmvmask;
1198 }
1199 
1200 static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
1201 {
1202  MpegEncContext *s = &r->s;
1203  GetBitContext *gb = &s->gb;
1204  uint8_t *dst = s->dest[0];
1205  int16_t *ptr = s->block[0];
1206  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1207  int cbp, cbp2;
1208  int q_dc, q_ac, has_ac;
1209  int i, j;
1210  int dist;
1211 
1212  // Calculate which neighbours are available. Maybe it's worth optimizing too.
1213  memset(r->avail_cache, 0, sizeof(r->avail_cache));
1214  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
1215  dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1216  if(s->mb_x && dist)
1217  r->avail_cache[5] =
1218  r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
1219  if(dist >= s->mb_width)
1220  r->avail_cache[2] =
1221  r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1222  if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1223  r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1224  if(s->mb_x && dist > s->mb_width)
1225  r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1226 
1227  s->qscale = r->si.quant;
1228  cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
1229  r->cbp_luma [mb_pos] = cbp;
1230  r->cbp_chroma[mb_pos] = cbp >> 16;
1231  r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
1232  s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1233 
1234  if(cbp == -1)
1235  return -1;
1236 
1237  if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
1238  if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
1239  else rv34_output_intra(r, intra_types, cbp);
1240  return 0;
1241  }
1242 
1243  if(r->is16){
1244  // Only for RV34_MB_P_MIX16x16
1245  LOCAL_ALIGNED_16(int16_t, block16, [16]);
1246  memset(block16, 0, 16 * sizeof(*block16));
1247  q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
1248  q_ac = rv34_qscale_tab[s->qscale];
1249  if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
1250  r->rdsp.rv34_inv_transform(block16);
1251  else
1252  r->rdsp.rv34_inv_transform_dc(block16);
1253 
1254  q_ac = rv34_qscale_tab[s->qscale];
1255 
1256  for(j = 0; j < 4; j++){
1257  for(i = 0; i < 4; i++, cbp >>= 1){
1258  int dc = block16[i + j*4];
1259 
1260  if(cbp & 1){
1261  has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
1262  }else
1263  has_ac = 0;
1264 
1265  if(has_ac){
1266  ptr[0] = dc;
1267  r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
1268  }else
1269  r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
1270  }
1271 
1272  dst += 4*s->linesize;
1273  }
1274 
1275  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1276  }else{
1277  q_ac = rv34_qscale_tab[s->qscale];
1278 
1279  for(j = 0; j < 4; j++){
1280  for(i = 0; i < 4; i++, cbp >>= 1){
1281  if(!(cbp & 1)) continue;
1282 
1283  rv34_process_block(r, dst + 4*i, s->linesize,
1284  r->luma_vlc, 0, q_ac, q_ac);
1285  }
1286  dst += 4*s->linesize;
1287  }
1288  }
1289 
1290  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1291  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1292 
1293  for(j = 1; j < 3; j++){
1294  dst = s->dest[j];
1295  for(i = 0; i < 4; i++, cbp >>= 1){
1296  uint8_t *pdst;
1297  if(!(cbp & 1)) continue;
1298  pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
1299 
1300  rv34_process_block(r, pdst, s->uvlinesize,
1301  r->chroma_vlc, 1, q_dc, q_ac);
1302  }
1303  }
1304 
1305  return 0;
1306 }
1307 
1308 static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
1309 {
1310  MpegEncContext *s = &r->s;
1311  int cbp, dist;
1312  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1313 
1314  // Calculate which neighbours are available. Maybe it's worth optimizing too.
1315  memset(r->avail_cache, 0, sizeof(r->avail_cache));
1316  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
1317  dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1318  if(s->mb_x && dist)
1319  r->avail_cache[5] =
1320  r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
1321  if(dist >= s->mb_width)
1322  r->avail_cache[2] =
1323  r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1324  if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1325  r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1326  if(s->mb_x && dist > s->mb_width)
1327  r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1328 
1329  s->qscale = r->si.quant;
1330  cbp = rv34_decode_intra_mb_header(r, intra_types);
1331  r->cbp_luma [mb_pos] = cbp;
1332  r->cbp_chroma[mb_pos] = cbp >> 16;
1333  r->deblock_coefs[mb_pos] = 0xFFFF;
1334  s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1335 
1336  if(cbp == -1)
1337  return -1;
1338 
1339  if(r->is16){
1340  rv34_output_i16x16(r, intra_types, cbp);
1341  return 0;
1342  }
1343 
1344  rv34_output_intra(r, intra_types, cbp);
1345  return 0;
1346 }
1347 
1349 {
1350  int bits;
1351  if(s->mb_y >= s->mb_height)
1352  return 1;
1353  if(!s->mb_num_left)
1354  return 1;
1355  if(r->s.mb_skip_run > 1)
1356  return 0;
1357  bits = get_bits_left(&s->gb);
1358  if(bits <= 0 || (bits < 8 && !show_bits(&s->gb, bits)))
1359  return 1;
1360  return 0;
1361 }
1362 
1363 
1365 {
1367  r->intra_types = NULL;
1369  av_freep(&r->mb_type);
1370  av_freep(&r->cbp_luma);
1371  av_freep(&r->cbp_chroma);
1372  av_freep(&r->deblock_coefs);
1373 }
1374 
1375 
1377 {
1378  r->intra_types_stride = r->s.mb_width * 4 + 4;
