FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The FFmpeg Project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  *
16  * This file is part of FFmpeg.
17  *
18  * FFmpeg is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU Lesser General Public
20  * License as published by the Free Software Foundation; either
21  * version 2.1 of the License, or (at your option) any later version.
22  *
23  * FFmpeg is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26  * Lesser General Public License for more details.
27  *
28  * You should have received a copy of the GNU Lesser General Public
29  * License along with FFmpeg; if not, write to the Free Software
30  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31  */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "bytestream.h"
35 #include "adpcm.h"
36 #include "adpcm_data.h"
37 #include "internal.h"
38 
39 /**
40  * @file
41  * ADPCM decoders
42  * Features and limitations:
43  *
44  * Reference documents:
45  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48  * http://openquicktime.sourceforge.net/
49  * XAnim sources (xa_codec.c) http://xanim.polter.net/
50  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51  * SoX source code http://sox.sourceforge.net/
52  *
53  * CD-ROM XA:
54  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56  * readstr http://www.geocities.co.jp/Playtown/2004/
57  */
58 
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
61  { 0, 0 },
62  { 60, 0 },
63  { 115, -52 },
64  { 98, -55 },
65  { 122, -60 }
66 };
67 
68 static const int ea_adpcm_table[] = {
69  0, 240, 460, 392,
70  0, 0, -208, -220,
71  0, 1, 3, 4,
72  7, 8, 10, 11,
73  0, -1, -3, -4
74 };
75 
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
78  /*2*/ { -1, 2 },
79  /*3*/ { -1, -1, 2, 4 },
80  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83 
84 /* end of tables */
85 
86 typedef struct ADPCMDecodeContext {
88  int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
90 
92 {
93  ADPCMDecodeContext *c = avctx->priv_data;
94  unsigned int min_channels = 1;
95  unsigned int max_channels = 2;
96 
97  switch(avctx->codec->id) {
100  min_channels = 2;
101  break;
108  max_channels = 6;
109  break;
110  }
111  if (avctx->channels < min_channels || avctx->channels > max_channels) {
112  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
113  return AVERROR(EINVAL);
114  }
115 
116  switch(avctx->codec->id) {
118  c->status[0].step = c->status[1].step = 511;
119  break;
121  if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
122  return AVERROR_INVALIDDATA;
123  break;
125  if (avctx->extradata && avctx->extradata_size >= 8) {
126  c->status[0].predictor = AV_RL32(avctx->extradata);
127  c->status[1].predictor = AV_RL32(avctx->extradata + 4);
128  }
129  break;
131  if (avctx->extradata && avctx->extradata_size >= 2)
132  c->vqa_version = AV_RL16(avctx->extradata);
133  break;
134  default:
135  break;
136  }
137 
138  switch(avctx->codec->id) {
151  break;
153  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
155  break;
156  default:
157  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
158  }
159 
160  return 0;
161 }
162 
163 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
164 {
165  int step_index;
166  int predictor;
167  int sign, delta, diff, step;
168 
169  step = ff_adpcm_step_table[c->step_index];
170  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
171  step_index = av_clip(step_index, 0, 88);
172 
173  sign = nibble & 8;
174  delta = nibble & 7;
175  /* perform direct multiplication instead of series of jumps proposed by
176  * the reference ADPCM implementation since modern CPUs can do the mults
177  * quickly enough */
178  diff = ((2 * delta + 1) * step) >> shift;
179  predictor = c->predictor;
180  if (sign) predictor -= diff;
181  else predictor += diff;
182 
183  c->predictor = av_clip_int16(predictor);
184  c->step_index = step_index;
185 
186  return (short)c->predictor;
187 }
188 
190 {
191  int nibble, step_index, predictor, sign, delta, diff, step, shift;
192 
193  shift = bps - 1;
194  nibble = get_bits_le(gb, bps),
195  step = ff_adpcm_step_table[c->step_index];
196  step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
197  step_index = av_clip(step_index, 0, 88);
198 
199  sign = nibble & (1 << shift);
200  delta = av_mod_uintp2(nibble, shift);
201  diff = ((2 * delta + 1) * step) >> shift;
202  predictor = c->predictor;
203  if (sign) predictor -= diff;
204  else predictor += diff;
205 
206  c->predictor = av_clip_int16(predictor);
207  c->step_index = step_index;
208 
209  return (int16_t)c->predictor;
210 }
211 
212 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
213 {
214  int step_index;
215  int predictor;
216  int diff, step;
217 
218  step = ff_adpcm_step_table[c->step_index];
219  step_index = c->step_index + ff_adpcm_index_table[nibble];
220  step_index = av_clip(step_index, 0, 88);
221 
222  diff = step >> 3;
223  if (nibble & 4) diff += step;
224  if (nibble & 2) diff += step >> 1;
225  if (nibble & 1) diff += step >> 2;
226 
227  if (nibble & 8)
228  predictor = c->predictor - diff;
229  else
230  predictor = c->predictor + diff;
231 
232  c->predictor = av_clip_int16(predictor);
233  c->step_index = step_index;
234 
235  return c->predictor;
236 }
237 
238 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
239 {
240  int predictor;
241 
242  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
243  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
244 
245  c->sample2 = c->sample1;
246  c->sample1 = av_clip_int16(predictor);
247  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
248  if (c->idelta < 16) c->idelta = 16;
249  if (c->idelta > INT_MAX/768) {
250  av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
251  c->idelta = INT_MAX/768;
252  }
253 
254  return c->sample1;
255 }
256 
257 static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
258 {
259  int step_index, predictor, sign, delta, diff, step;
260 
