FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dcaenc.c
Go to the documentation of this file.
1 /*
2  * DCA encoder
3  * Copyright (C) 2008-2012 Alexander E. Patrakov
4  * 2010 Benjamin Larsson
5  * 2011 Xiang Wang
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/ffmath.h"
28 #include "libavutil/opt.h"
29 #include "avcodec.h"
30 #include "dca.h"
31 #include "dcaadpcm.h"
32 #include "dcamath.h"
33 #include "dca_core.h"
34 #include "dcadata.h"
35 #include "dcaenc.h"
36 #include "internal.h"
37 #include "mathops.h"
38 #include "put_bits.h"
39 
40 #define MAX_CHANNELS 6
41 #define DCA_MAX_FRAME_SIZE 16384
42 #define DCA_HEADER_SIZE 13
43 #define DCA_LFE_SAMPLES 8
44 
45 #define DCAENC_SUBBANDS 32
46 #define SUBFRAMES 1
47 #define SUBSUBFRAMES 2
48 #define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
49 #define AUBANDS 25
50 
51 typedef struct CompressionOptions {
54 
55 typedef struct DCAEncContext {
56  AVClass *class;
63  int channels;
73  const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
74 
77  int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
81  int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal
94  int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info
96 
97 static int32_t cos_table[2048];
98 static int32_t band_interpolation[2][512];
99 static int32_t band_spectrum[2][8];
100 static int32_t auf[9][AUBANDS][256];
101 static int32_t cb_to_add[256];
102 static int32_t cb_to_level[2048];
103 static int32_t lfe_fir_64i[512];
104 
105 /* Transfer function of outer and middle ear, Hz -> dB */
106 static double hom(double f)
107 {
108  double f1 = f / 1000;
109 
110  return -3.64 * pow(f1, -0.8)
111  + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
112  - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
113  - 0.0006 * (f1 * f1) * (f1 * f1);
114 }
115 
116 static double gammafilter(int i, double f)
117 {
118  double h = (f - fc[i]) / erb[i];
119 
120  h = 1 + h * h;
121  h = 1 / (h * h);
122  return 20 * log10(h);
123 }
124 
126 {
127  int ch, band;
130  sizeof(int32_t));
131  if (!bufer)
132  return -1;
133 
134  /* we need a place for DCA_ADPCM_COEFF samples from previous frame
135  * to calc prediction coefficients for each subband */
136  for (ch = 0; ch < MAX_CHANNELS; ch++) {
137  for (band = 0; band < DCAENC_SUBBANDS; band++) {
138  c->subband[ch][band] = bufer +
139  ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) +
141  }
142  }
143  return 0;
144 }
145 
147 {
148  int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS;
149  av_freep(&bufer);
150 }
151 
152 static int encode_init(AVCodecContext *avctx)
153 {
154  DCAEncContext *c = avctx->priv_data;
155  uint64_t layout = avctx->channel_layout;
156  int i, j, min_frame_bits;
157 
158  if (subband_bufer_alloc(c))
159  return AVERROR(ENOMEM);
160 
161  c->fullband_channels = c->channels = avctx->channels;
162  c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
165  c->worst_quantization_noise = -2047;
166  c->worst_noise_ever = -2047;
167  c->consumed_adpcm_bits = 0;
168 
169  if (ff_dcaadpcm_init(&c->adpcm_ctx))
170  return AVERROR(ENOMEM);
171 
172  if (!layout) {
173  av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
174  "encoder will guess the layout, but it "
175  "might be incorrect.\n");
176  layout = av_get_default_channel_layout(avctx->channels);
177  }
178  switch (layout) {
179  case AV_CH_LAYOUT_MONO: c->channel_config = 0; break;
180  case AV_CH_LAYOUT_STEREO: c->channel_config = 2; break;
181  case AV_CH_LAYOUT_2_2: c->channel_config = 8; break;
182  case AV_CH_LAYOUT_5POINT0: c->channel_config = 9; break;
183  case AV_CH_LAYOUT_5POINT1: c->channel_config = 9; break;
184  default:
185  av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
186  return AVERROR_PATCHWELCOME;
187  }
188 
189  if (c->lfe_channel) {
190  c->fullband_channels--;
192  } else {
194  }
195 
196  for (i = 0; i < MAX_CHANNELS; i++) {
197  for (j = 0; j < DCA_CODE_BOOKS; j++) {
199  }
200  /* 6 - no Huffman */
201  c->bit_allocation_sel[i] = 6;
202 
203  for (j = 0; j < DCAENC_SUBBANDS; j++) {
204  /* -1 - no ADPCM */
205  c->prediction_mode[i][j] = -1;
206  memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS);
207  }
208  }
209 
210  for (i = 0; i < 9; i++) {
211  if (sample_rates[i] == avctx->sample_rate)
212  break;
213  }
214  if (i == 9)
215  return AVERROR(EINVAL);
216  c->samplerate_index = i;
217 
218  if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
219  av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate);
220  return AVERROR(EINVAL);
221  }
222  for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++)
223  ;
224  c->bitrate_index = i;
225  c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
226  min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
227  if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
228  return AVERROR(EINVAL);
229 
230  c->frame_size = (c->frame_bits + 7) / 8;
231 
232  avctx->frame_size = 32 * SUBBAND_SAMPLES;
233 
234  if (!cos_table[0]) {
235  int j, k;
236 
237  cos_table[0] = 0x7fffffff;
238  cos_table[512] = 0;
239  cos_table[1024] = -cos_table[0];
240  for (i = 1; i < 512; i++) {
241  cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
242  cos_table[1024-i] = -cos_table[i];
243  cos_table[1024+i] = -cos_table[i];
244  cos_table[2048-i] = cos_table[i];
245  }
246  for (i = 0; i < 2048; i++) {
247  cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));
248  }
249 
250  for (k = 0; k < 32; k++) {
251  for (j = 0; j < 8; j++) {
252  lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
253  lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
254  }
255  }
256 
257  for (i = 0; i < 512; i++) {
258  band_interpolation[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
259  band_interpolation[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
260  }
261 
262  for (i = 0; i < 9; i++) {
263  for (j = 0; j < AUBANDS; j++) {
264  for (k = 0; k < 256; k++) {
265  double freq = sample_rates[i] * (k + 0.5) / 512;
266 
267  auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
268  }
269  }
270  }
271 
272  for (i = 0; i < 256; i++) {
273  double add = 1 + ff_exp10(-0.01 * i);
274  cb_to_add[i] = (int32_t)(100 * log10(add));
275  }
276  for (j = 0; j < 8; j++) {
277  double accum = 0;
278  for (i = 0; i < 512; i++) {
279  double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
280  accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
281  }
282  band_spectrum[0][j] = (int32_t)(200 * log10(accum));
283  }
