FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vc1dec.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 decoder
27  */
28 
29 #include "internal.h"
30 #include "avcodec.h"
31 #include "error_resilience.h"
32 #include "mpegvideo.h"
33 #include "h263.h"
34 #include "h264chroma.h"
35 #include "vc1.h"
36 #include "vc1data.h"
37 #include "vc1acdata.h"
38 #include "msmpeg4data.h"
39 #include "unary.h"
40 #include "mathops.h"
41 #include "vdpau_internal.h"
42 #include "libavutil/avassert.h"
43 
44 #undef NDEBUG
45 #include <assert.h>
46 
47 #define MB_INTRA_VLC_BITS 9
48 #define DC_VLC_BITS 9
49 
50 
51 // offset tables for interlaced picture MVDATA decoding
52 static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
53 static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
54 
55 /***********************************************************************/
56 /**
57  * @name VC-1 Bitplane decoding
58  * @see 8.7, p56
59  * @{
60  */
61 
62 /**
63  * Imode types
64  * @{
65  */
66 enum Imode {
74 };
75 /** @} */ //imode defines
76 
78 {
79  MpegEncContext *s = &v->s;
81  if (v->field_mode && !(v->second_field ^ v->tff)) {
82  s->dest[0] += s->current_picture_ptr->f.linesize[0];
83  s->dest[1] += s->current_picture_ptr->f.linesize[1];
84  s->dest[2] += s->current_picture_ptr->f.linesize[2];
85  }
86 }
87 
88 /** @} */ //Bitplane group
89 
91 {
92  MpegEncContext *s = &v->s;
93  int topleft_mb_pos, top_mb_pos;
94  int stride_y, fieldtx = 0;
95  int v_dist;
96 
97  /* The put pixels loop is always one MB row behind the decoding loop,
98  * because we can only put pixels when overlap filtering is done, and
99  * for filtering of the bottom edge of a MB, we need the next MB row
100  * present as well.
101  * Within the row, the put pixels loop is also one MB col behind the
102  * decoding loop. The reason for this is again, because for filtering
103  * of the right MB edge, we need the next MB present. */
104  if (!s->first_slice_line) {
105  if (s->mb_x) {
106  topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
107  if (v->fcm == ILACE_FRAME)
108  fieldtx = v->fieldtx_plane[topleft_mb_pos];
109  stride_y = s->linesize << fieldtx;
110  v_dist = (16 - fieldtx) >> (fieldtx == 0);
112  s->dest[0] - 16 * s->linesize - 16,
113  stride_y);
115  s->dest[0] - 16 * s->linesize - 8,
116  stride_y);
118  s->dest[0] - v_dist * s->linesize - 16,
119  stride_y);
121  s->dest[0] - v_dist * s->linesize - 8,
122  stride_y);
124  s->dest[1] - 8 * s->uvlinesize - 8,
125  s->uvlinesize);
127  s->dest[2] - 8 * s->uvlinesize - 8,
128  s->uvlinesize);
129  }
130  if (s->mb_x == s->mb_width - 1) {
131  top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
132  if (v->fcm == ILACE_FRAME)
133  fieldtx = v->fieldtx_plane[top_mb_pos];
134  stride_y = s->linesize << fieldtx;
135  v_dist = fieldtx ? 15 : 8;
137  s->dest[0] - 16 * s->linesize,
138  stride_y);
140  s->dest[0] - 16 * s->linesize + 8,
141  stride_y);
143  s->dest[0] - v_dist * s->linesize,
144  stride_y);
146  s->dest[0] - v_dist * s->linesize + 8,
147  stride_y);
149  s->dest[1] - 8 * s->uvlinesize,
150  s->uvlinesize);
152  s->dest[2] - 8 * s->uvlinesize,
153  s->uvlinesize);
154  }
155  }
156 
157 #define inc_blk_idx(idx) do { \
158  idx++; \
159  if (idx >= v->n_allocated_blks) \
160  idx = 0; \
161  } while (0)
162 
167 }
168 
169 static void vc1_loop_filter_iblk(VC1Context *v, int pq)
170 {
171  MpegEncContext *s = &v->s;
172  int j;
173  if (!s->first_slice_line) {
174  v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
175  if (s->mb_x)
176  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
177  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
178  for (j = 0; j < 2; j++) {
179  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
180  if (s->mb_x)
181  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
182  }
183  }
184  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
185 
186  if (s->mb_y == s->end_mb_y - 1) {
187  if (s->mb_x) {
188  v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
189  v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
190  v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
191  }
192  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
193  }
194 }
195 
197 {
198  MpegEncContext *s = &v->s;
199  int j;
200 
201  /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
202  * means it runs two rows/cols behind the decoding loop. */
203  if (!s->first_slice_line) {
204  if (s->mb_x) {
205  if (s->mb_y >= s->start_mb_y + 2) {
206  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
207 
208  if (s->mb_x >= 2)
209  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
210  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
211  for (j = 0; j < 2; j++) {
212  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