262  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
263  step_index = av_clip(step_index, 0, 48);
264 
265  sign = nibble & 8;
266  delta = nibble & 7;
267  diff = ((2 * delta + 1) * step) >> 3;
268  predictor = c->predictor;
269  if (sign) predictor -= diff;
270  else predictor += diff;
271 
272  c->predictor = av_clip_intp2(predictor, 11);
273  c->step_index = step_index;
274 
275  return c->predictor << 4;
276 }
277 
278 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
279 {
280  int sign, delta, diff;
281  int new_step;
282 
283  sign = nibble & 8;
284  delta = nibble & 7;
285  /* perform direct multiplication instead of series of jumps proposed by
286  * the reference ADPCM implementation since modern CPUs can do the mults
287  * quickly enough */
288  diff = ((2 * delta + 1) * c->step) >> 3;
289  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
290  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
291  c->predictor = av_clip_int16(c->predictor);
292  /* calculate new step and clamp it to range 511..32767 */
293  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
294  c->step = av_clip(new_step, 511, 32767);
295 
296  return (short)c->predictor;
297 }
298 
299 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
300 {
301  int sign, delta, diff;
302 
303  sign = nibble & (1<<(size-1));
304  delta = nibble & ((1<<(size-1))-1);
305  diff = delta << (7 + c->step + shift);
306 
307  /* clamp result */
308  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
309 
310  /* calculate new step */
311  if (delta >= (2*size - 3) && c->step < 3)
312  c->step++;
313  else if (delta == 0 && c->step > 0)
314  c->step--;
315 
316  return (short) c->predictor;
317 }
318 
319 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
320 {
321  if(!c->step) {
322  c->predictor = 0;
323  c->step = 127;
324  }
325 
326  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
327  c->predictor = av_clip_int16(c->predictor);
328  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
329  c->step = av_clip(c->step, 127, 24567);
330  return c->predictor;
331 }
332 
333 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
334  const uint8_t *in, ADPCMChannelStatus *left,
335  ADPCMChannelStatus *right, int channels, int sample_offset)
336 {
337  int i, j;
338  int shift,filter,f0,f1;
339  int s_1,s_2;
340  int d,s,t;
341 
342  out0 += sample_offset;
343  if (channels == 1)
344  out1 = out0 + 28;
345  else
346  out1 += sample_offset;
347 
348  for(i=0;i<4;i++) {
349  shift = 12 - (in[4+i*2] & 15);
350  filter = in[4+i*2] >> 4;
351  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
352  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
353  filter=0;
354  }
355  f0 = xa_adpcm_table[filter][0];
356  f1 = xa_adpcm_table[filter][1];
357 
358  s_1 = left->sample1;
359  s_2 = left->sample2;
360 
361  for(j=0;j<28;j++) {
362  d = in[16+i+j*4];
363 
364  t = sign_extend(d, 4);
365  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
366  s_2 = s_1;
367  s_1 = av_clip_int16(s);
368  out0[j] = s_1;
369  }
370 
371  if (channels == 2) {
372  left->sample1 = s_1;
373  left->sample2 = s_2;
374  s_1 = right->sample1;
375  s_2 = right->sample2;
376  }
377 
378  shift = 12 - (in[5+i*2] & 15);
379  filter = in[5+i*2] >> 4;
380  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
381  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
382  filter=0;
383  }
384 
385  f0 = xa_adpcm_table[filter][0];
386  f1 = xa_adpcm_table[filter][1];
387 
388  for(j=0;j<28;j++) {
389  d = in[16+i+j*4];
390 
391  t = sign_extend(d >> 4, 4);
392  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
393  s_2 = s_1;
394  s_1 = av_clip_int16(s);
395  out1[j] = s_1;
396  }
397 
398  if (channels == 2) {
399  right->sample1 = s_1;
400  right->sample2 = s_2;
401  } else {
402  left->sample1 = s_1;
403  left->sample2 = s_2;
404  }
405 
406  out0 += 28 * (3 - channels);
407  out1 += 28 * (3 - channels);
408  }
409 
410  return 0;
411 }
412 
413 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
414 {
415  ADPCMDecodeContext *c = avctx->priv_data;
416  GetBitContext gb;
417  const int *table;
418  int k0, signmask, nb_bits, count;
419  int size = buf_size*8;
420  int i;
421 
422  init_get_bits(&gb, buf, size);
423 
424  //read bits & initial values
425  nb_bits = get_bits(&gb, 2)+2;
426  table = swf_index_tables[nb_bits-2];
427  k0 = 1 << (nb_bits-2);
428  signmask = 1 << (nb_bits-1);
429 
430  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
431  for (i = 0; i < avctx->channels; i++) {
432  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
433  c->status[i].step_index = get_bits(&gb, 6);
434  }
435 
436  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
437  int i;
438 
439  for (i = 0; i < avctx->channels; i++) {
440  // similar to IMA adpcm
441  int delta = get_bits(&gb, nb_bits);
442  int step = ff_adpcm_step_table[c->status[i].step_index];
443  long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
444  int k = k0;
445 
446  do {
447  if (delta & k)
448  vpdiff += step;
449  step >>= 1;
450  k >>= 1;
451  } while(k);
452  vpdiff += step;
453 
454  if (delta & signmask)
455  c->status[i].predictor -= vpdiff;
456  else
457  c->status[i].predictor += vpdiff;
458 
459  c->status[i].step_index += table[delta & (~signmask)];
460 
461  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
462  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
463 
464  *samples++ = c->status[i].predictor;
465  }
466  }
467  }
468 }
469 
470 /**
471  * Get the number of samples that will be decoded from the packet.
472  * In one case, this is actually the maximum number of samples possible to
473  * decode with the given buf_size.
474  *
475  * @param[out] coded_samples set to the number of samples as coded in the
476  * packet, or 0 if the codec does not encode the
477  * number of samples in each frame.
478  * @param[out] approx_nb_samples set to non-zero if the number of samples
479  * returned is an approximation.