284  for (j = 0; j < 8; j++) {
285  double accum = 0;
286  for (i = 0; i < 512; i++) {
287  double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
288  accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
289  }
290  band_spectrum[1][j] = (int32_t)(200 * log10(accum));
291  }
292  }
293  return 0;
294 }
295 
297 {
298  if (avctx->priv_data) {
299  DCAEncContext *c = avctx->priv_data;
302  }
303  return 0;
304 }
305 
306 static inline int32_t cos_t(int x)
307 {
308  return cos_table[x & 2047];
309 }
310 
311 static inline int32_t sin_t(int x)
312 {
313  return cos_t(x - 512);
314 }
315 
316 static inline int32_t half32(int32_t a)
317 {
318  return (a + 1) >> 1;
319 }
320 
321 static void subband_transform(DCAEncContext *c, const int32_t *input)
322 {
323  int ch, subs, i, k, j;
324 
325  for (ch = 0; ch < c->fullband_channels; ch++) {
326  /* History is copied because it is also needed for PSY */
327  int32_t hist[512];
328  int hist_start = 0;
329  const int chi = c->channel_order_tab[ch];
330 
331  memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t));
332 
333  for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
334  int32_t accum[64];
335  int32_t resp;
336  int band;
337 
338  /* Calculate the convolutions at once */
339  memset(accum, 0, 64 * sizeof(int32_t));
340 
341  for (k = 0, i = hist_start, j = 0;
342  i < 512; k = (k + 1) & 63, i++, j++)
343  accum[k] += mul32(hist[i], c->band_interpolation[j]);
344  for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
345  accum[k] += mul32(hist[i], c->band_interpolation[j]);
346 
347  for (k = 16; k < 32; k++)
348  accum[k] = accum[k] - accum[31 - k];
349  for (k = 32; k < 48; k++)
350  accum[k] = accum[k] + accum[95 - k];
351 
352  for (band = 0; band < 32; band++) {
353  resp = 0;
354  for (i = 16; i < 48; i++) {
355  int s = (2 * band + 1) * (2 * (i + 16) + 1);
356  resp += mul32(accum[i], cos_t(s << 3)) >> 3;
357  }
358 
359  c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
360  }
361 
362  /* Copy in 32 new samples from input */
363  for (i = 0; i < 32; i++)
364  hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi];
365 
366  hist_start = (hist_start + 32) & 511;
367  }
368  }
369 }
370 
371 static void lfe_downsample(DCAEncContext *c, const int32_t *input)
372 {
373  /* FIXME: make 128x LFE downsampling possible */
374  const int lfech = lfe_index[c->channel_config];
375  int i, j, lfes;
376  int32_t hist[512];
377  int32_t accum;
378  int hist_start = 0;
379 
380  memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t));
381 
382  for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
383  /* Calculate the convolution */
384  accum = 0;
385 
386  for (i = hist_start, j = 0; i < 512; i++, j++)
387  accum += mul32(hist[i], lfe_fir_64i[j]);
388  for (i = 0; i < hist_start; i++, j++)
389  accum += mul32(hist[i], lfe_fir_64i[j]);
390 
391  c->downsampled_lfe[lfes] = accum;
392 
393  /* Copy in 64 new samples from input */
394  for (i = 0; i < 64; i++)
395  hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech];
396 
397  hist_start = (hist_start + 64) & 511;
398  }
399 }
400 
401 typedef struct {
404 } cplx32;
405 
406 static void fft(const int32_t in[2 * 256], cplx32 out[256])
407 {
408  cplx32 buf[256], rin[256], rout[256];
409  int i, j, k, l;
410 
411  /* do two transforms in parallel */
412  for (i = 0; i < 256; i++) {
413  /* Apply the Hann window */
414  rin[i].re = mul32(in[2 * i], 0x3fffffff - (cos_t(8 * i + 2) >> 1));
415  rin[i].im = mul32(in[2 * i + 1], 0x3fffffff - (cos_t(8 * i + 6) >> 1));
416  }
417  /* pre-rotation */
418  for (i = 0; i < 256; i++) {
419  buf[i].re = mul32(cos_t(4 * i + 2), rin[i].re)
420  - mul32(sin_t(4 * i + 2), rin[i].im);
421  buf[i].im = mul32(cos_t(4 * i + 2), rin[i].im)
422  + mul32(sin_t(4 * i + 2), rin[i].re);
423  }
424 
425  for (j = 256, l = 1; j != 1; j >>= 1, l <<= 1) {
426  for (k = 0; k < 256; k += j) {
427  for (i = k; i < k + j / 2; i++) {
428  cplx32 sum, diff;
429  int t = 8 * l * i;
430 
431  sum.re = buf[i].re + buf[i + j / 2].re;
432  sum.im = buf[i].im + buf[i + j / 2].im;
433 
434  diff.re = buf[i].re - buf[i + j / 2].re;
435  diff.im = buf[i].im - buf[i + j / 2].im;
436 
437  buf[i].re = half32(sum.re);
438  buf[i].im = half32(sum.im);
439 
440  buf[i + j / 2].re = mul32(diff.re, cos_t(t))
441  - mul32(diff.im, sin_t(t));
442  buf[i + j / 2].im = mul32(diff.im, cos_t(t))
443  + mul32(diff.re, sin_t(t));
444  }
445  }
446  }
447  /* post-rotation */
448  for (i = 0; i < 256; i++) {
449  int b = ff_reverse[i];
450  rout[i].re = mul32(buf[b].re, cos_t(4 * i))
451  - mul32(buf[b].im, sin_t(4 * i));
452  rout[i].im = mul32(buf[b].im, cos_t(4 * i))
453  + mul32(buf[b].re, sin_t(4 * i));
454  }
455  for (i = 0; i < 256; i++) {
456  /* separate the results of the two transforms */
457  cplx32 o1, o2;
458 
459  o1.re = rout[i].re - rout[255 - i].re;
460  o1.im = rout[i].im + rout[255 - i].im;
461 
462  o2.re = rout[i].im - rout[255 - i].im;
463  o2.im = -rout[i].re - rout[255 - i].re;
464 
465  /* combine them into one long transform */
466  out[i].re = mul32( o1.re + o2.re, cos_t(2 * i + 1))
467  + mul32( o1.im - o2.im, sin_t(2 * i + 1));
468  out[i].im = mul32( o1.im + o2.im, cos_t(2 * i + 1))
469  + mul32(-o1.re + o2.re, sin_t(2 * i + 1));
470  }
471 }
472 
474 {
475  int i, res;
476 
477  res = 0;
478  if (in < 0)
479  in = -in;
480  for (i = 1024; i > 0; i >>= 1) {
481  if (cb_to_level[i + res] >= in)
482  res += i;
483  }
484  return -res;
485 }
486 
488 {
489  if (a < b)
490  FFSWAP(int32_t, a, b);
491 
492  if (a - b >= 256)
493  return a;
494  return a + cb_to_add[a - b];
495 }
496 
497 static void adjust_jnd(int samplerate_index,
498  const int32_t in[512], int32_t out_cb[256])
499 {
500  int32_t power[256];
501  cplx32 out[256];
502  int32_t out_cb_unnorm[256];
503  int32_t denom;
504  const int32_t ca_cb = -1114;
505  const int32_t cs_cb = 928;
506  int i, j;
507 
508  fft(in, out);
509 
510  for (j = 0; j < 256; j++) {
511  power[j] = add_cb(get_cb(out[j].re), get_cb(out[j].im));
512  out_cb_unnorm[j] = -2047; /* and can only grow */
513  }
514 
515  for (i = 0; i < AUBANDS; i++) {
516  denom = ca_cb; /* and can only grow */
517  for (j = 0; j < 256; j++)
518  denom = add_cb(denom, power[j] + auf[samplerate_index][i][j]);
519  for (j = 0; j < 256; j++)
520  out_cb_unnorm[j] = add_cb(out_cb_unnorm[j],
521  -denom + auf[samplerate_index][i][j]);
522  }
523 
524  for (j = 0; j < 256; j++)
525  out_cb[j] = add_cb(out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
526 }
527 