213  if (s->mb_x >= 2) {
214  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
215  }
216  }
217  }
218  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
219  }
220 
221  if (s->mb_x == s->mb_width - 1) {
222  if (s->mb_y >= s->start_mb_y + 2) {
223  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
224 
225  if (s->mb_x)
226  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
227  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
228  for (j = 0; j < 2; j++) {
229  v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
230  if (s->mb_x >= 2) {
231  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
232  }
233  }
234  }
235  v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
236  }
237 
238  if (s->mb_y == s->end_mb_y) {
239  if (s->mb_x) {
240  if (s->mb_x >= 2)
241  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
242  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
243  if (s->mb_x >= 2) {
244  for (j = 0; j < 2; j++) {
245  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
246  }
247  }
248  }
249 
250  if (s->mb_x == s->mb_width - 1) {
251  if (s->mb_x)
252  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
253  v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
254  if (s->mb_x) {
255  for (j = 0; j < 2; j++) {
256  v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
257  }
258  }
259  }
260  }
261  }
262 }
263 
265 {
266  MpegEncContext *s = &v->s;
267  int mb_pos;
268 
269  if (v->condover == CONDOVER_NONE)
270  return;
271 
272  mb_pos = s->mb_x + s->mb_y * s->mb_stride;
273 
274  /* Within a MB, the horizontal overlap always runs before the vertical.
275  * To accomplish that, we run the H on left and internal borders of the
276  * currently decoded MB. Then, we wait for the next overlap iteration
277  * to do H overlap on the right edge of this MB, before moving over and
278  * running the V overlap. Therefore, the V overlap makes us trail by one
279  * MB col and the H overlap filter makes us trail by one MB row. This
280  * is reflected in the time at which we run the put_pixels loop. */
281  if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
282  if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
283  v->over_flags_plane[mb_pos - 1])) {
285  v->block[v->cur_blk_idx][0]);
287  v->block[v->cur_blk_idx][2]);
288  if (!(s->flags & CODEC_FLAG_GRAY)) {
290  v->block[v->cur_blk_idx][4]);
292  v->block[v->cur_blk_idx][5]);
293  }
294  }
296  v->block[v->cur_blk_idx][1]);
298  v->block[v->cur_blk_idx][3]);
299 
300  if (s->mb_x == s->mb_width - 1) {
301  if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
302  v->over_flags_plane[mb_pos - s->mb_stride])) {
304  v->block[v->cur_blk_idx][0]);
306  v->block[v->cur_blk_idx][1]);
307  if (!(s->flags & CODEC_FLAG_GRAY)) {
309  v->block[v->cur_blk_idx][4]);
311  v->block[v->cur_blk_idx][5]);
312  }
313  }
315  v->block[v->cur_blk_idx][2]);
317  v->block[v->cur_blk_idx][3]);
318  }
319  }
320  if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
321  if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
322  v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
324  v->block[v->left_blk_idx][0]);
326  v->block[v->left_blk_idx][1]);
327  if (!(s->flags & CODEC_FLAG_GRAY)) {
329  v->block[v->left_blk_idx][4]);
331  v->block[v->left_blk_idx][5]);
332  }
333  }
335  v->block[v->left_blk_idx][2]);
337  v->block[v->left_blk_idx][3]);
338  }
339 }
340 
341 /** Do motion compensation over 1 macroblock
342  * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
343  */
344 static void vc1_mc_1mv(VC1Context *v, int dir)
345 {
346  MpegEncContext *s = &v->s;
347  H264ChromaContext *h264chroma = &v->h264chroma;
348  uint8_t *srcY, *srcU, *srcV;
349  int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
350  int v_edge_pos = s->v_edge_pos >> v->field_mode;
351  int i;
352  uint8_t (*luty)[256], (*lutuv)[256];
353  int use_ic;
354 
355  if ((!v->field_mode ||
356  (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
357  !v->s.last_picture.f.data[0])
358  return;
359 
360  mx = s->mv[dir][0][0];
361  my = s->mv[dir][0][1];
362 
363  // store motion vectors for further use in B frames
364  if (s->pict_type == AV_PICTURE_TYPE_P) {
365  for (i = 0; i < 4; i++) {
366  s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = mx;
367  s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = my;
368  }
369  }
370 
371  uvmx = (mx + ((mx & 3) == 3)) >> 1;
372  uvmy = (my + ((my & 3) == 3)) >> 1;
373  v->luma_mv[s->mb_x][0] = uvmx;
374  v->luma_mv[s->mb_x][1] = uvmy;
375 
376  if (v->field_mode &&
377  v->cur_field_type != v->ref_field_type[dir]) {
378  my = my - 2 + 4 * v->cur_field_type;
379  uvmy = uvmy - 2 + 4 * v->cur_field_type;
380  }
381 
382  // fastuvmc shall be ignored for interlaced frame picture