480  */
482  int buf_size, int *coded_samples, int *approx_nb_samples)
483 {
484  ADPCMDecodeContext *s = avctx->priv_data;
485  int nb_samples = 0;
486  int ch = avctx->channels;
487  int has_coded_samples = 0;
488  int header_size;
489 
490  *coded_samples = 0;
491  *approx_nb_samples = 0;
492 
493  if(ch <= 0)
494  return 0;
495 
496  switch (avctx->codec->id) {
497  /* constant, only check buf_size */
499  if (buf_size < 76 * ch)
500  return 0;
501  nb_samples = 128;
502  break;
504  if (buf_size < 34 * ch)
505  return 0;
506  nb_samples = 64;
507  break;
508  /* simple 4-bit adpcm */
515  nb_samples = buf_size * 2 / ch;
516  break;
517  }
518  if (nb_samples)
519  return nb_samples;
520 
521  /* simple 4-bit adpcm, with header */
522  header_size = 0;
523  switch (avctx->codec->id) {
525  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
526  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
527  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
528  }
529  if (header_size > 0)
530  return (buf_size - header_size) * 2 / ch;
531 
532  /* more complex formats */
533  switch (avctx->codec->id) {
535  has_coded_samples = 1;
536  *coded_samples = bytestream2_get_le32(gb);
537  *coded_samples -= *coded_samples % 28;
538  nb_samples = (buf_size - 12) / 30 * 28;
539  break;
541  has_coded_samples = 1;
542  *coded_samples = bytestream2_get_le32(gb);
543  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
544  break;
546  nb_samples = (buf_size - ch) / ch * 2;
547  break;
551  /* maximum number of samples */
552  /* has internal offsets and a per-frame switch to signal raw 16-bit */
553  has_coded_samples = 1;
554  switch (avctx->codec->id) {
556  header_size = 4 + 9 * ch;
557  *coded_samples = bytestream2_get_le32(gb);
558  break;
560  header_size = 4 + 5 * ch;
561  *coded_samples = bytestream2_get_le32(gb);
562  break;
564  header_size = 4 + 5 * ch;
565  *coded_samples = bytestream2_get_be32(gb);
566  break;
567  }
568  *coded_samples -= *coded_samples % 28;
569  nb_samples = (buf_size - header_size) * 2 / ch;
570  nb_samples -= nb_samples % 28;
571  *approx_nb_samples = 1;
572  break;
574  if (avctx->block_align > 0)
575  buf_size = FFMIN(buf_size, avctx->block_align);
576  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
577  break;
579  if (avctx->block_align > 0)
580  buf_size = FFMIN(buf_size, avctx->block_align);
581  if (buf_size < 4 * ch)
582  return AVERROR_INVALIDDATA;
583  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
584  break;
586  if (avctx->block_align > 0)
587  buf_size = FFMIN(buf_size, avctx->block_align);
588  nb_samples = (buf_size - 4 * ch) * 2 / ch;
589  break;
591  {
592  int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
593  int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
594  if (avctx->block_align > 0)
595  buf_size = FFMIN(buf_size, avctx->block_align);
596  if (buf_size < 4 * ch)
597  return AVERROR_INVALIDDATA;
598  nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
599  break;
600  }
602  if (avctx->block_align > 0)
603  buf_size = FFMIN(buf_size, avctx->block_align);
604  nb_samples = (buf_size - 6 * ch) * 2 / ch;
605  break;
609  {
610  int samples_per_byte;
611  switch (avctx->codec->id) {
612  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
613  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
614  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
615  }
616  if (!s->status[0].step_index) {
617  if (buf_size < ch)
618  return AVERROR_INVALIDDATA;
619  nb_samples++;
620  buf_size -= ch;
621  }
622  nb_samples += buf_size * samples_per_byte / ch;
623  break;
624  }
626  {
627  int buf_bits = buf_size * 8 - 2;
628  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
629  int block_hdr_size = 22 * ch;
630  int block_size = block_hdr_size + nbits * ch * 4095;
631  int nblocks = buf_bits / block_size;
632  int bits_left = buf_bits - nblocks * block_size;
633  nb_samples = nblocks * 4096;
634  if (bits_left >= block_hdr_size)
635  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
636  break;
637  }
639  if (avctx->extradata) {
640  nb_samples = buf_size / (8 * ch) * 14;
641  break;
642  }
643  has_coded_samples = 1;
644  bytestream2_skip(gb, 4); // channel size
645  *coded_samples = bytestream2_get_be32(gb);
646  *coded_samples -= *coded_samples % 14;
647  nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14;
648  break;
650  nb_samples = buf_size / (9 * ch) * 16;
651  break;
653  nb_samples = (buf_size / 128) * 224 / ch;
654  break;
656  nb_samples = buf_size / (16 * ch) * 28;
657  break;
658  }
659 
660  /* validate coded sample count */
661  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
662  return AVERROR_INVALIDDATA;
663 
664  return nb_samples;
665 }
666 
667 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
668  int *got_frame_ptr, AVPacket *avpkt)
669 {
670  AVFrame *frame = data;
671  const uint8_t *buf = avpkt->data;
672  int buf_size = avpkt->size;
673  ADPCMDecodeContext *c = avctx->priv_data;
674  ADPCMChannelStatus *cs;
675  int n, m, channel, i;
676  short *samples;
677  int16_t **samples_p;
678  int st; /* stereo */
679  int count1, count2;
680  int nb_samples, coded_samples, approx_nb_samples, ret;
681  GetByteContext gb;
682 
683  bytestream2_init(&gb, buf, buf_size);
684  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
685  if (nb_samples <= 0) {
686  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
687  return AVERROR_INVALIDDATA;
688  }
689 
690  /* get output buffer */
691  frame->nb_samples = nb_samples;
692  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
693  return ret;
694  samples = (short *)frame->data[0];
695  samples_p = (int16_t **)frame->extended_data;
696 
697  /* use coded_samples when applicable */
698  /* it is always <= nb_samples, so the output buffer will be large enough */
699  if (coded_samples) {
700  if (!approx_nb_samples && coded_samples != nb_samples)
701  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
702  frame->nb_samples = nb_samples = coded_samples;
703  }
704 
705  st = avctx->channels == 2 ? 1 : 0;
706 
707  switch(avctx->codec->id) {
709  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
710  Channel data is interleaved per-chunk. */
711  for (channel = 0; channel < avctx->channels; channel++) {
712  int predictor;
713  int step_index;
714  cs = &(c->status[channel]);
715  /* (pppppp) (piiiiiii) */
716 
717  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
718  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
719  step_index = predictor & 0x7F;
720  predictor &= ~0x7F;
721 
722  if (cs->step_index == step_index) {
723  int diff = predictor - cs->predictor;
724  if (diff < 0)
725  diff = - diff;
726  if (diff > 0x7f)
727  goto update;
728  } else {
729  update:
730  cs->step_index = step_index;
731  cs->predictor = predictor;
732  }
733 
734  if (cs->step_index > 88u){
735  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
736  channel, cs->step_index);
737  return AVERROR_INVALIDDATA;