528 typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
529  int32_t spectrum1, int32_t spectrum2, int channel,
530  int32_t * arg);
531 
532 static void walk_band_low(DCAEncContext *c, int band, int channel,
533  walk_band_t walk, int32_t *arg)
534 {
535  int f;
536 
537  if (band == 0) {
538  for (f = 0; f < 4; f++)
539  walk(c, 0, 0, f, 0, -2047, channel, arg);
540  } else {
541  for (f = 0; f < 8; f++)
542  walk(c, band, band - 1, 8 * band - 4 + f,
543  c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
544  }
545 }
546 
547 static void walk_band_high(DCAEncContext *c, int band, int channel,
548  walk_band_t walk, int32_t *arg)
549 {
550  int f;
551 
552  if (band == 31) {
553  for (f = 0; f < 4; f++)
554  walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
555  } else {
556  for (f = 0; f < 8; f++)
557  walk(c, band, band + 1, 8 * band + 4 + f,
558  c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
559  }
560 }
561 
562 static void update_band_masking(DCAEncContext *c, int band1, int band2,
563  int f, int32_t spectrum1, int32_t spectrum2,
564  int channel, int32_t * arg)
565 {
566  int32_t value = c->eff_masking_curve_cb[f] - spectrum1;
567 
568  if (value < c->band_masking_cb[band1])
569  c->band_masking_cb[band1] = value;
570 }
571 
572 static void calc_masking(DCAEncContext *c, const int32_t *input)
573 {
574  int i, k, band, ch, ssf;
575  int32_t data[512];
576 
577  for (i = 0; i < 256; i++)
578  for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
579  c->masking_curve_cb[ssf][i] = -2047;
580 
581  for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
582  for (ch = 0; ch < c->fullband_channels; ch++) {
583  const int chi = c->channel_order_tab[ch];
584 
585  for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
586  data[i] = c->history[ch][k];
587  for (k -= 512; i < 512; i++, k++)
588  data[i] = input[k * c->channels + chi];
589  adjust_jnd(c->samplerate_index, data, c->masking_curve_cb[ssf]);
590  }
591  for (i = 0; i < 256; i++) {
592  int32_t m = 2048;
593 
594  for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
595  if (c->masking_curve_cb[ssf][i] < m)
596  m = c->masking_curve_cb[ssf][i];
597  c->eff_masking_curve_cb[i] = m;
598  }
599 
600  for (band = 0; band < 32; band++) {
601  c->band_masking_cb[band] = 2048;
602  walk_band_low(c, band, 0, update_band_masking, NULL);
604  }
605 }
606 
607 static inline int32_t find_peak(const int32_t *in, int len) {
608  int sample;
609  int32_t m = 0;
610  for (sample = 0; sample < len; sample++) {
611  int32_t s = abs(in[sample]);
612  if (m < s) {
613  m = s;
614  }
615  }
616  return get_cb(m);
617 }
618 
620 {
621  int band, ch;
622 
623  for (ch = 0; ch < c->fullband_channels; ch++) {
624  for (band = 0; band < 32; band++) {
625  c->peak_cb[ch][band] = find_peak(c->subband[ch][band], SUBBAND_SAMPLES);
626  }
627  }
628 
629  if (c->lfe_channel) {
631  }
632 }
633 
635 {
636  int ch, band;
637  int pred_vq_id;
638  int32_t *samples;
639  int32_t estimated_diff[SUBBAND_SAMPLES];
640 
641  c->consumed_adpcm_bits = 0;
642  for (ch = 0; ch < c->fullband_channels; ch++) {
643  for (band = 0; band < 32; band++) {
644  samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
645  pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples, SUBBAND_SAMPLES, estimated_diff);
646  if (pred_vq_id >= 0) {
647  c->prediction_mode[ch][band] = pred_vq_id;
648  c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
649  c->diff_peak_cb[ch][band] = find_peak(estimated_diff, 16);
650  } else {
651  c->prediction_mode[ch][band] = -1;
652  }
653  }
654  }
655 }
656 
657 static const int snr_fudge = 128;
658 #define USED_1ABITS 1
659 #define USED_26ABITS 4
660 
661 static inline int32_t get_step_size(const DCAEncContext *c, int ch, int band)
662 {
663  int32_t step_size;
664 
665  if (c->bitrate_index == 3)
666  step_size = ff_dca_lossless_quant[c->abits[ch][band]];
667  else
668  step_size = ff_dca_lossy_quant[c->abits[ch][band]];
669 
670  return step_size;
671 }
672 
673 static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
674 {
675  int32_t peak;
676  int our_nscale, try_remove;
677  softfloat our_quant;
678 
679  av_assert0(peak_cb <= 0);
680  av_assert0(peak_cb >= -2047);
681 
682  our_nscale = 127;
683  peak = cb_to_level[-peak_cb];
684 
685  for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
686  if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
687  continue;
688  our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
689  our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
690  if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
691  continue;
692  our_nscale -= try_remove;
693  }
694 
695  if (our_nscale >= 125)
696  our_nscale = 124;
697 
698  quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
699  quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
700  av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));
701 
702  return our_nscale;
703 }
704 
705 static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
706 {
707  int32_t step_size;
708  int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
709  c->scale_factor[ch][band] = calc_one_scale(diff_peak_cb,
710  c->abits[ch][band],
711  &c->quant[ch][band]);
712 
713  step_size = get_step_size(c, ch, band);
715  c->quant[ch][band], ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], step_size,
716  c->adpcm_history[ch][band], c->subband[ch][band], c->adpcm_history[ch][band]+4, c->quantized[ch][band],
717  SUBBAND_SAMPLES, cb_to_level[-diff_peak_cb]);
718 }
719 
721 {
722  int band, ch;
723 
724  for (ch = 0; ch < c->fullband_channels; ch++)
725  for (band = 0; band < 32; band++)
726  if (c->prediction_mode[ch][band] >= 0)
727  quantize_adpcm_subband(c, ch, band);
728 }
729 
731 {
732  int sample, band, ch;
733 
734  for (ch = 0; ch < c->fullband_channels; ch++)
735  for (band = 0; band < 32; band++)
736  if (c->prediction_mode[ch][band] == -1)
737  for (sample = 0; sample < SUBBAND_SAMPLES; sample++)
738  c->quantized[ch][band][sample] = quantize_value(c->subband[ch][band][sample], c->quant[ch][band]);
739 }
740 
741 static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, uint32_t *result)
742 {
743  uint8_t sel, id = abits - 1;
744  for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++)
745  result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES, sel, id);
746 }
747 
748 static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], uint32_t clc_bits[DCA_CODE_BOOKS], int32_t res[DCA_CODE_BOOKS])
749 {
750  uint8_t i, sel;