1379 
1380  r->cbp_chroma = av_mallocz(r->s.mb_stride * r->s.mb_height *
1381  sizeof(*r->cbp_chroma));
1382  r->cbp_luma = av_mallocz(r->s.mb_stride * r->s.mb_height *
1383  sizeof(*r->cbp_luma));
1385  sizeof(*r->deblock_coefs));
1387  sizeof(*r->intra_types_hist));
1388  r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
1389  sizeof(*r->mb_type));
1390 
1391  if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
1392  r->intra_types_hist && r->mb_type)) {
1393  rv34_decoder_free(r);
1394  return AVERROR(ENOMEM);
1395  }
1396 
1398 
1399  return 0;
1400 }
1401 
1402 
1404 {
1405  rv34_decoder_free(r);
1406  return rv34_decoder_alloc(r);
1407 }
1408 
1409 
1410 static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
1411 {
1412  MpegEncContext *s = &r->s;
1413  GetBitContext *gb = &s->gb;
1414  int mb_pos, slice_type;
1415  int res;
1416 
1417  init_get_bits(&r->s.gb, buf, buf_size*8);
1418  res = r->parse_slice_header(r, gb, &r->si);
1419  if(res < 0){
1420  av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
1421  return -1;
1422  }
1423 
1424  slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
1425  if (slice_type != s->pict_type) {
1426  av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
1427  return AVERROR_INVALIDDATA;
1428  }
1429  if (s->width != r->si.width || s->height != r->si.height) {
1430  av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n");
1431  return AVERROR_INVALIDDATA;
1432  }
1433 
1434  r->si.end = end;
1435  s->qscale = r->si.quant;
1436  s->mb_num_left = r->si.end - r->si.start;
1437  r->s.mb_skip_run = 0;
1438 
1439  mb_pos = s->mb_x + s->mb_y * s->mb_width;
1440  if(r->si.start != mb_pos){
1441  av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
1442  s->mb_x = r->si.start % s->mb_width;
1443  s->mb_y = r->si.start / s->mb_width;
1444  }
1445  memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1446  s->first_slice_line = 1;
1447  s->resync_mb_x = s->mb_x;
1448  s->resync_mb_y = s->mb_y;
1449 
1451  while(!check_slice_end(r, s)) {
1453 
1454  if(r->si.type)
1455  res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
1456  else
1457  res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
1458  if(res < 0){
1459  ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
1460  return -1;
1461  }
1462  if (++s->mb_x == s->mb_width) {
1463  s->mb_x = 0;
1464  s->mb_y++;
1466 
1467  memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
1468  memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
1469 
1470  if(r->loop_filter && s->mb_y >= 2)
1471  r->loop_filter(r, s->mb_y - 2);
1472 
1473  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
1475  s->mb_y - 2, 0);
1476 
1477  }
1478  if(s->mb_x == s->resync_mb_x)
1479  s->first_slice_line=0;
1480  s->mb_num_left--;
1481  }
1482  ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
1483 
1484  return s->mb_y == s->mb_height;
1485 }
1486 
1487 /** @} */ // reconstruction group end
1488 
1489 /**
1490  * Initialize decoder.
1491  */
1493 {
1494  RV34DecContext *r = avctx->priv_data;
1495  MpegEncContext *s = &r->s;
1496  int ret;
1497 
1499  ff_mpv_decode_init(s, avctx);
1500  s->out_format = FMT_H263;
1501 
1502  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1503  avctx->has_b_frames = 1;
1504  s->low_delay = 0;
1505 
1506  ff_mpv_idct_init(s);
1507  if ((ret = ff_mpv_common_init(s)) < 0)
1508  return ret;
1509 
1510  ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
1511 
1512 #if CONFIG_RV30_DECODER
1513  if (avctx->codec_id == AV_CODEC_ID_RV30)
1514  ff_rv30dsp_init(&r->rdsp);
1515 #endif
1516 #if CONFIG_RV40_DECODER
1517  if (avctx->codec_id == AV_CODEC_ID_RV40)
1518  ff_rv40dsp_init(&r->rdsp);
1519 #endif
1520 
1521  if ((ret = rv34_decoder_alloc(r)) < 0) {
1522  ff_mpv_common_end(&r->s);
1523  return ret;
1524  }
1525 
1526  if(!intra_vlcs[0].cbppattern[0].bits)
1527  rv34_init_tables();
1528 
1529  avctx->internal->allocate_progress = 1;
1530 
1531  return 0;
1532 }
1533 
1535 {
1536  int err;
1537  RV34DecContext *r = avctx->priv_data;
1538 
1539  r->s.avctx = avctx;
1540 
1541  if (avctx->internal->is_copy) {
1542  r->tmp_b_block_base = NULL;
1543  r->cbp_chroma = NULL;
1544  r->cbp_luma = NULL;
1545  r->deblock_coefs = NULL;
1546  r->intra_types_hist = NULL;
1547  r->mb_type = NULL;
1548 
1549  ff_mpv_idct_init(&r->s);
1550 
1551  if ((err = ff_mpv_common_init(&r->s)) < 0)
1552  return err;
1553  if ((err = rv34_decoder_alloc(r)) < 0) {
1554  ff_mpv_common_end(&r->s);
1555  return err;
1556  }
1557  }
1558 
1559  return 0;
1560 }
1561 
1563 {
1564  RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
1565  MpegEncContext * const s = &r->s, * const s1 = &r1->s;
1566  int err;
1567 
1568  if (dst == src || !s1->context_initialized)
1569  return 0;
1570 
1571  if (s->height != s1->height || s->width != s1->width) {
1572  s->height = s1->height;
1573  s->width = s1->width;
1574  if ((err = ff_mpv_common_frame_size_change(s)) < 0)
1575  return err;
1576  if ((err = rv34_decoder_realloc(r)) < 0)
1577  return err;
1578  }
1579 
1580  r->cur_pts = r1->cur_pts;
1581  r->last_pts = r1->last_pts;
1582  r->next_pts = r1->next_pts;
1583 
1584  memset(&r->si, 0, sizeof(r->si));
1585 
1586  // Do no call ff_mpeg_update_thread_context on a partially initialized
1587  // decoder context.