738  }
739 
740  samples = samples_p[channel];
741 
742  for (m = 0; m < 64; m += 2) {
743  int byte = bytestream2_get_byteu(&gb);
744  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
745  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
746  }
747  }
748  break;
750  for(i=0; i<avctx->channels; i++){
751  cs = &(c->status[i]);
752  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
753 
754  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
755  if (cs->step_index > 88u){
756  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
757  i, cs->step_index);
758  return AVERROR_INVALIDDATA;
759  }
760  }
761 
762  if (avctx->bits_per_coded_sample != 4) {
763  int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
765 
767  for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
768  for (i = 0; i < avctx->channels; i++) {
769  cs = &c->status[i];
770  samples = &samples_p[i][1 + n * samples_per_block];
771  for (m = 0; m < samples_per_block; m++) {
772  samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
773  avctx->bits_per_coded_sample);
774  }
775  }
776  }
777  bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
778  } else {
779  for (n = 0; n < (nb_samples - 1) / 8; n++) {
780  for (i = 0; i < avctx->channels; i++) {
781  cs = &c->status[i];
782  samples = &samples_p[i][1 + n * 8];
783  for (m = 0; m < 8; m += 2) {
784  int v = bytestream2_get_byteu(&gb);
785  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
786  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
787  }
788  }
789  }
790  }
791  break;
793  for (i = 0; i < avctx->channels; i++)
794  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
795 
796  for (i = 0; i < avctx->channels; i++) {
797  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
798  if (c->status[i].step_index > 88u) {
799  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
800  i, c->status[i].step_index);
801  return AVERROR_INVALIDDATA;
802  }
803  }
804 
805  for (i = 0; i < avctx->channels; i++) {
806  samples = (int16_t *)frame->data[i];
807  cs = &c->status[i];
808  for (n = nb_samples >> 1; n > 0; n--) {
809  int v = bytestream2_get_byteu(&gb);
810  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
811  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
812  }
813  }
814  break;
816  {
817  int block_predictor;
818 
819  block_predictor = bytestream2_get_byteu(&gb);
820  if (block_predictor > 6) {
821  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
822  block_predictor);
823  return AVERROR_INVALIDDATA;
824  }
825  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
826  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
827  if (st) {
828  block_predictor = bytestream2_get_byteu(&gb);
829  if (block_predictor > 6) {
830  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
831  block_predictor);
832  return AVERROR_INVALIDDATA;
833  }
834  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
835  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
836  }
837  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
838  if (st){
839  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
840  }
841 
842  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
843  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
844  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
845  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
846 
847  *samples++ = c->status[0].sample2;
848  if (st) *samples++ = c->status[1].sample2;
849  *samples++ = c->status[0].sample1;
850  if (st) *samples++ = c->status[1].sample1;
851  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
852  int byte = bytestream2_get_byteu(&gb);
853  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
854  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
855  }
856  break;
857  }
859  for (channel = 0; channel < avctx->channels; channel++) {
860  cs = &c->status[channel];
861  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
862  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
863  if (cs->step_index > 88u){
864  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
865  channel, cs->step_index);
866  return AVERROR_INVALIDDATA;
867  }
868  }
869  for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
870  int v = bytestream2_get_byteu(&gb);
871  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
872  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
873  }
874  break;
876  {
877  int last_byte = 0;
878  int nibble;
879  int decode_top_nibble_next = 0;
880  int diff_channel;
881  const int16_t *samples_end = samples + avctx->channels * nb_samples;
882 
883  bytestream2_skipu(&gb, 10);
884  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
885  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
886  c->status[0].step_index = bytestream2_get_byteu(&gb);
887  c->status[1].step_index = bytestream2_get_byteu(&gb);
888  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
889  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
890  c->status[0].step_index, c->status[1].step_index);
891  return AVERROR_INVALIDDATA;
892  }
893  /* sign extend the predictors */
894  diff_channel = c->status[1].predictor;
895 
896  /* DK3 ADPCM support macro */
897 #define DK3_GET_NEXT_NIBBLE() \
898  if (decode_top_nibble_next) { \
899  nibble = last_byte >> 4; \
900  decode_top_nibble_next = 0; \
901  } else { \
902  last_byte = bytestream2_get_byteu(&gb); \
903  nibble = last_byte & 0x0F; \
904  decode_top_nibble_next = 1; \
905  }
906 
907  while (samples < samples_end) {
908 
909  /* for this algorithm, c->status[0] is the sum channel and
910  * c->status[1] is the diff channel */
911 
912  /* process the first predictor of the sum channel */
914  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
915 
916  /* process the diff channel predictor */
918  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
919 
920  /* process the first pair of stereo PCM samples */
921  diff_channel = (diff_channel + c->status[1].predictor) / 2;
922  *samples++ = c->status[0].predictor + c->status[1].predictor;
923  *samples++ = c->status[0].predictor - c->status[1].predictor;
924 
925  /* process the second predictor of the sum channel */
927  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
928 
929  /* process the second pair of stereo PCM samples */
930  diff_channel = (diff_channel + c->status[1].predictor) / 2;
931  *samples++ = c->status[0].predictor + c->status[1].predictor;
932  *samples++ = c->status[0].predictor - c->status[1].predictor;
933  }
934 
935  if ((bytestream2_tell(&gb) & 1))
936  bytestream2_skip(&gb, 1);
937  break;
938  }
940  for (channel = 0; channel < avctx->channels; channel++) {
941  cs = &c->status[channel];
942  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
943  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
944  if (cs->step_index > 88u){
945  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
946  channel, cs->step_index);
947  return AVERROR_INVALIDDATA;