383  if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
384  uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
385  uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
386  }
387  if (!dir) {
388  if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
389  srcY = s->current_picture.f.data[0];
390  srcU = s->current_picture.f.data[1];
391  srcV = s->current_picture.f.data[2];
392  luty = v->curr_luty;
393  lutuv = v->curr_lutuv;
394  use_ic = v->curr_use_ic;
395  } else {
396  srcY = s->last_picture.f.data[0];
397  srcU = s->last_picture.f.data[1];
398  srcV = s->last_picture.f.data[2];
399  luty = v->last_luty;
400  lutuv = v->last_lutuv;
401  use_ic = v->last_use_ic;
402  }
403  } else {
404  srcY = s->next_picture.f.data[0];
405  srcU = s->next_picture.f.data[1];
406  srcV = s->next_picture.f.data[2];
407  luty = v->next_luty;
408  lutuv = v->next_lutuv;
409  use_ic = v->next_use_ic;
410  }
411 
412  if (!srcY || !srcU) {
413  av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
414  return;
415  }
416 
417  src_x = s->mb_x * 16 + (mx >> 2);
418  src_y = s->mb_y * 16 + (my >> 2);
419  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
420  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
421 
422  if (v->profile != PROFILE_ADVANCED) {
423  src_x = av_clip( src_x, -16, s->mb_width * 16);
424  src_y = av_clip( src_y, -16, s->mb_height * 16);
425  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
426  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
427  } else {
428  src_x = av_clip( src_x, -17, s->avctx->coded_width);
429  src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
430  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
431  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
432  }
433 
434  srcY += src_y * s->linesize + src_x;
435  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
436  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
437 
438  if (v->field_mode && v->ref_field_type[dir]) {
439  srcY += s->current_picture_ptr->f.linesize[0];
440  srcU += s->current_picture_ptr->f.linesize[1];
441  srcV += s->current_picture_ptr->f.linesize[2];
442  }
443 
444  /* for grayscale we should not try to read from unknown area */
445  if (s->flags & CODEC_FLAG_GRAY) {
446  srcU = s->edge_emu_buffer + 18 * s->linesize;
447  srcV = s->edge_emu_buffer + 18 * s->linesize;
448  }
449 
450  if (v->rangeredfrm || use_ic
451  || s->h_edge_pos < 22 || v_edge_pos < 22
452  || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
453  || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
454  uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
455 
456  srcY -= s->mspel * (1 + s->linesize);
458  srcY, s->linesize,
459  17 + s->mspel * 2, 17 + s->mspel * 2,
460  src_x - s->mspel, src_y - s->mspel,
461  s->h_edge_pos, v_edge_pos);
462  srcY = s->edge_emu_buffer;
463  s->vdsp.emulated_edge_mc(uvbuf, s->uvlinesize, srcU, s->uvlinesize,
464  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
465  s->h_edge_pos >> 1, v_edge_pos >> 1);
466  s->vdsp.emulated_edge_mc(uvbuf + 16, s->uvlinesize, srcV, s->uvlinesize,
467  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
468  s->h_edge_pos >> 1, v_edge_pos >> 1);
469  srcU = uvbuf;
470  srcV = uvbuf + 16;
471  /* if we deal with range reduction we need to scale source blocks */
472  if (v->rangeredfrm) {
473  int i, j;
474  uint8_t *src, *src2;
475 
476  src = srcY;
477  for (j = 0; j < 17 + s->mspel * 2; j++) {
478  for (i = 0; i < 17 + s->mspel * 2; i++)
479  src[i] = ((src[i] - 128) >> 1) + 128;
480  src += s->linesize;
481  }
482  src = srcU;
483  src2 = srcV;
484  for (j = 0; j < 9; j++) {
485  for (i = 0; i < 9; i++) {
486  src[i] = ((src[i] - 128) >> 1) + 128;
487  src2[i] = ((src2[i] - 128) >> 1) + 128;
488  }
489  src += s->uvlinesize;
490  src2 += s->uvlinesize;
491  }
492  }
493  /* if we deal with intensity compensation we need to scale source blocks */
494  if (use_ic) {
495  int i, j;
496  uint8_t *src, *src2;
497 
498  src = srcY;
499  for (j = 0; j < 17 + s->mspel * 2; j++) {
500  int f = v->field_mode ? v->ref_field_type[dir] : ((j + src_y - s->mspel) & 1) ;
501  for (i = 0; i < 17 + s->mspel * 2; i++)
502  src[i] = luty[f][src[i]];
503  src += s->linesize;
504  }
505  src = srcU;
506  src2 = srcV;
507  for (j = 0; j < 9; j++) {
508  int f = v->field_mode ? v->ref_field_type[dir] : ((j + uvsrc_y) & 1);
509  for (i = 0; i < 9; i++) {
510  src[i] = lutuv[f][src[i]];
511  src2[i] = lutuv[f][src2[i]];
512  }
513  src += s->uvlinesize;
514  src2 += s->uvlinesize;
515  }
516  }
517  srcY += s->mspel * (1 + s->linesize);
518  }
519 
520  if (s->mspel) {
521  dxy = ((my & 3) << 2) | (mx & 3);
522  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
523  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