1588  if (!s1->linesize)
1589  return 0;
1590 
1591  return ff_mpeg_update_thread_context(dst, src);
1592 }
1593 
1594 static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
1595 {
1596  if (n < slice_count) {
1597  if(avctx->slice_count) return avctx->slice_offset[n];
1598  else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
1599  } else
1600  return buf_size;
1601 }
1602 
1603 static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
1604 {
1605  RV34DecContext *r = avctx->priv_data;
1606  MpegEncContext *s = &r->s;
1607  int got_picture = 0, ret;
1608 
1609  ff_er_frame_end(&s->er);
1610  ff_mpv_frame_end(s);
1611  s->mb_num_left = 0;
1612 
1613  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
1615 
1616  if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
1617  if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
1618  return ret;
1621  got_picture = 1;
1622  } else if (s->last_picture_ptr) {
1623  if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
1624  return ret;
1627  got_picture = 1;
1628  }
1629 
1630  return got_picture;
1631 }
1632 
1633 static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
1634 {
1635  // attempt to keep aspect during typical resolution switches
1636  if (!sar.num)
1637  sar = (AVRational){1, 1};
1638 
1639  sar = av_mul_q(sar, av_mul_q((AVRational){new_h, new_w}, (AVRational){old_w, old_h}));
1640  return sar;
1641 }
1642 
1644  void *data, int *got_picture_ptr,
1645  AVPacket *avpkt)
1646 {
1647  const uint8_t *buf = avpkt->data;
1648  int buf_size = avpkt->size;
1649  RV34DecContext *r = avctx->priv_data;
1650  MpegEncContext *s = &r->s;
1651  AVFrame *pict = data;
1652  SliceInfo si;
1653  int i, ret;
1654  int slice_count;
1655  const uint8_t *slices_hdr = NULL;
1656  int last = 0;
1657  int faulty_b = 0;
1658  int offset;
1659 
1660  /* no supplementary picture */
1661  if (buf_size == 0) {
1662  /* special case for last picture */
1663  if (s->low_delay==0 && s->next_picture_ptr) {
1664  if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
1665  return ret;
1666  s->next_picture_ptr = NULL;
1667 
1668  *got_picture_ptr = 1;
1669  }
1670  return 0;
1671  }
1672 
1673  if(!avctx->slice_count){
1674  slice_count = (*buf++) + 1;
1675  slices_hdr = buf + 4;
1676  buf += 8 * slice_count;
1677  buf_size -= 1 + 8 * slice_count;
1678  }else
1679  slice_count = avctx->slice_count;
1680 
1681  offset = get_slice_offset(avctx, slices_hdr, 0, slice_count, buf_size);
1682  //parse first slice header to check whether this frame can be decoded
1683  if(offset < 0 || offset > buf_size){
1684  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1685  return AVERROR_INVALIDDATA;
1686  }
1687  init_get_bits(&s->gb, buf+offset, (buf_size-offset)*8);
1688  if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
1689  av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
1690  return AVERROR_INVALIDDATA;
1691  }
1692  if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
1693  si.type == AV_PICTURE_TYPE_B) {
1694  av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
1695  "reference data.\n");
1696  faulty_b = 1;
1697  }
1698  if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
1699  || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
1700  || avctx->skip_frame >= AVDISCARD_ALL)
1701  return avpkt->size;
1702 
1703  /* first slice */
1704  if (si.start == 0) {
1705  if (s->mb_num_left > 0 && s->current_picture_ptr) {
1706  av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.\n",
1707  s->mb_num_left);
1708  ff_er_frame_end(&s->er);
1709  ff_mpv_frame_end(s);
1710  }
1711 
1712  if (s->width != si.width || s->height != si.height) {
1713  int err;
1714 
1715  av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
1716  si.width, si.height);
1717 
1718  if (av_image_check_size(si.width, si.height, 0, s->avctx))
1719  return AVERROR_INVALIDDATA;
1720 
1722  s->width, s->height, s->avctx->sample_aspect_ratio,
1723  si.width, si.height);
1724  s->width = si.width;
1725  s->height = si.height;
1726 
1727  err = ff_set_dimensions(s->avctx, s->width, s->height);
1728  if (err < 0)
1729  return err;
1730 
1731  if ((err = ff_mpv_common_frame_size_change(s)) < 0)
1732  return err;
1733  if ((err = rv34_decoder_realloc(r)) < 0)
1734  return err;
1735  }
1736  s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
1737  if (ff_mpv_frame_start(s, s->avctx) < 0)
1738  return -1;
1740  if (!r->tmp_b_block_base) {
1741  int i;
1742 
1743  r->tmp_b_block_base = av_malloc(s->linesize * 48);
1744  for (i = 0; i < 2; i++)
1745  r->tmp_b_block_y[i] = r->tmp_b_block_base
1746  + i * 16 * s->linesize;
1747  for (i = 0; i < 4; i++)
1748  r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
1749  + (i >> 1) * 8 * s->uvlinesize
1750  + (i & 1) * 16;
1751  }
1752  r->cur_pts = si.pts;
1753  if (s->pict_type != AV_PICTURE_TYPE_B) {
1754  r->last_pts = r->next_pts;
1755  r->next_pts = r->cur_pts;
1756  } else {
1757  int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
1758  int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
1759  int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
1760 
1761  if(!refdist){
1762  r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