948  }
949  }
950 
951  for (n = nb_samples >> (1 - st); n > 0; n--) {
952  int v1, v2;
953  int v = bytestream2_get_byteu(&gb);
954  /* nibbles are swapped for mono */
955  if (st) {
956  v1 = v >> 4;
957  v2 = v & 0x0F;
958  } else {
959  v2 = v >> 4;
960  v1 = v & 0x0F;
961  }
962  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
963  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
964  }
965  break;
967  while (bytestream2_get_bytes_left(&gb) > 0) {
968  int v = bytestream2_get_byteu(&gb);
969  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
970  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
971  }
972  break;
974  while (bytestream2_get_bytes_left(&gb) > 0) {
975  int v = bytestream2_get_byteu(&gb);
976  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
977  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
978  }
979  break;
981  for (channel = 0; channel < avctx->channels; channel++) {
982  cs = &c->status[channel];
983  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
984  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
985  if (cs->step_index > 88u){
986  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
987  channel, cs->step_index);
988  return AVERROR_INVALIDDATA;
989  }
990  }
991  for (n = 0; n < nb_samples / 2; n++) {
992  int byte[2];
993 
994  byte[0] = bytestream2_get_byteu(&gb);
995  if (st)
996  byte[1] = bytestream2_get_byteu(&gb);
997  for(channel = 0; channel < avctx->channels; channel++) {
998  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
999  }
1000  for(channel = 0; channel < avctx->channels; channel++) {
1001  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
1002  }
1003  }
1004  break;
1006  if (c->vqa_version == 3) {
1007  for (channel = 0; channel < avctx->channels; channel++) {
1008  int16_t *smp = samples_p[channel];
1009 
1010  for (n = nb_samples / 2; n > 0; n--) {
1011  int v = bytestream2_get_byteu(&gb);
1012  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1013  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1014  }
1015  }
1016  } else {
1017  for (n = nb_samples / 2; n > 0; n--) {
1018  for (channel = 0; channel < avctx->channels; channel++) {
1019  int v = bytestream2_get_byteu(&gb);
1020  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1021  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1022  }
1023  samples += avctx->channels;
1024  }
1025  }
1026  bytestream2_seek(&gb, 0, SEEK_END);
1027  break;
1028  case AV_CODEC_ID_ADPCM_XA:
1029  {
1030  int16_t *out0 = samples_p[0];
1031  int16_t *out1 = samples_p[1];
1032  int samples_per_block = 28 * (3 - avctx->channels) * 4;
1033  int sample_offset = 0;
1034  while (bytestream2_get_bytes_left(&gb) >= 128) {
1035  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1036  &c->status[0], &c->status[1],
1037  avctx->channels, sample_offset)) < 0)
1038  return ret;
1039  bytestream2_skipu(&gb, 128);
1040  sample_offset += samples_per_block;
1041  }
1042  break;
1043  }
1045  for (i=0; i<=st; i++) {
1046  c->status[i].step_index = bytestream2_get_le32u(&gb);
1047  if (c->status[i].step_index > 88u) {
1048  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1049  i, c->status[i].step_index);
1050  return AVERROR_INVALIDDATA;
1051  }
1052  }
1053  for (i=0; i<=st; i++)
1054  c->status[i].predictor = bytestream2_get_le32u(&gb);
1055 
1056  for (n = nb_samples >> (1 - st); n > 0; n--) {
1057  int byte = bytestream2_get_byteu(&gb);
1058  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1059  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1060  }
1061  break;
1063  for (n = nb_samples >> (1 - st); n > 0; n--) {
1064  int byte = bytestream2_get_byteu(&gb);
1065  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1066  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1067  }
1068  break;
1069  case AV_CODEC_ID_ADPCM_EA:
1070  {
1071  int previous_left_sample, previous_right_sample;
1072  int current_left_sample, current_right_sample;
1073  int next_left_sample, next_right_sample;
1074  int coeff1l, coeff2l, coeff1r, coeff2r;
1075  int shift_left, shift_right;
1076 
1077  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1078  each coding 28 stereo samples. */
1079 
1080  if(avctx->channels != 2)
1081  return AVERROR_INVALIDDATA;
1082 
1083  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1084  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1085  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1086  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1087 
1088  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1089  int byte = bytestream2_get_byteu(&gb);
1090  coeff1l = ea_adpcm_table[ byte >> 4 ];
1091  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1092  coeff1r = ea_adpcm_table[ byte & 0x0F];
1093  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1094 
1095  byte = bytestream2_get_byteu(&gb);
1096  shift_left = 20 - (byte >> 4);
1097  shift_right = 20 - (byte & 0x0F);
1098 
1099  for (count2 = 0; count2 < 28; count2++) {
1100  byte = bytestream2_get_byteu(&gb);
1101  next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1102  next_right_sample = sign_extend(byte, 4) << shift_right;
1103 
1104  next_left_sample = (next_left_sample +
1105  (current_left_sample * coeff1l) +
1106  (previous_left_sample * coeff2l) + 0x80) >> 8;
1107  next_right_sample = (next_right_sample +
1108  (current_right_sample * coeff1r) +
1109  (previous_right_sample * coeff2r) + 0x80) >> 8;
1110 
1111  previous_left_sample = current_left_sample;
1112  current_left_sample = av_clip_int16(next_left_sample);
1113  previous_right_sample = current_right_sample;
1114  current_right_sample = av_clip_int16(next_right_sample);
1115  *samples++ = current_left_sample;
1116  *samples++ = current_right_sample;
1117  }
1118  }
1119 
1120  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1121 
1122  break;
1123  }
1125  {
1126  int coeff[2][2], shift[2];
1127 
1128  for(channel = 0; channel < avctx->channels; channel++) {
1129  int byte = bytestream2_get_byteu(&gb);
1130  for (i=0; i<2; i++)
1131  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1132  shift[channel] = 20 - (byte & 0x0F);
1133  }
1134  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1135  int byte[2];
1136 
1137  byte[0] = bytestream2_get_byteu(&gb);
1138  if (st) byte[1] = bytestream2_get_byteu(&gb);
1139  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1140  for(channel = 0; channel < avctx->channels; channel++) {
1141  int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1142  sample = (sample +
1143  c->status[channel].sample1 * coeff[channel][0] +
1144  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1145  c->status[channel].sample2 = c->status[channel].sample1;
1146  c->status[channel].sample1 = av_clip_int16(sample);
1147  *samples++ = c->status[channel].sample1;
1148  }
1149  }
1150  }
1151  bytestream2_seek(&gb, 0, SEEK_END);
1152  break;
1153  }
1156  case AV_CODEC_ID_ADPCM_EA_R3: {
1157  /* channel numbering