751  uint32_t best_sel_bits[DCA_CODE_BOOKS];
752  int32_t best_sel_id[DCA_CODE_BOOKS];
753  uint32_t t, bits = 0;
754 
755  for (i = 0; i < DCA_CODE_BOOKS; i++) {
756 
757  av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i])));
758  if (vlc_bits[i][0] == 0) {
759  /* do not transmit adjustment index for empty codebooks */
760  res[i] = ff_dca_quant_index_group_size[i];
761  /* and skip it */
762  continue;
763  }
764 
765  best_sel_bits[i] = vlc_bits[i][0];
766  best_sel_id[i] = 0;
767  for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) {
768  if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) {
769  best_sel_bits[i] = vlc_bits[i][sel];
770  best_sel_id[i] = sel;
771  }
772  }
773 
774  /* 2 bits to transmit scale factor adjustment index */
775  t = best_sel_bits[i] + 2;
776  if (t < clc_bits[i]) {
777  res[i] = best_sel_id[i];
778  bits += t;
779  } else {
780  res[i] = ff_dca_quant_index_group_size[i];
781  bits += clc_bits[i];
782  }
783  }
784  return bits;
785 }
786 
787 static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, int32_t *res)
788 {
789  uint8_t i;
790  uint32_t t;
791  int32_t best_sel = 6;
792  int32_t best_bits = bands * 5;
793 
794  /* Check do we have subband which cannot be encoded by Huffman tables */
795  for (i = 0; i < bands; i++) {
796  if (abits[i] > 12 || abits[i] == 0) {
797  *res = best_sel;
798  return best_bits;
799  }
800  }
801 
802  for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) {
803  t = ff_dca_vlc_calc_alloc_bits(abits, bands, i);
804  if (t < best_bits) {
805  best_bits = t;
806  best_sel = i;
807  }
808  }
809 
810  *res = best_sel;
811  return best_bits;
812 }
813 
814 static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
815 {
816  int ch, band, ret = USED_26ABITS | USED_1ABITS;
817  uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7];
818  uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS];
819  uint32_t bits_counter = 0;
820 
821  c->consumed_bits = 132 + 333 * c->fullband_channels;
823  if (c->lfe_channel)
824  c->consumed_bits += 72;
825 
826  /* attempt to guess the bit distribution based on the prevoius frame */
827  for (ch = 0; ch < c->fullband_channels; ch++) {
828  for (band = 0; band < 32; band++) {
829  int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise;
830 
831  if (snr_cb >= 1312) {
832  c->abits[ch][band] = 26;
833  ret &= ~USED_1ABITS;
834  } else if (snr_cb >= 222) {
835  c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000);
836  ret &= ~(USED_26ABITS | USED_1ABITS);
837  } else if (snr_cb >= 0) {
838  c->abits[ch][band] = 2 + mul32(snr_cb, 106000000);
839  ret &= ~(USED_26ABITS | USED_1ABITS);
840  } else if (forbid_zero || snr_cb >= -140) {
841  c->abits[ch][band] = 1;
842  ret &= ~USED_26ABITS;
843  } else {
844  c->abits[ch][band] = 0;
845  ret &= ~(USED_26ABITS | USED_1ABITS);
846  }
847  }
848  c->consumed_bits += set_best_abits_code(c->abits[ch], 32, &c->bit_allocation_sel[ch]);
849  }
850 
851  /* Recalc scale_factor each time to get bits consumption in case of Huffman coding.
852  It is suboptimal solution */
853  /* TODO: May be cache scaled values */
854  for (ch = 0; ch < c->fullband_channels; ch++) {
855  for (band = 0; band < 32; band++) {
856  if (c->prediction_mode[ch][band] == -1) {
857  c->scale_factor[ch][band] = calc_one_scale(c->peak_cb[ch][band],
858  c->abits[ch][band],
859  &c->quant[ch][band]);
860  }
861  }
862  }
863  quantize_adpcm(c);
864  quantize_pcm(c);
865 
866  memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t));
867  memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t));
868  for (ch = 0; ch < c->fullband_channels; ch++) {
869  for (band = 0; band < 32; band++) {
870  if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) {
871  accumulate_huff_bit_consumption(c->abits[ch][band], c->quantized[ch][band], huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
872  clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]];
873  } else {
874  bits_counter += bit_consumption[c->abits[ch][band]];
875  }
876  }
877  }
878 
879  for (ch = 0; ch < c->fullband_channels; ch++) {
880  bits_counter += set_best_code(huff_bit_count_accum[ch], clc_bit_count_accum[ch], c->quant_index_sel[ch]);
881  }
882 
883  c->consumed_bits += bits_counter;
884 
885  return ret;
886 }
887 
889 {
890  /* Find the bounds where the binary search should work */
891  int low, high, down;
892  int used_abits = 0;
893  int forbid_zero = 1;
894 restart:
896  low = high = c->worst_quantization_noise;
897  if (c->consumed_bits > c->frame_bits) {
898  while (c->consumed_bits > c->frame_bits) {
899  if (used_abits == USED_1ABITS && forbid_zero) {
900  forbid_zero = 0;
901  goto restart;
902  }
903  low = high;
904  high += snr_fudge;
905  used_abits = init_quantization_noise(c, high, forbid_zero);
906  }
907  } else {
908  while (c->consumed_bits <= c->frame_bits) {
909  high = low;
910  if (used_abits == USED_26ABITS)
911  goto out; /* The requested bitrate is too high, pad with zeros */
912  low -= snr_fudge;
913  used_abits = init_quantization_noise(c, low, forbid_zero);
914  }
915  }
916 
917  /* Now do a binary search between low and high to see what fits */
918  for (down = snr_fudge >> 1; down; down >>= 1) {
919  init_quantization_noise(c, high - down, forbid_zero);
920  if (c->consumed_bits <= c->frame_bits)
921  high -= down;
922  }
923  init_quantization_noise(c, high, forbid_zero);
924 out:
925  c->worst_quantization_noise = high;
926  if (high > c->worst_noise_ever)
927  c->worst_noise_ever = high;
928 }
929 
930 static void shift_history(DCAEncContext *c, const int32_t *input)
931 {
932  int k, ch;
933 
934  for (k = 0; k < 512; k++)
935  for (ch = 0; ch < c->channels; ch++) {
936  const int chi = c->channel_order_tab[ch];
937 
938  c->history[ch][k] = input[k * c->channels + chi];
939  }
940 }
941 
943 {
944  int ch, band;
945  int32_t step_size;
946  /* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded
947  * in current frame - we need this data if subband of next frame is
948  * ADPCM
949  */
950  for (ch = 0; ch < c->channels; ch++) {
951  for (band = 0; band < 32; band++) {
952  int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
953  if (c->prediction_mode[ch][band] == -1) {
954  step_size = get_step_size(c, ch, band);
955 
957  c->quantized[ch][band]+12, step_size, ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
958  } else {
959  AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
960  }
961  /* Copy dequantized values for LPC analysis.