524  srcY += s->linesize * 8;
525  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
526  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
527  } else { // hpel mc - always used for luma
528  dxy = (my & 2) | ((mx & 2) >> 1);
529  if (!v->rnd)
530  s->hdsp.put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
531  else
532  s->hdsp.put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
533  }
534 
535  if (s->flags & CODEC_FLAG_GRAY) return;
536  /* Chroma MC always uses qpel bilinear */
537  uvmx = (uvmx & 3) << 1;
538  uvmy = (uvmy & 3) << 1;
539  if (!v->rnd) {
540  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
541  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
542  } else {
543  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
544  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
545  }
546 }
547 
548 static inline int median4(int a, int b, int c, int d)
549 {
550  if (a < b) {
551  if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
552  else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
553  } else {
554  if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
555  else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
556  }
557 }
558 
559 /** Do motion compensation for 4-MV macroblock - luminance block
560  */
561 static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg)
562 {
563  MpegEncContext *s = &v->s;
564  uint8_t *srcY;
565  int dxy, mx, my, src_x, src_y;
566  int off;
567  int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
568  int v_edge_pos = s->v_edge_pos >> v->field_mode;
569  uint8_t (*luty)[256];
570  int use_ic;
571 
572  if ((!v->field_mode ||
573  (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
574  !v->s.last_picture.f.data[0])
575  return;
576 
577  mx = s->mv[dir][n][0];
578  my = s->mv[dir][n][1];
579 
580  if (!dir) {
581  if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
582  srcY = s->current_picture.f.data[0];
583  luty = v->curr_luty;
584  use_ic = v->curr_use_ic;
585  } else {
586  srcY = s->last_picture.f.data[0];
587  luty = v->last_luty;
588  use_ic = v->last_use_ic;
589  }
590  } else {
591  srcY = s->next_picture.f.data[0];
592  luty = v->next_luty;
593  use_ic = v->next_use_ic;
594  }
595 
596  if (!srcY) {
597  av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
598  return;
599  }
600 
601  if (v->field_mode) {
602  if (v->cur_field_type != v->ref_field_type[dir])
603  my = my - 2 + 4 * v->cur_field_type;
604  }
605 
606  if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
607  int same_count = 0, opp_count = 0, k;
608  int chosen_mv[2][4][2], f;
609  int tx, ty;
610  for (k = 0; k < 4; k++) {
611  f = v->mv_f[0][s->block_index[k] + v->blocks_off];
612  chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
613  chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
614  opp_count += f;
615  same_count += 1 - f;
616  }
617  f = opp_count > same_count;
618  switch (f ? opp_count : same_count) {
619  case 4:
620  tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
621  chosen_mv[f][2][0], chosen_mv[f][3][0]);
622  ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
623  chosen_mv[f][2][1], chosen_mv[f][3][1]);
624  break;
625  case 3:
626  tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
627  ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
628  break;
629  case 2:
630  tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
631  ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
632  break;
633  default:
634  av_assert0(0);
635  }
636  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
637  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
638  for (k = 0; k < 4; k++)
639  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
640  }
641 
642  if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
643  int qx, qy;
644  int width = s->avctx->coded_width;
645  int height = s->avctx->coded_height >> 1;
646  if (s->pict_type == AV_PICTURE_TYPE_P) {
647  s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][0] = mx;
648  s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][1] = my;
649  }
650  qx = (s->mb_x * 16) + (mx >> 2);
651  qy = (s->mb_y * 8) + (my >> 3);
652 
653  if (qx < -17)
654  mx -= 4 * (qx + 17);
655  else if (qx > width)
656  mx -= 4 * (qx - width);
657  if (qy < -18)
658  my -= 8 * (qy + 18);
659  else if (qy > height + 1)
660  my -= 8 * (qy - height - 1);
661  }
662 
663  if ((v->fcm == ILACE_FRAME) && fieldmv)
664  off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
665  else
666  off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
667 
668  src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
669  if (!fieldmv)
670  src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
671  else
672  src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