1158  2chan: 0=fl, 1=fr
1159  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1160  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1161  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1162  int previous_sample, current_sample, next_sample;
1163  int coeff1, coeff2;
1164  int shift;
1165  unsigned int channel;
1166  uint16_t *samplesC;
1167  int count = 0;
1168  int offsets[6];
1169 
1170  for (channel=0; channel<avctx->channels; channel++)
1171  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1172  bytestream2_get_le32(&gb)) +
1173  (avctx->channels + 1) * 4;
1174 
1175  for (channel=0; channel<avctx->channels; channel++) {
1176  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1177  samplesC = samples_p[channel];
1178 
1179  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1180  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1181  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1182  } else {
1183  current_sample = c->status[channel].predictor;
1184  previous_sample = c->status[channel].prev_sample;
1185  }
1186 
1187  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1188  int byte = bytestream2_get_byte(&gb);
1189  if (byte == 0xEE) { /* only seen in R2 and R3 */
1190  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1191  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1192 
1193  for (count2=0; count2<28; count2++)
1194  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1195  } else {
1196  coeff1 = ea_adpcm_table[ byte >> 4 ];
1197  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1198  shift = 20 - (byte & 0x0F);
1199 
1200  for (count2=0; count2<28; count2++) {
1201  if (count2 & 1)
1202  next_sample = sign_extend(byte, 4) << shift;
1203  else {
1204  byte = bytestream2_get_byte(&gb);
1205  next_sample = sign_extend(byte >> 4, 4) << shift;
1206  }
1207 
1208  next_sample += (current_sample * coeff1) +
1209  (previous_sample * coeff2);
1210  next_sample = av_clip_int16(next_sample >> 8);
1211 
1212  previous_sample = current_sample;
1213  current_sample = next_sample;
1214  *samplesC++ = current_sample;
1215  }
1216  }
1217  }
1218  if (!count) {
1219  count = count1;
1220  } else if (count != count1) {
1221  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1222  count = FFMAX(count, count1);
1223  }
1224 
1225  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1226  c->status[channel].predictor = current_sample;
1227  c->status[channel].prev_sample = previous_sample;
1228  }
1229  }
1230 
1231  frame->nb_samples = count * 28;
1232  bytestream2_seek(&gb, 0, SEEK_END);
1233  break;
1234  }
1236  for (channel=0; channel<avctx->channels; channel++) {
1237  int coeff[2][4], shift[4];
1238  int16_t *s = samples_p[channel];
1239  for (n = 0; n < 4; n++, s += 32) {
1240  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1241  for (i=0; i<2; i++)
1242  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1243  s[0] = val & ~0x0F;
1244 
1245  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1246  shift[n] = 20 - (val & 0x0F);
1247  s[1] = val & ~0x0F;
1248  }
1249 
1250  for (m=2; m<32; m+=2) {
1251  s = &samples_p[channel][m];
1252  for (n = 0; n < 4; n++, s += 32) {
1253  int level, pred;
1254  int byte = bytestream2_get_byteu(&gb);
1255 
1256  level = sign_extend(byte >> 4, 4) << shift[n];
1257  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1258  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1259 
1260  level = sign_extend(byte, 4) << shift[n];
1261  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1262  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1263  }
1264  }
1265  }
1266  break;
1268  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1269  c->status[0].step_index = bytestream2_get_le16u(&gb);
1270  bytestream2_skipu(&gb, 4);
1271  if (c->status[0].step_index > 88u) {
1272  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1273  c->status[0].step_index);
1274  return AVERROR_INVALIDDATA;
1275  }
1276 
1277  for (n = nb_samples >> (1 - st); n > 0; n--) {
1278  int v = bytestream2_get_byteu(&gb);
1279 
1280  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1281  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1282  }
1283  break;
1285  for (i = 0; i < avctx->channels; i++) {
1286  c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1287  c->status[i].step_index = bytestream2_get_byteu(&gb);
1288  bytestream2_skipu(&gb, 1);
1289  if (c->status[i].step_index > 88u) {
1290  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1291  c->status[i].step_index);
1292  return AVERROR_INVALIDDATA;
1293  }
1294  }
1295 
1296  for (n = nb_samples >> (1 - st); n > 0; n--) {
1297  int v = bytestream2_get_byteu(&gb);
1298 
1299  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1300  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1301  }
1302  break;
1303  case AV_CODEC_ID_ADPCM_CT:
1304  for (n = nb_samples >> (1 - st); n > 0; n--) {
1305  int v = bytestream2_get_byteu(&gb);
1306  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1307  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1308  }
1309  break;
1313  if (!c->status[0].step_index) {
1314  /* the first byte is a raw sample */
1315  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1316  if (st)
1317  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1318  c->status[0].step_index = 1;
1319  nb_samples--;
1320  }
1321  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1322  for (n = nb_samples >> (1 - st); n > 0; n--) {
1323  int byte = bytestream2_get_byteu(&gb);
1324  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1325  byte >> 4, 4, 0);
1326  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1327  byte & 0x0F, 4, 0);
1328  }
1329  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1330  for (n = (nb_samples<<st) / 3; n > 0; n--) {
1331  int byte = bytestream2_get_byteu(&gb);
1332  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1333  byte >> 5 , 3, 0);
1334  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1335  (byte >> 2) & 0x07, 3, 0);
1336  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1337  byte & 0x03, 2, 0);
1338  }
1339  } else {
1340  for (n = nb_samples >> (2 - st); n > 0; n--) {
1341  int byte = bytestream2_get_byteu(&gb);
1342  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1343  byte >> 6 , 2, 2);
1344  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1345  (byte >> 4) & 0x03, 2, 2);
1346  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1347  (byte >> 2) & 0x03, 2, 2);
1348  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1349  byte & 0x03, 2, 2);
1350  }
1351  }
1352  break;
1353  case AV_CODEC_ID_ADPCM_SWF:
1354  adpcm_swf_decode(avctx, buf, buf_size, samples);
1355  bytestream2_seek(&gb, 0, SEEK_END);
1356  break;
1358  for (n = nb_samples >> (1 - st); n > 0; n--) {
1359  int v = bytestream2_get_byteu(&gb);
1360  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1361  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1362  }