962  * It reduces artifacts in case of extreme quantization,
963  * example: in current frame abits is 1 and has no prediction flag,
964  * but end of this frame is sine like signal. In this case, if LPC analysis uses
965  * original values, likely LPC analysis returns good prediction gain, and sets prediction flag.
966  * But there are no proper value in decoder history, so likely result will be no good.
967  * Bitstream has "Predictor history flag switch", but this flag disables history for all subbands
968  */
969  samples[0] = c->adpcm_history[ch][band][0] << 7;
970  samples[1] = c->adpcm_history[ch][band][1] << 7;
971  samples[2] = c->adpcm_history[ch][band][2] << 7;
972  samples[3] = c->adpcm_history[ch][band][3] << 7;
973  }
974  }
975 }
976 
978 {
979  if (c->lfe_channel)
981 }
982 
984 {
985  /* SYNC */
986  put_bits(&c->pb, 16, 0x7ffe);
987  put_bits(&c->pb, 16, 0x8001);
988 
989  /* Frame type: normal */
990  put_bits(&c->pb, 1, 1);
991 
992  /* Deficit sample count: none */
993  put_bits(&c->pb, 5, 31);
994 
995  /* CRC is not present */
996  put_bits(&c->pb, 1, 0);
997 
998  /* Number of PCM sample blocks */
999  put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);
1000 
1001  /* Primary frame byte size */
1002  put_bits(&c->pb, 14, c->frame_size - 1);
1003 
1004  /* Audio channel arrangement */
1005  put_bits(&c->pb, 6, c->channel_config);
1006 
1007  /* Core audio sampling frequency */
1009 
1010  /* Transmission bit rate */
1011  put_bits(&c->pb, 5, c->bitrate_index);
1012 
1013  /* Embedded down mix: disabled */
1014  put_bits(&c->pb, 1, 0);
1015 
1016  /* Embedded dynamic range flag: not present */
1017  put_bits(&c->pb, 1, 0);
1018 
1019  /* Embedded time stamp flag: not present */
1020  put_bits(&c->pb, 1, 0);
1021 
1022  /* Auxiliary data flag: not present */
1023  put_bits(&c->pb, 1, 0);
1024 
1025  /* HDCD source: no */
1026  put_bits(&c->pb, 1, 0);
1027 
1028  /* Extension audio ID: N/A */
1029  put_bits(&c->pb, 3, 0);
1030 
1031  /* Extended audio data: not present */
1032  put_bits(&c->pb, 1, 0);
1033 
1034  /* Audio sync word insertion flag: after each sub-frame */
1035  put_bits(&c->pb, 1, 0);
1036 
1037  /* Low frequency effects flag: not present or 64x subsampling */
1038  put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);
1039 
1040  /* Predictor history switch flag: on */
1041  put_bits(&c->pb, 1, 1);
1042 
1043  /* No CRC */
1044  /* Multirate interpolator switch: non-perfect reconstruction */
1045  put_bits(&c->pb, 1, 0);
1046 
1047  /* Encoder software revision: 7 */
1048  put_bits(&c->pb, 4, 7);
1049 
1050  /* Copy history: 0 */
1051  put_bits(&c->pb, 2, 0);
1052 
1053  /* Source PCM resolution: 16 bits, not DTS ES */
1054  put_bits(&c->pb, 3, 0);
1055 
1056  /* Front sum/difference coding: no */
1057  put_bits(&c->pb, 1, 0);
1058 
1059  /* Surrounds sum/difference coding: no */
1060  put_bits(&c->pb, 1, 0);
1061 
1062  /* Dialog normalization: 0 dB */
1063  put_bits(&c->pb, 4, 0);
1064 }
1065 
1067 {
1068  int ch, i;
1069  /* Number of subframes */
1070  put_bits(&c->pb, 4, SUBFRAMES - 1);
1071 
1072  /* Number of primary audio channels */
1073  put_bits(&c->pb, 3, c->fullband_channels - 1);
1074 
1075  /* Subband activity count */
1076  for (ch = 0; ch < c->fullband_channels; ch++)
1077  put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2);
1078 
1079  /* High frequency VQ start subband */
1080  for (ch = 0; ch < c->fullband_channels; ch++)
1081  put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1);
1082 
1083  /* Joint intensity coding index: 0, 0 */
1084  for (ch = 0; ch < c->fullband_channels; ch++)
1085  put_bits(&c->pb, 3, 0);
1086 
1087  /* Transient mode codebook: A4, A4 (arbitrary) */
1088  for (ch = 0; ch < c->fullband_channels; ch++)
1089  put_bits(&c->pb, 2, 0);
1090 
1091  /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
1092  for (ch = 0; ch < c->fullband_channels; ch++)
1093  put_bits(&c->pb, 3, 6);
1094 
1095  /* Bit allocation quantizer select: linear 5-bit */
1096  for (ch = 0; ch < c->fullband_channels; ch++)
1097  put_bits(&c->pb, 3, c->bit_allocation_sel[ch]);
1098 
1099  /* Quantization index codebook select */
1100  for (i = 0; i < DCA_CODE_BOOKS; i++)
1101  for (ch = 0; ch < c->fullband_channels; ch++)
1103 
1104  /* Scale factor adjustment index: transmitted in case of Huffman coding */
1105  for (i = 0; i < DCA_CODE_BOOKS; i++)
1106  for (ch = 0; ch < c->fullband_channels; ch++)
1108  put_bits(&c->pb, 2, 0);
1109 
1110  /* Audio header CRC check word: not transmitted */
1111 }
1112 
1113 static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
1114 {
1115  int i, j, sum, bits, sel;
1116  if (c->abits[ch][band] <= DCA_CODE_BOOKS) {
1117  av_assert0(c->abits[ch][band] > 0);
1118  sel = c->quant_index_sel[ch][c->abits[ch][band] - 1];
1119  // Huffman codes
1120  if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) {
1121  ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8, sel, c->abits[ch][band] - 1);
1122  return;
1123  }
1124 
1125  // Block codes
1126  if (c->abits[ch][band] <= 7) {
1127  for (i = 0; i < 8; i += 4) {
1128  sum = 0;
1129  for (j = 3; j >= 0; j--) {
1130  sum *= ff_dca_quant_levels[c->abits[ch][band]];
1131  sum += c->quantized[ch][band][ss * 8 + i + j];
1132  sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2;
1133  }
1134  put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum);
1135  }