673 
674  if (v->profile != PROFILE_ADVANCED) {
675  src_x = av_clip(src_x, -16, s->mb_width * 16);
676  src_y = av_clip(src_y, -16, s->mb_height * 16);
677  } else {
678  src_x = av_clip(src_x, -17, s->avctx->coded_width);
679  if (v->fcm == ILACE_FRAME) {
680  if (src_y & 1)
681  src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
682  else
683  src_y = av_clip(src_y, -18, s->avctx->coded_height);
684  } else {
685  src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
686  }
687  }
688 
689  srcY += src_y * s->linesize + src_x;
690  if (v->field_mode && v->ref_field_type[dir])
691  srcY += s->current_picture_ptr->f.linesize[0];
692 
693  if (fieldmv && !(src_y & 1))
694  v_edge_pos--;
695  if (fieldmv && (src_y & 1) && src_y < 4)
696  src_y--;
697  if (v->rangeredfrm || use_ic
698  || s->h_edge_pos < 13 || v_edge_pos < 23
699  || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
700  || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
701  srcY -= s->mspel * (1 + (s->linesize << fieldmv));
702  /* check emulate edge stride and offset */
704  9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
705  src_x - s->mspel, src_y - (s->mspel << fieldmv),
706  s->h_edge_pos, v_edge_pos);
707  srcY = s->edge_emu_buffer;
708  /* if we deal with range reduction we need to scale source blocks */
709  if (v->rangeredfrm) {
710  int i, j;
711  uint8_t *src;
712 
713  src = srcY;
714  for (j = 0; j < 9 + s->mspel * 2; j++) {
715  for (i = 0; i < 9 + s->mspel * 2; i++)
716  src[i] = ((src[i] - 128) >> 1) + 128;
717  src += s->linesize << fieldmv;
718  }
719  }
720  /* if we deal with intensity compensation we need to scale source blocks */
721  if (use_ic) {
722  int i, j;
723  uint8_t *src;
724 
725  src = srcY;
726  for (j = 0; j < 9 + s->mspel * 2; j++) {
727  int f = v->field_mode ? v->ref_field_type[dir] : (((j<<fieldmv)+src_y - (s->mspel << fieldmv)) & 1);
728  for (i = 0; i < 9 + s->mspel * 2; i++)
729  src[i] = luty[f][src[i]];
730  src += s->linesize << fieldmv;
731  }
732  }
733  srcY += s->mspel * (1 + (s->linesize << fieldmv));
734  }
735 
736  if (s->mspel) {
737  dxy = ((my & 3) << 2) | (mx & 3);
738  if (avg)
739  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
740  else
741  v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
742  } else { // hpel mc - always used for luma
743  dxy = (my & 2) | ((mx & 2) >> 1);
744  if (!v->rnd)
745  s->hdsp.put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
746  else
747  s->hdsp.put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
748  }
749 }
750 
751 static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
752 {
753  int idx, i;
754  static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
755 
756  idx = ((a[3] != flag) << 3)
757  | ((a[2] != flag) << 2)
758  | ((a[1] != flag) << 1)
759  | (a[0] != flag);
760  if (!idx) {
761  *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
762  *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
763  return 4;
764  } else if (count[idx] == 1) {
765  switch (idx) {
766  case 0x1:
767  *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
768  *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
769  return 3;
770  case 0x2:
771  *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
772  *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
773  return 3;
774  case 0x4:
775  *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
776  *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
777  return 3;
778  case 0x8:
779  *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
780  *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
781  return 3;
782  }
783  } else if (count[idx] == 2) {
784  int t1 = 0, t2 = 0;
785  for (i = 0; i < 3; i++)
786  if (!a[i]) {
787  t1 = i;
788  break;
789  }
790  for (i = t1 + 1; i < 4; i++)
791  if (!a[i]) {
792  t2 = i;
793  break;
794  }
795  *tx = (mvx[t1] + mvx[t2]) / 2;
796  *ty = (mvy[t1] + mvy[t2]) / 2;
797  return 2;
798  } else {
799  return 0;
800  }
801  return -1;
802 }
803 
804 /** Do motion compensation for 4-MV macroblock - both chroma blocks
805  */
806 static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
807 {
808  MpegEncContext *s = &v->s;
809  H264ChromaContext *h264chroma = &v->h264chroma;
810  uint8_t *srcU, *srcV;
811  int uvmx, uvmy, uvsrc_x, uvsrc_y;
812  int k, tx = 0, ty = 0;
813  int mvx[4], mvy[4], intra[4], mv_f[4];
814  int valid_count;
815  int chroma_ref_type = v->cur_field_type;
816  int v_edge_pos = s->v_edge_pos >> v->field_mode;
817  uint8_t (*lutuv)[256];
818  int use_ic;
819 
820  if (!v->field_mode && !v->s.last_picture.f.data[0])
821  return;
822  if (s->flags & CODEC_FLAG_GRAY)
823  return;
824 
825  for (k = 0; k < 4; k++) {
826  mvx[k] = s->mv[dir][k][0];
827  mvy[k] = s->mv[dir][k][1];