1363  break;
1364  case AV_CODEC_ID_ADPCM_AFC:
1365  {
1366  int samples_per_block;
1367  int blocks;
1368 
1369  if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1370  samples_per_block = avctx->extradata[0] / 16;
1371  blocks = nb_samples / avctx->extradata[0];
1372  } else {
1373  samples_per_block = nb_samples / 16;
1374  blocks = 1;
1375  }
1376 
1377  for (m = 0; m < blocks; m++) {
1378  for (channel = 0; channel < avctx->channels; channel++) {
1379  int prev1 = c->status[channel].sample1;
1380  int prev2 = c->status[channel].sample2;
1381 
1382  samples = samples_p[channel] + m * 16;
1383  /* Read in every sample for this channel. */
1384  for (i = 0; i < samples_per_block; i++) {
1385  int byte = bytestream2_get_byteu(&gb);
1386  int scale = 1 << (byte >> 4);
1387  int index = byte & 0xf;
1388  int factor1 = ff_adpcm_afc_coeffs[0][index];
1389  int factor2 = ff_adpcm_afc_coeffs[1][index];
1390 
1391  /* Decode 16 samples. */
1392  for (n = 0; n < 16; n++) {
1393  int32_t sampledat;
1394 
1395  if (n & 1) {
1396  sampledat = sign_extend(byte, 4);
1397  } else {
1398  byte = bytestream2_get_byteu(&gb);
1399  sampledat = sign_extend(byte >> 4, 4);
1400  }
1401 
1402  sampledat = ((prev1 * factor1 + prev2 * factor2) +
1403  ((sampledat * scale) << 11)) >> 11;
1404  *samples = av_clip_int16(sampledat);
1405  prev2 = prev1;
1406  prev1 = *samples++;
1407  }
1408  }
1409 
1410  c->status[channel].sample1 = prev1;
1411  c->status[channel].sample2 = prev2;
1412  }
1413  }
1414  bytestream2_seek(&gb, 0, SEEK_END);
1415  break;
1416  }
1417  case AV_CODEC_ID_ADPCM_THP:
1418  {
1419  int table[6][16];
1420  int ch;
1421 
1422  if (avctx->extradata) {
1424  if (avctx->extradata_size < 32 * avctx->channels) {
1425  av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1426  return AVERROR_INVALIDDATA;
1427  }
1428 
1429  bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1430  for (i = 0; i < avctx->channels; i++)
1431  for (n = 0; n < 16; n++)
1432  table[i][n] = sign_extend(bytestream2_get_be16u(&tb), 16);
1433  } else {
1434  for (i = 0; i < avctx->channels; i++)
1435  for (n = 0; n < 16; n++)
1436  table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1437 
1438  /* Initialize the previous sample. */
1439  for (i = 0; i < avctx->channels; i++) {
1440  c->status[i].sample1 = sign_extend(bytestream2_get_be16u(&gb), 16);
1441  c->status[i].sample2 = sign_extend(bytestream2_get_be16u(&gb), 16);
1442  }
1443  }
1444 
1445  for (ch = 0; ch < avctx->channels; ch++) {
1446  samples = samples_p[ch];
1447 
1448  /* Read in every sample for this channel. */
1449  for (i = 0; i < nb_samples / 14; i++) {
1450  int byte = bytestream2_get_byteu(&gb);
1451  int index = (byte >> 4) & 7;
1452  unsigned int exp = byte & 0x0F;
1453  int factor1 = table[ch][index * 2];
1454  int factor2 = table[ch][index * 2 + 1];
1455 
1456  /* Decode 14 samples. */
1457  for (n = 0; n < 14; n++) {
1458  int32_t sampledat;
1459 
1460  if (n & 1) {
1461  sampledat = sign_extend(byte, 4);
1462  } else {
1463  byte = bytestream2_get_byteu(&gb);
1464  sampledat = sign_extend(byte >> 4, 4);
1465  }
1466 
1467  sampledat = ((c->status[ch].sample1 * factor1
1468  + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1469  *samples = av_clip_int16(sampledat);
1470  c->status[ch].sample2 = c->status[ch].sample1;
1471  c->status[ch].sample1 = *samples++;
1472  }
1473  }
1474  }
1475  break;
1476  }
1477  case AV_CODEC_ID_ADPCM_DTK:
1478  for (channel = 0; channel < avctx->channels; channel++) {
1479  samples = samples_p[channel];
1480 
1481  /* Read in every sample for this channel. */
1482  for (i = 0; i < nb_samples / 28; i++) {
1483  int byte, header;
1484  if (channel)
1485  bytestream2_skipu(&gb, 1);
1486  header = bytestream2_get_byteu(&gb);
1487  bytestream2_skipu(&gb, 3 - channel);
1488 
1489  /* Decode 28 samples. */
1490  for (n = 0; n < 28; n++) {
1491  int32_t sampledat, prev;
1492 
1493  switch (header >> 4) {
1494  case 1:
1495  prev = (c->status[channel].sample1 * 0x3c);
1496  break;
1497  case 2:
1498  prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1499  break;
1500  case 3:
1501  prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1502  break;
1503  default:
1504  prev = 0;
1505  }
1506 
1507  prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1508 
1509  byte = bytestream2_get_byteu(&gb);
1510  if (!channel)
1511  sampledat = sign_extend(byte, 4);
1512  else
1513  sampledat = sign_extend(byte >> 4, 4);
1514 
1515  sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1516  *samples++ = av_clip_int16(sampledat >> 6);
1517  c->status[channel].sample2 = c->status[channel].sample1;
1518  c->status[channel].sample1 = sampledat;
1519  }
1520  }
1521  if (!channel)
1522  bytestream2_seek(&gb, 0, SEEK_SET);
1523  }
1524  break;
1525 
1526  default:
1527  return -1;
1528  }
1529 
1530  if (avpkt->size && bytestream2_tell(&gb) == 0) {
1531  av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1532  return AVERROR_INVALIDDATA;
1533  }
1534 
1535  *got_frame_ptr = 1;
1536 
1537  if (avpkt->size < bytestream2_tell(&gb)) {
1538  av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
1539  return avpkt->size;
1540  }
1541 
1542  return bytestream2_tell(&gb);
1543 }
1544 
1545 
1553 
1554 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1555 AVCodec ff_ ## name_ ## _decoder = { \
1556  .name = #name_, \
1557  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1558  .type = AVMEDIA_TYPE_AUDIO, \
1559  .id = id_, \
1560  .priv_data_size = sizeof(ADPCMDecodeContext), \
1561  .init = adpcm_decode_init, \
1562  .decode = adpcm_decode_frame, \
1563  .capabilities = CODEC_CAP_DR1, \
1564  .sample_fmts = sample_fmts_, \
1565 }
1566 
1567 /* Note: Do not forget to add new entries to the Makefile as well. */
1568 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1569 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1570 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1571 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1572 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1573 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1574 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1575 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1576 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1577 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1578 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1579 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1580 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1581 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1582 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1583 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1584 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1585 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1586 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1587 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1588 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1589 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1590 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1591 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1592 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1593 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1594 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1595 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1596 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1597 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1598 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1250