1136  return;
1137  }
1138  }
1139 
1140  for (i = 0; i < 8; i++) {
1141  bits = bit_consumption[c->abits[ch][band]] / 16;
1142  put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]);
1143  }
1144 }
1145 
1146 static void put_subframe(DCAEncContext *c, int subframe)
1147 {
1148  int i, band, ss, ch;
1149 
1150  /* Subsubframes count */
1151  put_bits(&c->pb, 2, SUBSUBFRAMES -1);
1152 
1153  /* Partial subsubframe sample count: dummy */
1154  put_bits(&c->pb, 3, 0);
1155 
1156  /* Prediction mode: no ADPCM, in each channel and subband */
1157  for (ch = 0; ch < c->fullband_channels; ch++)
1158  for (band = 0; band < DCAENC_SUBBANDS; band++)
1159  put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1));
1160 
1161  /* Prediction VQ address */
1162  for (ch = 0; ch < c->fullband_channels; ch++)
1163  for (band = 0; band < DCAENC_SUBBANDS; band++)
1164  if (c->prediction_mode[ch][band] >= 0)
1165  put_bits(&c->pb, 12, c->prediction_mode[ch][band]);
1166 
1167  /* Bit allocation index */
1168  for (ch = 0; ch < c->fullband_channels; ch++) {
1169  if (c->bit_allocation_sel[ch] == 6) {
1170  for (band = 0; band < DCAENC_SUBBANDS; band++) {
1171  put_bits(&c->pb, 5, c->abits[ch][band]);
1172  }
1173  } else {
1174  ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS, c->bit_allocation_sel[ch]);
1175  }
1176  }
1177 
1178  if (SUBSUBFRAMES > 1) {
1179  /* Transition mode: none for each channel and subband */
1180  for (ch = 0; ch < c->fullband_channels; ch++)
1181  for (band = 0; band < DCAENC_SUBBANDS; band++)
1182  if (c->abits[ch][band])
1183  put_bits(&c->pb, 1, 0); /* codebook A4 */
1184  }
1185 
1186  /* Scale factors */
1187  for (ch = 0; ch < c->fullband_channels; ch++)
1188  for (band = 0; band < DCAENC_SUBBANDS; band++)
1189  if (c->abits[ch][band])
1190  put_bits(&c->pb, 7, c->scale_factor[ch][band]);
1191 
1192  /* Joint subband scale factor codebook select: not transmitted */
1193  /* Scale factors for joint subband coding: not transmitted */
1194  /* Stereo down-mix coefficients: not transmitted */
1195  /* Dynamic range coefficient: not transmitted */
1196  /* Stde information CRC check word: not transmitted */
1197  /* VQ encoded high frequency subbands: not transmitted */
1198 
1199  /* LFE data: 8 samples and scalefactor */
1200  if (c->lfe_channel) {
1201  for (i = 0; i < DCA_LFE_SAMPLES; i++)
1202  put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
1203  put_bits(&c->pb, 8, c->lfe_scale_factor);
1204  }
1205 
1206  /* Audio data (subsubframes) */
1207  for (ss = 0; ss < SUBSUBFRAMES ; ss++)
1208  for (ch = 0; ch < c->fullband_channels; ch++)
1209  for (band = 0; band < DCAENC_SUBBANDS; band++)
1210  if (c->abits[ch][band])
1211  put_subframe_samples(c, ss, band, ch);
1212 
1213  /* DSYNC */
1214  put_bits(&c->pb, 16, 0xffff);
1215 }
1216 
1217 static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1218  const AVFrame *frame, int *got_packet_ptr)
1219 {
1220  DCAEncContext *c = avctx->priv_data;
1221  const int32_t *samples;
1222  int ret, i;
1223 
1224  if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size, 0)) < 0)
1225  return ret;
1226 
1227  samples = (const int32_t *)frame->data[0];
1228 
1229  subband_transform(c, samples);
1230  if (c->lfe_channel)
1231  lfe_downsample(c, samples);
1232 
1233  calc_masking(c, samples);
1234  if (c->options.adpcm_mode)
1235  adpcm_analysis(c);
1236  find_peaks(c);
1237  assign_bits(c);
1238  calc_lfe_scales(c);
1239  shift_history(c, samples);
1240 
1241  init_put_bits(&c->pb, avpkt->data, avpkt->size);
1243  put_frame_header(c);
1245  for (i = 0; i < SUBFRAMES; i++)
1246  put_subframe(c, i);
1247 
1248 
1249  for (i = put_bits_count(&c->pb); i < 8*c->frame_size; i++)
1250  put_bits(&c->pb, 1, 0);
1251 
1252  flush_put_bits(&c->pb);
1253 
1254  avpkt->pts = frame->pts;
1255  avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1256  avpkt->size = put_bits_count(&c->pb) >> 3;
1257  *got_packet_ptr = 1;
1258  return 0;
1259 }
1260 
1261 #define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1262 
1263 static const AVOption options[] = {
1264  { "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS },
1265  { NULL },
1266 };
1267 
1268 static const AVClass dcaenc_class = {
1269  .class_name = "DCA (DTS Coherent Acoustics)",
1270  .item_name = av_default_item_name,
1271  .option = options,
1272  .version = LIBAVUTIL_VERSION_INT,
1273 };
1274 
1275 static const AVCodecDefault defaults[] = {
1276  { "b", "1411200" },
1277  { NULL },
1278 };
1279 
1281  .name = "dca",
1282  .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
1283  .type = AVMEDIA_TYPE_AUDIO,
1284  .id = AV_CODEC_ID_DTS,
1285  .priv_data_size = sizeof(DCAEncContext),
1286  .init = encode_init,
1287  .close = encode_close,
1288  .encode2 = encode_frame,
1289  .capabilities = AV_CODEC_CAP_EXPERIMENTAL,
1290  .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
1292  .supported_samplerates = sample_rates,
1293  .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
1298  0 },
1299  .defaults = defaults,
1300  .priv_class = &dcaenc_class,
1301 };
av_cold int ff_dcaadpcm_init(DCAADPCMEncContext *s)
Definition: dcaadpcm.c:212
#define MAX_CHANNELS
Definition: dcaenc.c:40
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]
expected peak of residual signal
Definition: dcaenc.c:81
int32_t m
Definition: dcaenc.h:30
This structure describes decoded (raw) audio or video data.