1763  r->scaled_weight = 0;
1764  }else{
1765  if (FFMAX(dist0, dist1) > refdist)
1766  av_log(avctx, AV_LOG_TRACE, "distance overflow\n");
1767 
1768  r->mv_weight1 = (dist0 << 14) / refdist;
1769  r->mv_weight2 = (dist1 << 14) / refdist;
1770  if((r->mv_weight1|r->mv_weight2) & 511){
1771  r->weight1 = r->mv_weight1;
1772  r->weight2 = r->mv_weight2;
1773  r->scaled_weight = 0;
1774  }else{
1775  r->weight1 = r->mv_weight1 >> 9;
1776  r->weight2 = r->mv_weight2 >> 9;
1777  r->scaled_weight = 1;
1778  }
1779  }
1780  }
1781  s->mb_x = s->mb_y = 0;
1783  } else if (HAVE_THREADS &&
1785  av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
1786  "multithreading mode (start MB is %d).\n", si.start);
1787  return AVERROR_INVALIDDATA;
1788  }
1789  if (faulty_b)
1790  return AVERROR_INVALIDDATA;
1791 
1792  for(i = 0; i < slice_count; i++){
1793  int offset = get_slice_offset(avctx, slices_hdr, i , slice_count, buf_size);
1794  int offset1 = get_slice_offset(avctx, slices_hdr, i+1, slice_count, buf_size);
1795  int size;
1796 
1797  if(offset < 0 || offset > offset1 || offset1 > buf_size){
1798  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1799  break;
1800  }
1801  size = offset1 - offset;
1802 
1803  r->si.end = s->mb_width * s->mb_height;
1804  s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
1805 
1806  if(i+1 < slice_count){
1807  int offset2 = get_slice_offset(avctx, slices_hdr, i+2, slice_count, buf_size);
1808  if (offset2 < offset1 || offset2 > buf_size) {
1809  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1810  break;
1811  }
1812  init_get_bits(&s->gb, buf+offset1, (buf_size-offset1)*8);
1813  if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
1814  size = offset2 - offset;
1815  }else
1816  r->si.end = si.start;
1817  }
1818  av_assert0 (size >= 0 && size <= buf_size - offset);
1819  last = rv34_decode_slice(r, r->si.end, buf + offset, size);
1820  if(last)
1821  break;
1822  }
1823 
1824  if (s->current_picture_ptr) {
1825  if (last) {
1826  if(r->loop_filter)
1827  r->loop_filter(r, s->mb_height - 1);
1828 
1829  ret = finish_frame(avctx, pict);
1830  if (ret < 0)
1831  return ret;
1832  *got_picture_ptr = ret;
1833  } else if (HAVE_THREADS &&
1835  av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
1836  /* always mark the current frame as finished, frame-mt supports
1837  * only complete frames */
1838  ff_er_frame_end(&s->er);
1839  ff_mpv_frame_end(s);
1840  s->mb_num_left = 0;
1842  return AVERROR_INVALIDDATA;
1843  }
1844  }
1845 
1846  return avpkt->size;
1847 }
1848 
1850 {
1851  RV34DecContext *r = avctx->priv_data;
1852 
1853  ff_mpv_common_end(&r->s);
1854  rv34_decoder_free(r);
1855 
1856  return 0;
1857 }
qpel_mc_func put_pixels_tab[4][16]
Definition: rv34dsp.h:58
P-frame macroblock with DCs in a separate 4x4 block, one motion vector.
Definition: rv34.h:54
void ff_rv40dsp_init(RV34DSPContext *c)
Definition: rv40dsp.c:620
#define MB_TYPE_INTRA16x16
Definition: avcodec.h:1297
#define VERT_PRED8x8
Definition: h264pred.h:70
#define NULL
Definition: coverity.c:32
#define MB_TYPE_SKIP
Definition: avcodec.h:1307
int vlc_set
VLCs used for this slice.
Definition: rv34.h:76
const char const char void * val
Definition: avisynth_c.h:771
VLC second_pattern[2]
VLCs used for decoding coefficients in the subblocks 2 and 3.
Definition: rv34.h:67
discard all frames except keyframes
Definition: avcodec.h:829
void ff_init_block_index(MpegEncContext *s)
Definition: mpegvideo.c:2739
Definition: vp9.h:47
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static const uint8_t rv34_table_inter_secondpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:3737
#define DC_128_PRED8x8
Definition: h264pred.h:76
int last_pts
Definition: rv34.h:107
P-frame macroblock, 16x8 motion compensation partitions.
Definition: rv34.h:51
This structure describes decoded (raw) audio or video data.
Definition: frame.h:201
static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
Definition: rv34.c:1031
uint8_t * tmp_b_block_y[2]
temporary blocks for RV4 weighted MC
Definition: rv34.h:122
int(* decode_intra_types)(struct RV34DecContext *r, GetBitContext *gb, int8_t *dst)
Definition: rv34.h:128
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
void(* loop_filter)(struct RV34DecContext *r, int row)
Definition: rv34.h:129
#define C
uint32_t avail_cache[3 *4]
8x8 block available flags (for MV prediction)
Definition: rv34.h:119
uint8_t * edge_emu_buffer
temporary buffer for if MVs point to out-of-frame data
Definition: mpegpicture.h:36
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
static const int ittrans[9]
mapping of RV30/40 intra prediction types to standard H.264 types
Definition: rv34.c:959
B-frame macroblock, forward prediction.
Definition: rv34.h:47
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
Definition: h264chroma.h:25
int dmv[4][2]
differential motion vectors for the current macroblock
Definition: rv34.h:102
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:211
Definition: vf_geq.c:47
Bidirectionally predicted B-frame macroblock, two motion vectors.
Definition: rv34.h:53
MpegEncContext s
Definition: rv34.h:85
static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
Decode coefficients for 4x4 block.