const char const char void * val
Definition: avisynth_c.h:634
float v
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
Definition: adpcm.c:299
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
const int16_t ff_adpcm_afc_coeffs[2][16]
Definition: adpcm_data.c:109
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
const char * g
Definition: vf_curves.c:108
static short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
Definition: adpcm.c:278
int size
Definition: avcodec.h:1163
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:131
static enum AVSampleFormat sample_fmts_s16[]
Definition: adpcm.c:1546
#define FF_ARRAY_ELEMS(a)
#define sample
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
Definition: bytestream.h:85
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
Definition: avcodec.h:2022
static int get_sbits(GetBitContext *s, int n)
Definition: get_bits.h:245
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:90
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1993
uint8_t
#define av_cold
Definition: attributes.h:74
static av_cold int adpcm_decode_init(AVCodecContext *avctx)
Definition: adpcm.c:91
float delta
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
Definition: adpcm.c:413
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1355
static const int xa_adpcm_table[5][2]
Definition: adpcm.c:60
ADPCM tables.
static AVFrame * frame
uint8_t * data
Definition: avcodec.h:1162
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
const uint8_t * buffer
Definition: bytestream.h:34
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples, int *approx_nb_samples)
Get the number of samples that will be decoded from the packet.
Definition: adpcm.c:481
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
Definition: bytestream.h:168
bitstream reader API header.
ptrdiff_t size
Definition: opengl_enc.c:101
static const uint8_t header[24]
Definition: sdr2.c:67
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2720
#define av_log(a,...)
unsigned m
Definition: audioconvert.c:187
static void predictor(uint8_t *src, int size)
Definition: exr.c:220
enum AVCodecID id
Definition: avcodec.h:3195
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
ADPCM encoder/decoder common header.
static short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
Definition: adpcm.c:319
static const int ea_adpcm_table[]
Definition: adpcm.c:68
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:162
const int8_t *const ff_adpcm_index_tables[4]
Definition: adpcm_data.c:50
static const struct endianess table[]
const int16_t ff_adpcm_step_table[89]
This is the step table.
Definition: adpcm_data.c:61
static int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
Definition: adpcm.c:212
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:152
GLsizei count
Definition: opengl_enc.c:109
#define FFMAX(a, b)
Definition: common.h:64
Libavcodec external API header.
static int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
Definition: adpcm.c:189
ADPCMChannelStatus status[6]
Definition: adpcm.c:87
const int8_t ff_adpcm_index_table[16]
Definition: adpcm_data.c:40
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int64_t nb_samples_notify, AVRational time_base)
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset)
Definition: adpcm.c:333
#define FFMIN(a, b)
Definition: common.h:66
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:95
ret
Definition: avfilter.c:974
int vqa_version
VQA version.
Definition: adpcm.c:88
int32_t
static const uint8_t ff_adpcm_ima_block_sizes[4]
Definition: adpcm_data.h:31
static enum AVSampleFormat sample_fmts_s16p[]
Definition: adpcm.c:1548
float u
int n
Definition: avisynth_c.h:547
const int16_t ff_adpcm_oki_step_table[49]
Definition: adpcm_data.c:73
static short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
Definition: adpcm.c:163
static const float pred[4]
Definition: siprdata.h:259
static const int swf_index_tables[4][16]
Definition: adpcm.c:77
static const uint8_t ff_adpcm_ima_block_samples[4]
Definition: adpcm_data.h:32
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:186
const int16_t ff_adpcm_AdaptationTable[]
Definition: adpcm_data.c:84
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:59
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_WB16 unsigned int_TMPL byte
Definition: bytestream.h:85
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:441
static short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:238
main external API structure.
Definition: avcodec.h:1241
#define DK3_GET_NEXT_NIBBLE()
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:1035
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void * buf
Definition: avisynth_c.h:553
int extradata_size
Definition: avcodec.h:1356
int index
Definition: gxfenc.c:89
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:410
static short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:257
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:139
static unsigned int get_bits_le(GetBitContext *s, int n)
Definition: get_bits.h:272
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
uint8_t level
Definition: svq3.c:150
static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
const int8_t ff_adpcm_yamaha_difflookup[]
Definition: adpcm_data.c:104
common internal api header.
const int16_t ff_adpcm_yamaha_indexscale[]
Definition: adpcm_data.c:99
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: adpcm.c:667
signed 16 bits
Definition: samplefmt.h:62
static double c[64]
unsigned bps
Definition: movenc.c:1334
void * priv_data
Definition: avcodec.h:1283
static av_always_inline int diff(const uint32_t a, const uint32_t b)
int channels
number of audio channels
Definition: avcodec.h:1986
static const double coeff[2][5]
Definition: vf_owdenoise.c:71
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:206
static enum AVSampleFormat sample_fmts_both[]
Definition: adpcm.c:1550
int16_t step_index
Definition: adpcm.h:35
signed 16 bits, planar
Definition: samplefmt.h:68
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:215
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
Definition: bytestream.h:85
This structure stores compressed data.
Definition: avcodec.h:1139
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:225
for(j=16;j >0;--j)
#define tb
Definition: regdef.h:68
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_)
Definition: adpcm.c:1554