828  intra[k] = v->mb_type[0][s->block_index[k]];
829  if (v->field_mode)
830  mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
831  }
832 
833  /* calculate chroma MV vector from four luma MVs */
834  if (!v->field_mode || (v->field_mode && !v->numref)) {
835  valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
836  chroma_ref_type = v->reffield;
837  if (!valid_count) {
838  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
839  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
840  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
841  return; //no need to do MC for intra blocks
842  }
843  } else {
844  int dominant = 0;
845  if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
846  dominant = 1;
847  valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
848  if (dominant)
849  chroma_ref_type = !v->cur_field_type;
850  }
851  if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
852  return;
853  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
854  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
855  uvmx = (tx + ((tx & 3) == 3)) >> 1;
856  uvmy = (ty + ((ty & 3) == 3)) >> 1;
857 
858  v->luma_mv[s->mb_x][0] = uvmx;
859  v->luma_mv[s->mb_x][1] = uvmy;
860 
861  if (v->fastuvmc) {
862  uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
863  uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
864  }
865  // Field conversion bias
866  if (v->cur_field_type != chroma_ref_type)
867  uvmy += 2 - 4 * chroma_ref_type;
868 
869  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
870  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
871 
872  if (v->profile != PROFILE_ADVANCED) {
873  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
874  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
875  } else {
876  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
877  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
878  }
879 
880  if (!dir) {
881  if (v->field_mode && (v->cur_field_type != chroma_ref_type) && v->second_field) {
882  srcU = s->current_picture.f.data[1];
883  srcV = s->current_picture.f.data[2];
884  lutuv = v->curr_lutuv;
885  use_ic = v->curr_use_ic;
886  } else {
887  srcU = s->last_picture.f.data[1];
888  srcV = s->last_picture.f.data[2];
889  lutuv = v->last_lutuv;
890  use_ic = v->last_use_ic;
891  }
892  } else {
893  srcU = s->next_picture.f.data[1];
894  srcV = s->next_picture.f.data[2];
895  lutuv = v->next_lutuv;
896  use_ic = v->next_use_ic;
897  }
898 
899  if (!srcU) {
900  av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
901  return;
902  }
903 
904  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
905  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
906 
907  if (v->field_mode) {
908  if (chroma_ref_type) {
909  srcU += s->current_picture_ptr->f.linesize[1];
910  srcV += s->current_picture_ptr->f.linesize[2];
911  }
912  }
913 
914  if (v->rangeredfrm || use_ic
915  || s->h_edge_pos < 18 || v_edge_pos < 18
916  || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
917  || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
919  s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
920  s->h_edge_pos >> 1, v_edge_pos >> 1);
921  s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, s->uvlinesize, srcV,
922  s->uvlinesize, 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
923  s->h_edge_pos >> 1, v_edge_pos >> 1);
924  srcU = s->edge_emu_buffer;
925  srcV = s->edge_emu_buffer + 16;
926 
927  /* if we deal with range reduction we need to scale source blocks */
928  if (v->rangeredfrm) {
929  int i, j;
930  uint8_t *src, *src2;
931 
932  src = srcU;
933  src2 = srcV;
934  for (j = 0; j < 9; j++) {
935  for (i = 0; i < 9; i++) {
936  src[i] = ((src[i] - 128) >> 1) + 128;
937  src2[i] = ((src2[i] - 128) >> 1) + 128;
938  }
939  src += s->uvlinesize;
940  src2 += s->uvlinesize;
941  }
942  }
943  /* if we deal with intensity compensation we need to scale source blocks */
944  if (use_ic) {
945  int i, j;
946  uint8_t *src, *src2;
947 
948  src = srcU;
949  src2 = srcV;
950  for (j = 0; j < 9; j++) {
951  int f = v->field_mode ? chroma_ref_type : ((j + uvsrc_y) & 1);
952  for (i = 0; i < 9; i++) {
953  src[i] = lutuv[f][src[i]];
954  src2[i] = lutuv[f][src2[i]];
955  }
956  src += s->uvlinesize;
957  src2 += s->uvlinesize;
958  }
959  }
960  }
961 
962  /* Chroma MC always uses qpel bilinear */
963  uvmx = (uvmx & 3) << 1;
964  uvmy = (uvmy & 3) << 1;
965  if (!v->rnd) {
966  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
967  h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
968  } else {
969  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
970  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
971  }
972 }
973 
974 /** Do motion compensation for 4-MV interlaced frame chroma macroblock (both U and V)