Definition: rv34.c:287
static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode intra macroblock header and return CBP in case of success, -1 otherwise.
Definition: rv34.c:353
int v_edge_pos
horizontal / vertical position of the right/bottom edge (pixel replication)
Definition: mpegvideo.h:129
void ff_er_frame_end(ERContext *s)
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Definition: bitstream.c:268
static const uint8_t rv34_chroma_quant[2][32]
quantizer values used for AC and DC coefficients in chroma blocks
Definition: rv34data.h:74
int height
coded height
Definition: rv34.h:79
int num
Numerator.
Definition: rational.h:59
int size
Definition: avcodec.h:1680
Bidirectionally predicted B-frame macroblock, no motion vectors.
Definition: rv34.h:50
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:2172
#define INVALID_VLC
Definition: golomb.h:38
#define MB_TYPE_INTRA
Definition: mpegutils.h:75
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1989
static int rv34_decode_mv(RV34DecContext *r, int block_type)
Decode motion vector differences and perform motion vector reconstruction and motion compensation...
Definition: rv34.c:858
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
mpegvideo header.
static void rv34_pred_b_vector(int A[2], int B[2], int C[2], int A_avail, int B_avail, int C_avail, int *mx, int *my)
Predict motion vector for B-frame macroblock.
Definition: rv34.c:530
VLC cbppattern[2]
VLCs used for pattern of coded block patterns decoding.
Definition: rv34.h:64
static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
Definition: rv34.c:1603
int weight2
B-frame distance fractions (0.14) used in motion compensation.
Definition: rv34.h:109
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:222
#define GET_PTS_DIFF(a, b)
Definition: rv34.c:515
RV30 and RV40 decoder common data declarations.
discard all
Definition: avcodec.h:830
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t *buf, int buf_size)
Definition: rv34.c:1410
#define SUINT
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
Perform 4x4 intra prediction.
Definition: rv34.c:972
#define src
Definition: vp8dsp.c:254
int start
Definition: rv34.h:77
#define HOR_PRED8x8
Definition: h264pred.h:69
static const int rv34_mb_type_to_lavc[12]
translation of RV30/40 macroblock types to lavc ones
Definition: rv34.c:53
#define NUM_INTRA_TABLES
Definition: rv34vlc.h:32
int qscale
QP.
Definition: mpegvideo.h:201
#define DIAG_DOWN_LEFT_PRED_RV40_NODOWN
Definition: h264pred.h:54
const uint8_t * luma_dc_quant_p
luma subblock DC quantizer for interframes
Definition: rv34.h:91
static void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q_dc, int q_ac1, int q_ac2)
Definition: rv34.c:265
#define FF_QSCALE_TYPE_MPEG1
Definition: avcodec.h:1388
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:3386
#define PLANE_PRED8x8
Definition: h264pred.h:71
#define CBPPAT_VLC_SIZE
Definition: rv34vlc.h:35
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t * tmp_b_block_base
Definition: rv34.h:124
int mb_num_left
number of MBs left in this video packet (for partitioned Slices only)
Definition: mpegvideo.h:359
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms, const int num)
Generate VLC from codeword lengths.
Definition: rv34.c:109
ScratchpadContext sc
Definition: mpegvideo.h:199
uint8_t bits
Definition: crc.c:296
uint8_t
static void rv34_process_block(RV34DecContext *r, uint8_t *pdst, int stride, int fc, int sc, int q_dc, int q_ac)
Definition: rv34.c:1015
static const uint8_t rv34_table_intra_firstpat[NUM_INTRA_TABLES][4][FIRSTBLK_VLC_SIZE]
Definition: rv34vlc.h:940
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
#define DC_PRED8x8
Definition: h264pred.h:68
int scaled_weight
Definition: rv34.h:108
uint16_t * cbp_luma
CBP values for luma subblocks.
Definition: rv34.h:114
static const uint16_t rv34_mb_max_sizes[6]
maximum number of macroblocks for each of the possible slice offset sizes
Definition: rv34data.h:119
enum OutputFormat out_format
output format
Definition: mpegvideo.h:101
static const int chroma_coeffs[3]
Definition: rv34.c:648
#define Y
Definition: vf_boxblur.c:76
static void rv34_mc_2mv_skip(RV34DecContext *r)
Definition: rv34.c:831
#define AV_LOG_TRACE
Extremely verbose debugging, useful for libav* development.
Definition: log.h:202
int ff_mpv_common_frame_size_change(MpegEncContext *s)
Definition: mpegvideo.c:1036
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
Multithreading support functions.
Definition: vp9.h:46
int width
coded width
Definition: rv34.h:78
#define TOP_DC_PRED8x8
Definition: h264pred.h:75
#define ER_MB_ERROR
#define HOR_UP_PRED_RV40_NODOWN
Definition: h264pred.h:55
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:395
#define MB_TYPE_SEPARATE_DC
Definition: rv34.h:36
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
rv40_weight_func rv40_weight_pixels_tab[2][2]
Biweight functions, first dimension is transform size (16/8), second is whether the weight is prescal...
Definition: rv34dsp.h:67
uint16_t * deblock_coefs
deblock coefficients for each macroblock
Definition: rv34.h:116
void(* pred8x8[4+3+4])(uint8_t *src, ptrdiff_t stride)
Definition: h264pred.h:97
quarterpel DSP functions
static const uint8_t part_sizes_h[RV34_MB_TYPES]
macroblock partition height in 8x8 blocks
Definition: rv34.c:454
#define height
static RV34VLC inter_vlcs[NUM_INTER_TABLES]
Definition: rv34.c:69
uint8_t * data
Definition: avcodec.h:1679
static int flags
Definition: log.c:57
static const uint8_t bits2[81]
Definition: aactab.c:140
static int is_mv_diff_gt_3(int16_t(*motion_val)[2], int step)
Definition: rv34.c:1158
Skipped block.