Definition: frame.h:201
static int32_t cb_to_add[256]
Definition: dcaenc.c:101
uint32_t ff_dca_vlc_calc_alloc_bits(int *values, uint8_t n, uint8_t sel)
Definition: dcahuff.c:1360
static int noise(AVBSFContext *ctx, AVPacket *out)
Definition: noise_bsf.c:38
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
int32_t eff_masking_curve_cb[256]
Definition: dcaenc.c:89
float re
Definition: fft.c:82
static void put_sbits(PutBitContext *pb, int n, int32_t value)
Definition: put_bits.h:240
static int32_t auf[9][AUBANDS][256]
Definition: dcaenc.c:100
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:206
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static void put_frame_header(DCAEncContext *c)
Definition: dcaenc.c:983
const uint32_t ff_dca_lossy_quant[32]
Definition: dcadata.c:4223
int64_t bit_rate
the average bitrate
Definition: avcodec.h:1826
#define AUBANDS
Definition: dcaenc.c:49
#define LIBAVUTIL_VERSION_INT
Definition: version.h:86
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
const int8_t * channel_order_tab
channel reordering table, lfe and non lfe
Definition: dcaenc.c:73
const uint8_t ff_reverse[256]
Definition: reverse.c:23
static int32_t band_spectrum[2][8]
Definition: dcaenc.c:99
int size
Definition: avcodec.h:1680
const char * b
Definition: vf_curves.c:113
static const uint8_t bitstream_sfreq[]
Definition: dcaenc.h:38
static const uint16_t erb[]
Definition: dcaenc.h:48
#define AV_CODEC_CAP_EXPERIMENTAL
Codec is experimental and is thus avoided in favor of non experimental encoders.
Definition: avcodec.h:1057
static void shift_history(DCAEncContext *c, const int32_t *input)
Definition: dcaenc.c:930
softfloat lfe_quant
Definition: dcaenc.c:71
#define AV_CH_LAYOUT_STEREO
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
Definition: dcaenc.c:1217
#define sample
static void walk_band_high(DCAEncContext *c, int band, int channel, walk_band_t walk, int32_t *arg)
Definition: dcaenc.c:547
AVCodec.
Definition: avcodec.h:3739
#define AV_CH_LAYOUT_5POINT0
CompressionOptions options
Definition: dcaenc.c:59
int abits[MAX_CHANNELS][DCAENC_SUBBANDS]
Definition: dcaenc.c:85
static av_cold int encode_close(AVCodecContext *avctx)
Definition: dcaenc.c:296
int frame_size
Definition: dcaenc.c:60
const float ff_dca_fir_32bands_nonperfect[512]
Definition: dcadata.c:6808
static void walk_band_low(DCAEncContext *c, int band, int channel, walk_band_t walk, int32_t *arg)
Definition: dcaenc.c:532
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:230
int ff_dcaadpcm_do_real(int pred_vq_index, softfloat quant, int32_t scale_factor, int32_t step_size, const int32_t *prev_hist, const int32_t *in, int32_t *next_hist, int32_t *out, int len, int32_t peak)
Definition: dcaadpcm.c:183
static int32_t quantize_value(int32_t value, softfloat quant)
Definition: dcaenc.h:149
softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS]
Definition: dcaenc.c:87
static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, uint32_t *result)
Definition: dcaenc.c:741
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define SUBSUBFRAMES
Definition: dcaenc.c:47
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:32
static void calc_masking(DCAEncContext *c, const int32_t *input)
Definition: dcaenc.c:572
static const softfloat stepsize_inv[27]
Definition: dcaenc.h:53
const uint32_t ff_dca_bit_rates[32]
Definition: dcadata.c:32
uint8_t bits
Definition: crc.c:296
uint8_t
#define av_cold
Definition: attributes.h:82
static int32_t lfe_fir_64i[512]
Definition: dcaenc.c:103
int32_t im
Definition: dcaenc.c:403
AVOptions.
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
Definition: avcodec.h:1697
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
static int32_t find_peak(const int32_t *in, int len)
Definition: dcaenc.c:607
static int32_t cos_table[2048]
Definition: dcaenc.c:97
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:294
static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
Definition: dcaenc.c:673
int32_t masking_curve_cb[SUBSUBFRAMES][256]
Definition: dcaenc.c:83
static AVFrame * frame
uint8_t * data
Definition: avcodec.h:1679
static int32_t sin_t(int x)
Definition: dcaenc.c:311
int frame_bits
Definition: dcaenc.c:61
int lfe_channel
Definition: dcaenc.c:64
static void ff_dca_core_dequantize(int32_t *output, const int32_t *input, int32_t step_size, int32_t scale, int residual, int len)
Definition: dca_core.h:227
int32_t re
Definition: dcaenc.c:402
signed 32 bits
Definition: samplefmt.h:62
#define AV_COPY128U(d, s)
Definition: intreadwrite.h:570
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS]
Definition: dcaenc.c:86
#define DCA_LFE_SAMPLES
Definition: dcaenc.c:43
static void adpcm_analysis(DCAEncContext *c)
Definition: dcaenc.c:634
#define AV_CH_LAYOUT_5POINT1
static int32_t add_cb(int32_t a, int32_t b)
Definition: dcaenc.c:487
#define USED_1ABITS
Definition: dcaenc.c:658
static const softfloat scalefactor_inv[128]
Definition: dcaenc.h:63
static void lfe_downsample(DCAEncContext *c, const int32_t *input)
Definition: dcaenc.c:371
static double hom(double f)
Definition: dcaenc.c:106
int32_t band_masking_cb[32]
Definition: dcaenc.c:90
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Definition: ffmath.h:42
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
static void put_subframe(DCAEncContext *c, int subframe)
Definition: dcaenc.c:1146
Definition: dcaenc.c:401
int samplerate_index
Definition: dcaenc.c:65
av_default_item_name
static const int snr_fudge
Definition: dcaenc.c:657
#define AVERROR(e)
Definition: error.h:43
#define DCA_ADPCM_COEFFS
Definition: dcadata.h:28
const uint8_t ff_dca_quant_index_group_size[DCA_CODE_BOOKS]
Definition: dcadata.c:53
const uint32_t ff_dca_lossless_quant[32]
Definition: dcadata.c:4231
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:179
int channels
Definition: dcaenc.c:63
static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, int32_t *res)
Definition: dcaenc.c:787
const float ff_dca_lfe_fir_64[256]
Definition: dcadata.c:7339
const char * arg
Definition: jacosubdec.c:66
static void update_band_masking(DCAEncContext *c, int band1, int band2, int f, int32_t spectrum1, int32_t spectrum2, int channel, int32_t *arg)
Definition: dcaenc.c:562
simple assert() macros that are a bit more flexible than ISO C assert().
const char * name
Name of the codec implementation.
Definition: avcodec.h:3746
const uint32_t ff_dca_quant_levels[32]
Definition: dcadata.c:4215
int8_t exp
Definition: eval.c:65
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2574
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
int32_t e
Definition: dcaenc.h:31
#define AV_CH_LAYOUT_2_2
static const uint16_t fc[]
Definition: dcaenc.h:43
static void assign_bits(DCAEncContext *c)
Definition: dcaenc.c:888
audio channel layout utility functions
static int subband_bufer_alloc(DCAEncContext *c)
Definition: dcaenc.c:125
int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS]
Definition: dcaenc.c:75
static void calc_lfe_scales(DCAEncContext *c)
Definition: dcaenc.c:977
int fullband_channels
Definition: dcaenc.c:62
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
DCAADPCMEncContext adpcm_ctx
Definition: dcaenc.c:58
uint32_t ff_dca_vlc_calc_quant_bits(int *values, uint8_t n, uint8_t sel, uint8_t table)
Definition: dcahuff.c:1338
int32_t
static void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
Definition: dcaenc.c:705
int32_t worst_noise_ever
Definition: dcaenc.c:92
#define DCA_MAX_FRAME_SIZE
Definition: dcaenc.c:41
int consumed_adpcm_bits
Number of bits to transmit ADPCM related info.