975  */
976 static void vc1_mc_4mv_chroma4(VC1Context *v, int dir, int dir2, int avg)
977 {
978  MpegEncContext *s = &v->s;
979  H264ChromaContext *h264chroma = &v->h264chroma;
980  uint8_t *srcU, *srcV;
981  int uvsrc_x, uvsrc_y;
982  int uvmx_field[4], uvmy_field[4];
983  int i, off, tx, ty;
984  int fieldmv = v->blk_mv_type[s->block_index[0]];
985  static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
986  int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
987  int v_edge_pos = s->v_edge_pos >> 1;
988  int use_ic;
989  uint8_t (*lutuv)[256];
990 
991  if (s->flags & CODEC_FLAG_GRAY)
992  return;
993 
994  for (i = 0; i < 4; i++) {
995  int d = i < 2 ? dir: dir2;
996  tx = s->mv[d][i][0];
997  uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
998  ty = s->mv[d][i][1];
999  if (fieldmv)
1000  uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
1001  else
1002  uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
1003  }
1004 
1005  for (i = 0; i < 4; i++) {
1006  off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
1007  uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
1008  uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
1009  // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
1010  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1011  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1012  if (i < 2 ? dir : dir2) {
1013  srcU = s->next_picture.f.data[1];
1014  srcV = s->next_picture.f.data[2];
1015  lutuv = v->next_lutuv;
1016  use_ic = v->next_use_ic;
1017  } else {
1018  srcU = s->last_picture.f.data[1];
1019  srcV = s->last_picture.f.data[2];
1020  lutuv = v->last_lutuv;
1021  use_ic = v->last_use_ic;
1022  }
1023  if (!srcU)
1024  return;
1025  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1026  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1027  uvmx_field[i] = (uvmx_field[i] & 3) << 1;
1028  uvmy_field[i] = (uvmy_field[i] & 3) << 1;
1029 
1030  if (fieldmv && !(uvsrc_y & 1))
1031  v_edge_pos = (s->v_edge_pos >> 1) - 1;
1032 
1033  if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
1034  uvsrc_y--;
1035  if (use_ic
1036  || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
1037  || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
1038  || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
1040  s->uvlinesize, 5, (5 << fieldmv), uvsrc_x,
1041  uvsrc_y, s->h_edge_pos >> 1, v_edge_pos);
1042  s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, s->uvlinesize, srcV,
1043  s->uvlinesize, 5, (5 << fieldmv), uvsrc_x,
1044  uvsrc_y, s->h_edge_pos >> 1, v_edge_pos);
1045  srcU = s->edge_emu_buffer;
1046  srcV = s->edge_emu_buffer + 16;
1047 
1048  /* if we deal with intensity compensation we need to scale source blocks */
1049  if (use_ic) {
1050  int i, j;
1051  uint8_t *src, *src2;
1052 
1053  src = srcU;
1054  src2 = srcV;
1055  for (j = 0; j < 5; j++) {
1056  int f = (uvsrc_y + (j << fieldmv)) & 1;
1057  for (i = 0; i < 5; i++) {
1058  src[i] = lutuv[f][src[i]];
1059  src2[i] = lutuv[f][src2[i]];
1060  }
1061  src += s->uvlinesize << fieldmv;
1062  src2 += s->uvlinesize << fieldmv;
1063  }
1064  }
1065  }
1066  if (avg) {
1067  if (!v->rnd) {
1068  h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1069  h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1070  } else {
1071  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1072  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1073  }
1074  } else {
1075  if (!v->rnd) {
1076  h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1077  h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1078  } else {
1079  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1080  v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1081  }
1082  }
1083  }
1084 }
1085 
1086 /***********************************************************************/
1087 /**
1088  * @name VC-1 Block-level functions
1089  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1090  * @{
1091  */
1092 
1093 /**
1094  * @def GET_MQUANT
1095  * @brief Get macroblock-level quantizer scale
1096  */
1097 #define GET_MQUANT() \
1098  if (v->dquantfrm) { \
1099  int edges = 0; \
1100  if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1101  if (v->dqbilevel) { \
1102  mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1103  } else { \
1104  mqdiff = get_bits(gb, 3); \
1105  if (mqdiff != 7) \
1106  mquant = v->pq + mqdiff; \
1107  else \
1108  mquant = get_bits(gb, 5); \
1109  } \
1110  } \
1111  if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1112  edges = 1 << v->dqsbedge; \
1113  else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1114  edges = (3 << v->dqsbedge) % 15; \
1115  else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1116  edges = 15; \
1117  if ((edges&1) && !s->mb_x) \