Definition: rv34.h:49
static VLC_TYPE table_data[117592][2]
Definition: rv34.c:99
av_cold void ff_mpv_idct_init(MpegEncContext *s)
Definition: mpegvideo.c:330
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:126
static const uint16_t rv34_qscale_tab[32]
This table is used for dequantizing.
Definition: rv34data.h:84
ptrdiff_t size
Definition: opengl_enc.c:101
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
Definition: rv34.c:1094
void(* pred4x4[9+3+3])(uint8_t *src, const uint8_t *topright, ptrdiff_t stride)
Definition: h264pred.h:93
rv34_idct_add_func rv34_idct_add
Definition: rv34dsp.h:70
P-frame macroblock, 8x16 motion compensation partitions.
Definition: rv34.h:52
#define A(x)
Definition: vp56_arith.h:28
#define av_log(a,...)
static void ff_update_block_index(MpegEncContext *s)
Definition: mpegvideo.h:731
static const uint8_t rv34_quant_to_vlc_set[2][31]
tables used to translate a quantizer value into a VLC set for decoding The first table is used for in...
Definition: rv34data.h:95
static void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
Decode a single coefficient.
Definition: rv34.c:259
int slice_count
slice count
Definition: avcodec.h:2147
ThreadFrame tf
Definition: mpegpicture.h:47
#define U(x)
Definition: vp56_arith.h:37
int quant
quantizer used for this slice
Definition: rv34.h:75
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:587
static const int table_offs[]
Definition: rv34.c:78
qpel_mc_func avg_pixels_tab[4][16]
Definition: rv34dsp.h:59
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int(* parse_slice_header)(struct RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
Definition: rv34.h:126
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:2083
static void rv4_weight(RV34DecContext *r)
Definition: rv34.c:790
#define chroma_mc(a)
Definition: vc1dsp.c:780
static const int ittrans16[4]
mapping of RV30/40 intra 16x16 prediction types to standard H.264 types
Definition: rv34.c:965
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
static const uint16_t mask[17]
Definition: lzw.c:38
int is_copy
Whether the parent AVCodecContext is a copy of the context which had init() called on it...
Definition: internal.h:138
rv34_idct_dc_add_func rv34_idct_dc_add
Definition: rv34dsp.h:71
#define AVERROR(e)
Definition: error.h:43
static const struct endianess table[]
av_cold void ff_rv30dsp_init(RV34DSPContext *c)
Definition: rv30dsp.c:265
ERContext er
Definition: mpegvideo.h:551
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:3211
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
Definition: rv34.c:812
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
motion vector prediction
Definition: rv34.c:466
const char * r
Definition: vf_curves.c:111
int luma_vlc
which VLC set will be used for decoding of luma blocks
Definition: rv34.h:99
#define COEFF_VLC_SIZE
Definition: rv34vlc.h:39
static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
Definition: rv34.c:1633
uint16_t width
Definition: gdv.c:47
static int get_interleaved_se_golomb(GetBitContext *gb)
Definition: golomb.h:222
#define IS_SKIP(a)
Definition: mpegutils.h:83
static int rv34_decoder_realloc(RV34DecContext *r)
Definition: rv34.c:1403
int low_delay
no reordering needed / has no B-frames
Definition: mpegvideo.h:404
GetBitContext gb
Definition: mpegvideo.h:446
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
void ff_mpv_common_end(MpegEncContext *s)
Definition: mpegvideo.c:1115
#define FFMAX(a, b)
Definition: common.h:94
#define CBP_VLC_SIZE
Definition: rv34vlc.h:36
rv34_inv_transform_func rv34_inv_transform_dc
Definition: rv34dsp.h:69
VLC tables used by the decoder.
Definition: rv34.h:63
Definition: vlc.h:26
int end
start and end macroblocks of the slice
Definition: rv34.h:77
int resync_mb_x
x position of last resync marker
Definition: mpegvideo.h:356
static int rv34_set_deblock_coef(RV34DecContext *r)
Definition: rv34.c:1170
common internal API header
useful rectangle filling function
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
Definition: rv34.c:1594
static void ZERO8x2(void *dst, int stride)
Definition: rv34.c:46
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:281
static const uint16_t fc[]
Definition: dcaenc.h:43
int ff_mpv_export_qp_table(MpegEncContext *s, AVFrame *f, Picture *p, int qp_type)
Definition: mpegvideo.c:1966
Intra macroblock with DCs in a separate 4x4 block.
Definition: rv34.h:44
#define IS_16X8(a)
Definition: mpegutils.h:89
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
motion vector prediction for B-frames
Definition: rv34.c:550
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:3203
#define MB_TYPE_DIRECT2
Definition: avcodec.h:1304
#define FFMIN(a, b)
Definition: common.h:96
int * mb_type
internal macroblock types
Definition: rv34.h:97
static int adjust_pred16(int itype, int up, int left)
Definition: rv34.c:999
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
Picture * current_picture_ptr
pointer to the current picture
Definition: mpegvideo.h:181
void ff_mpeg_er_frame_start(MpegEncContext *s)
Definition: mpeg_er.c:46
Picture.
Definition: mpegpicture.h:45
static int calc_add_mv(RV34DecContext *r, int dir, int val)
Calculate motion vector component that should be added for direct blocks.
Definition: rv34.c:520
H264PredContext h
functions for 4x4 and 16x16 intra block prediction
Definition: rv34.h:94
static RV34VLC * choose_vlc_set(int quant, int mod, int type)
Select VLC set for decoding from current quantizer, modifier and frame type.