Definition: dcaenc.c:94
static int32_t get_step_size(const DCAEncContext *c, int ch, int band)
Definition: dcaenc.c:661
#define DCAENC_SUBBANDS
Definition: dcaenc.c:45
int32_t lfe_peak_cb
Definition: dcaenc.c:72
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
const uint32_t ff_dca_scale_factor_quant7[128]
Definition: dcadata.c:4172
static int32_t mul32(int32_t a, int32_t b)
Definition: dcamath.h:52
#define SUBBAND_SAMPLES
Definition: dcaenc.c:48
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:2543
static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
Definition: dcaenc.c:814
int bitrate_index
Definition: dcaenc.c:66
static const int8_t channel_reorder_lfe[7][5]
Definition: dca_lbr.c:95
static void put_primary_audio_header(DCAEncContext *c)
Definition: dcaenc.c:1066
int frame_size
Definition: mxfenc.c:1896
static void find_peaks(DCAEncContext *c)
Definition: dcaenc.c:619
void ff_dca_vlc_enc_quant(PutBitContext *pb, int *values, uint8_t n, uint8_t sel, uint8_t table)
Definition: dcahuff.c:1350
Libavcodec external API header.
const int32_t * band_spectrum
Definition: dcaenc.c:69
#define DCAENC_FLAGS
Definition: dcaenc.c:1261
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
int32_t history[MAX_CHANNELS][512]
Definition: dcaenc.c:77
static int32_t cb_to_level[2048]
Definition: dcaenc.c:102
#define DCA_CODE_BOOKS
Definition: dcahuff.h:32
int sample_rate
samples per second
Definition: avcodec.h:2523
#define ss
main external API structure.
Definition: avcodec.h:1761
static const float bands[]
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void * buf
Definition: avisynth_c.h:690
static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
Definition: dcaenc.c:1113
static void quantize_adpcm(DCAEncContext *c)
Definition: dcaenc.c:720
static void adjust_jnd(int samplerate_index, const int32_t in[512], int32_t out_cb[256])
Definition: dcaenc.c:497
Describe the class of an AVClass context structure.
Definition: log.h:67
float im
Definition: fft.c:82
static const AVOption options[]
Definition: dcaenc.c:1263
int ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext *s, const int32_t *in, int len, int *diff)
Definition: dcaadpcm.c:125
const uint8_t ff_dca_quant_index_sel_nbits[DCA_CODE_BOOKS]
Definition: dcadata.c:49
int32_t worst_quantization_noise
Definition: dcaenc.c:91
static int encode_init(AVCodecContext *avctx)
Definition: dcaenc.c:152
static void fill_in_adpcm_bufer(DCAEncContext *c)
Definition: dcaenc.c:942
static void quantize_pcm(DCAEncContext *c)
Definition: dcaenc.c:730
static int32_t band_interpolation[2][512]
Definition: dcaenc.c:98
static int32_t cos_t(int x)
Definition: dcaenc.c:306
#define DCA_BITALLOC_12_COUNT
Definition: dcahuff.h:33
const uint8_t * quant
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
#define SUBFRAMES
Definition: dcaenc.c:46
static void subband_transform(DCAEncContext *c, const int32_t *input)
Definition: dcaenc.c:321
internal math functions header
int channel_config
Definition: dcaenc.c:67
AVCodec ff_dca_encoder
Definition: dcaenc.c:1280
PutBitContext pb
Definition: dcaenc.c:57
static void fft(const int32_t in[2 *256], cplx32 out[256])
Definition: dcaenc.c:406
common internal api header.
sample_rates
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:279
#define USED_26ABITS
Definition: dcaenc.c:659
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
static int32_t get_cb(int32_t in)
Definition: dcaenc.c:473
static void subband_bufer_free(DCAEncContext *c)
Definition: dcaenc.c:146
int lfe_scale_factor
Definition: dcaenc.c:70
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS]
Definition: dcaenc.c:88
void * priv_data
Definition: avcodec.h:1803
static av_always_inline int diff(const uint32_t a, const uint32_t b)
int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]
Definition: dcaenc.c:79
int consumed_bits
Definition: dcaenc.c:93
int len
int channels
number of audio channels
Definition: avcodec.h:2524
void(* walk_band_t)(DCAEncContext *c, int band1, int band2, int f, int32_t spectrum1, int32_t spectrum2, int channel, int32_t *arg)
Definition: dcaenc.c:528
static int32_t half32(int32_t a)
Definition: dcaenc.c:316
int32_t * subband[MAX_CHANNELS][DCAENC_SUBBANDS]
Definition: dcaenc.c:78
static const int8_t channel_reorder_nolfe[7][5]
Definition: dca_lbr.c:85
uint64_t layout
int64_t av_get_default_channel_layout(int nb_channels)
Return default channel layout for a given number of channels.
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
FILE * out
Definition: movenc.c:54
static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], uint32_t clc_bits[DCA_CODE_BOOKS], int32_t res[DCA_CODE_BOOKS])
Definition: dcaenc.c:748
#define av_freep(p)
const int32_t * band_interpolation
Definition: dcaenc.c:68
int32_t downsampled_lfe[DCA_LFE_SAMPLES]
Definition: dcaenc.c:82
int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]
Definition: dcaenc.c:80
int32_t bit_allocation_sel[MAX_CHANNELS]
Definition: dcaenc.c:84
#define M_PI
Definition: mathematics.h:52
av_cold void ff_dcaadpcm_free(DCAADPCMEncContext *s)
Definition: dcaadpcm.c:225
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
Definition: internal.h:295
#define FFSWAP(type, a, b)
Definition: common.h:99
static const AVCodecDefault defaults[]
Definition: dcaenc.c:1275
static const uint8_t lfe_index[7]
Definition: dca_lbr.c:105
static const int bit_consumption[27]
Definition: dcaenc.h:101
const float ff_dca_fir_32bands_perfect[512]
Definition: dcadata.c:6293
int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS *2]
Definition: dcaenc.c:76
#define AV_CH_LAYOUT_MONO
enum AVCodecID id
This structure stores compressed data.
Definition: avcodec.h:1656
static const AVClass dcaenc_class
Definition: dcaenc.c:1268
void ff_dca_vlc_enc_alloc(PutBitContext *pb, int *values, uint8_t n, uint8_t sel)
Definition: dcahuff.c:1371
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:267
static double gammafilter(int i, double f)
Definition: dcaenc.c:116
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
Definition: avcodec.h:1672
for(j=16;j >0;--j)
bitstream writer API