Definition: rv34.c:342
VLC coefficient
VLCs used for decoding big coefficients.
Definition: rv34.h:69
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static int rv34_decoder_alloc(RV34DecContext *r)
Definition: rv34.c:1376
VLC first_pattern[4]
VLCs used for decoding coefficients in the first subblock.
Definition: rv34.h:66
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:296
#define FIRSTBLK_VLC_SIZE
Definition: rv34vlc.h:37
int mv_weight1
Definition: rv34.h:110
#define MB_TYPE_L0L1
Definition: avcodec.h:1314
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:554
int n
Definition: avisynth_c.h:684
static const uint8_t rv34_table_intra_secondpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:2074
#define MB_TYPE_L1
Definition: avcodec.h:1313
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:822
static const uint8_t rv34_table_intra_thirdpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:2177
static const uint8_t rv34_inter_coeff[NUM_INTER_TABLES][COEFF_VLC_SIZE]
Definition: rv34vlc.h:4024
int ff_mpeg_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: mpegvideo.c:483
#define LEFT_DC_PRED8x8
Definition: h264pred.h:74
void ff_mpv_decode_defaults(MpegEncContext *s)
Set the given MpegEncContext to defaults for decoding.
Definition: mpegvideo.c:657
static void rv34_mc_1mv(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir)
Definition: rv34.c:781
#define IS_INTRA16x16(a)
Definition: mpegutils.h:78
int bits
Definition: vlc.h:27
RV30/40 VLC tables.
int table_allocated
Definition: vlc.h:29
int first_slice_line
used in MPEG-4 too to handle resync markers
Definition: mpegvideo.h:434
static const uint8_t rv34_inter_cbp[NUM_INTER_TABLES][4][CBP_VLC_SIZE]
Definition: rv34vlc.h:2890
int ff_rv34_decode_init_thread_copy(AVCodecContext *avctx)
Definition: rv34.c:1534
static void rv34_mc(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir, const int thirdpel, int weighted, qpel_mc_func(*qpel_mc)[16], h264_chroma_mc_func(*chroma_mc))
generic motion compensation function
Definition: rv34.c:665
static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
Definition: rv34.c:1308
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
#define MB_TYPE_8x16
Definition: avcodec.h:1301
essential slice information
Definition: rv34.h:73
Libavcodec external API header.
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:131
enum AVCodecID codec_id
Definition: avcodec.h:1778
static const uint8_t rv34_table_inter_firstpat[NUM_INTER_TABLES][2][FIRSTBLK_VLC_SIZE]
Definition: rv34vlc.h:2936
static const uint8_t rv34_table_intra_cbppat[NUM_INTRA_TABLES][2][CBPPAT_VLC_SIZE]
Definition: rv34vlc.h:42
static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode inter macroblock header and return CBP in case of success, -1 otherwise.
Definition: rv34.c:388
main external API structure.
Definition: avcodec.h:1761
static const uint8_t part_sizes_w[RV34_MB_TYPES]
macroblock partition width in 8x8 blocks
Definition: rv34.c:451
#define MAX_VLC_SIZE
Definition: rv34vlc.h:40
RV34VLC * cur_vlcs
VLC set used for current frame decoding.
Definition: rv34.h:93
int height
picture size. must be a multiple of 16
Definition: mpegvideo.h:97
static const uint8_t rv34_inter_cbppat[NUM_INTER_TABLES][CBPPAT_VLC_SIZE]
Definition: rv34vlc.h:2305
SliceInfo si
current slice information
Definition: rv34.h:95
void * buf
Definition: avisynth_c.h:690
void ff_print_debug_info(MpegEncContext *s, Picture *p, AVFrame *pict)
Definition: mpegvideo.c:1959
GLint GLenum type
Definition: opengl_enc.c:105
void(* pred16x16[4+3+2])(uint8_t *src, ptrdiff_t stride)
Definition: h264pred.h:98
P-frame macroblock, 8x8 motion compensation partitions.
Definition: rv34.h:46
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:313
static void rv34_decoder_free(RV34DecContext *r)
Definition: rv34.c:1364
VLC cbp[2][4]
VLCs used for coded block patterns decoding.
Definition: rv34.h:65
Rational number (pair of numerator and denominator).
Definition: rational.h:58
struct AVFrame * f
Definition: mpegpicture.h:46
#define IS_8X16(a)
Definition: mpegutils.h:90
static av_cold void rv34_init_tables(void)
Initialize all tables.
Definition: rv34.c:145
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:425
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
Initialize decoder.
Definition: rv34.c:1492
#define MB_TYPE_16x16
Definition: avcodec.h:1299
#define mid_pred
Definition: mathops.h:97
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:132
int ff_rv34_decode_frame(AVCodecContext *avctx, void *data, int *got_picture_ptr, AVPacket *avpkt)
Definition: rv34.c:1643
#define s1
Definition: regdef.h:38
static const uint8_t rv34_table_inter_thirdpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:3880
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
generic function called after decoding the header and before a frame is decoded.
Definition: mpegvideo.c:1189
static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
Definition: rv34.c:1200
#define u(width,...)
int allocate_progress
Whether to allocate progress for frame threading.
Definition: internal.h:153
int intra_types_stride
block types array stride
Definition: rv34.h:89
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:209
miscellaneous RV30/40 tables
const uint8_t * quant
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
motion vector prediction - RV3 version
Definition: rv34.c:602
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
Definition: rv34.c:1348
int is16
current block has additional 16x16 specific features or not
Definition: rv34.h:101
int8_t * intra_types
block types
Definition: rv34.h:88
static const uint8_t rv34_table_intra_cbp[NUM_INTRA_TABLES][8][CBP_VLC_SIZE]
Definition: rv34vlc.h:886
P-frame macroblock, one motion frame.
Definition: rv34.h:45
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:128
int cur_pts
Definition: rv34.h:107
Definition: vp9.h:48
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
Decode coded block pattern.
Definition: rv34.c:188
MpegEncContext.
Definition: mpegvideo.h:78
Picture * next_picture_ptr
pointer to the next picture (for bidir pred)
Definition: mpegvideo.h:180
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
Definition: rv34.c:1849
int8_t * qscale_table
Definition: mpegpicture.h:50
struct AVCodecContext * avctx
Definition: mpegvideo.h:95
static const uint8_t rv34_cbp_code[16]
values used to reconstruct coded block pattern
Definition: rv34data.h:42
int weight1
Definition: rv34.h:109
int(* decode_mb_info)(struct RV34DecContext *r)
Definition: rv34.h:127
#define VERT_LEFT_PRED_RV40_NODOWN
Definition: h264pred.h:56
discard all non reference
Definition: avcodec.h:826
#define OTHERBLK_VLC_SIZE
Definition: rv34vlc.h:38
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
static const uint8_t avail_indexes[4]
availability index for subblocks
Definition: rv34.c:457
uint8_t * tmp_b_block_uv[4]
Definition: rv34.h:123
common internal api header.
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:127
void ff_mpv_decode_init(MpegEncContext *s, AVCodecContext *avctx)
Definition: mpegvideo.c:662
int mv_weight2
Definition: rv34.h:110
uint8_t * dest[3]
Definition: mpegvideo.h:295
#define MB_TYPE_8x8
Definition: avcodec.h:1302
B-frame macroblock, backward prediction.
Definition: rv34.h:48
#define INIT_VLC_USE_NEW_STATIC
Definition: vlc.h:55
static const uint8_t rv34_mb_bits_sizes[6]
bits needed to code the slice offset for the given size
Definition: rv34data.h:124
int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: rv34.c:1562
static const uint8_t shifts[2][12]
Definition: camellia.c:174
Picture * last_picture_ptr
pointer to the previous picture.
Definition: mpegvideo.h:179
Bi-dir predicted.
Definition: avutil.h:276
VLC third_pattern[2]
VLCs used for decoding coefficients in the last subblock.
Definition: rv34.h:68
static const int num_mvs[RV34_MB_TYPES]
number of motion vectors in each macroblock type
Definition: rv34.c:852
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
Decode starting slice position.
Definition: rv34.c:330
#define MB_TYPE_16x8
Definition: avcodec.h:1300
static const uint8_t modulo_three_table[108]
precalculated results of division by three and modulo three for values 0-107
Definition: rv34data.h:53
#define IS_INTRA(x, y)
#define NUM_INTER_TABLES
Definition: rv34vlc.h:33
decoder context
Definition: rv34.h:84
void * priv_data
Definition: avcodec.h:1803
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
Definition: mpegvideo.c:877
VideoDSPContext vdsp
Definition: mpegvideo.h:233
#define IS_8X8(a)
Definition: mpegutils.h:91
void ff_mpv_frame_end(MpegEncContext *s)
Definition: mpegvideo.c:1417
struct AVCodecInternal * internal
Private context used for internal data.
Definition: avcodec.h:1811
int resync_mb_y
y position of last resync marker
Definition: mpegvideo.h:357
int16_t(* block)[64]
points to one of the following blocks
Definition: mpegvideo.h:498
int block_type
current block type
Definition: rv34.h:98
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
int next_pts
Definition: rv34.h:107
const uint8_t * luma_dc_quant_i
luma subblock DC quantizer for intraframes
Definition: rv34.h:90
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
static const uint8_t rv34_count_ones[16]
number of ones in nibble minus one
Definition: rv34data.h:35
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
Definition: rational.c:80
int * slice_offset
slice offsets in the frame in bytes
Definition: avcodec.h:2163
int8_t * intra_types_hist
old block types, used for prediction
Definition: rv34.h:87
rv34_inv_transform_func rv34_inv_transform
Definition: rv34dsp.h:68
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:124
static void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
Decode 2x2 subblock of coefficients.
Definition: rv34.c:241
#define av_freep(p)
int type
slice type (intra, inter)
Definition: rv34.h:74
h264_chroma_mc_func avg_chroma_pixels_tab[3]
Definition: rv34dsp.h:61
#define VLC_TYPE
Definition: vlc.h:24
static void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC *vlc, int q)
Get one coefficient value from the bitstream and store it.
Definition: rv34.c:221
#define stride
static RV34VLC intra_vlcs[NUM_INTRA_TABLES]
Definition: rv34.c:69
int rv30
indicates which RV variant is currently decoded
Definition: rv34.h:104
exp golomb vlc stuff
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
Definition: bytestream.h:87
This structure stores compressed data.
Definition: avcodec.h:1656
h264_chroma_mc_func put_chroma_pixels_tab[3]
Definition: rv34dsp.h:60
Intra macroblock.
Definition: rv34.h:43
int chroma_vlc
which VLC set will be used for decoding of chroma blocks
Definition: rv34.h:100
for(j=16;j >0;--j)
RV34DSPContext rdsp
Definition: rv34.h:86
#define MB_TYPE_L0
Definition: avcodec.h:1312
Predicted.
Definition: avutil.h:275
int pts
frame timestamp
Definition: rv34.h:80
static const uint8_t rv34_intra_coeff[NUM_INTRA_TABLES][COEFF_VLC_SIZE]
Definition: rv34vlc.h:2281
#define V
Definition: avdct.c:30
uint8_t * cbp_chroma
CBP values for chroma subblocks.
Definition: rv34.h:115