1118  mquant = v->altpq; \
1119  if ((edges&2) && s->first_slice_line) \
1120  mquant = v->altpq; \
1121  if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1122  mquant = v->altpq; \
1123  if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1124  mquant = v->altpq; \
1125  if (!mquant || mquant > 31) { \
1126  av_log(v->s.avctx, AV_LOG_ERROR, \
1127  "Overriding invalid mquant %d\n", mquant); \
1128  mquant = 1; \
1129  } \
1130  }
1131 
1132 /**
1133  * @def GET_MVDATA(_dmv_x, _dmv_y)
1134  * @brief Get MV differentials
1135  * @see MVDATA decoding from 8.3.5.2, p(1)20
1136  * @param _dmv_x Horizontal differential for decoded MV
1137  * @param _dmv_y Vertical differential for decoded MV
1138  */
1139 #define GET_MVDATA(_dmv_x, _dmv_y) \
1140  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1141  VC1_MV_DIFF_VLC_BITS, 2); \
1142  if (index > 36) { \
1143  mb_has_coeffs = 1; \
1144  index -= 37; \
1145  } else \
1146  mb_has_coeffs = 0; \
1147  s->mb_intra = 0; \
1148  if (!index) { \
1149  _dmv_x = _dmv_y = 0; \
1150  } else if (index == 35) { \
1151  _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1152  _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1153  } else if (index == 36) { \
1154  _dmv_x = 0; \
1155  _dmv_y = 0; \
1156  s->mb_intra = 1; \
1157  } else { \
1158  index1 = index % 6; \
1159  if (!s->quarter_sample && index1 == 5) val = 1; \
1160  else val = 0; \
1161  if (size_table[index1] - val > 0) \
1162  val = get_bits(gb, size_table[index1] - val); \
1163  else val = 0; \
1164  sign = 0 - (val&1); \
1165  _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1166  \
1167  index1 = index / 6; \
1168  if (!s->quarter_sample && index1 == 5) val = 1; \
1169  else val = 0; \
1170  if (size_table[index1] - val > 0) \
1171  val = get_bits(gb, size_table[index1] - val); \
1172  else val = 0; \
1173  sign = 0 - (val & 1); \
1174  _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1175  }
1176 
1178  int *dmv_y, int *pred_flag)
1179 {
1180  int index, index1;
1181  int extend_x = 0, extend_y = 0;
1182  GetBitContext *gb = &v->s.gb;
1183  int bits, esc;
1184  int val, sign;
1185  const int* offs_tab;
1186 
1187  if (v->numref) {
1188  bits = VC1_2REF_MVDATA_VLC_BITS;
1189  esc = 125;
1190  } else {
1191  bits = VC1_1REF_MVDATA_VLC_BITS;
1192  esc = 71;
1193  }
1194  switch (v->dmvrange) {
1195  case 1:
1196  extend_x = 1;
1197  break;
1198  case 2:
1199  extend_y = 1;
1200  break;
1201  case 3:
1202  extend_x = extend_y = 1;
1203  break;
1204  }
1205  index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
1206  if (index == esc) {
1207  *dmv_x = get_bits(gb, v->k_x);
1208  *dmv_y = get_bits(gb, v->k_y);
1209  if (v->numref) {
1210  if (pred_flag) {
1211  *pred_flag = *dmv_y & 1;
1212  *dmv_y = (*dmv_y + *pred_flag) >> 1;
1213  } else {
1214  *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
1215  }
1216  }
1217  }
1218  else {
1219  av_assert0(index < esc);
1220  if (extend_x)
1221  offs_tab = offset_table2;
1222  else
1223  offs_tab = offset_table1;
1224  index1 = (index + 1) % 9;
1225  if (index1 != 0) {
1226  val = get_bits(gb, index1 + extend_x);
1227  sign = 0 -(val & 1);
1228  *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
1229  } else
1230  *dmv_x = 0;
1231  if (extend_y)
1232  offs_tab = offset_table2;
1233  else
1234  offs_tab = offset_table1;
1235  index1 = (index + 1) / 9;
1236  if (index1 > v->numref) {
1237  val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
1238  sign = 0 - (val & 1);
1239  *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
1240  } else
1241  *dmv_y = 0;
1242  if (v->numref && pred_flag)
1243  *pred_flag = index1 & 1;
1244  }
1245 }
1246 
1247 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
1248 {
1249  int scaledvalue, refdist;
1250  int scalesame1, scalesame2;
1251  int scalezone1_x, zone1offset_x;
1252  int table_index = dir ^ v->second_field;
1253 
1254  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1255  refdist = v->refdist;
1256  else
1257  refdist = dir ? v->brfd : v->frfd;
1258  if (refdist > 3)
1259  refdist = 3;
1260  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1261  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1262  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
1263  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
1264 
1265  if (FFABS(n) > 255)
1266  scaledvalue = n;
1267  else {
1268  if (FFABS(n) < scalezone1_x)
1269  scaledvalue = (n * scalesame1) >> 8;
1270  else {
1271  if (n < 0)
1272  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
1273  else
1274  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
1275  }
1276  }
1277  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1278 }
1279 
1280 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
1281 {
1282  int scaledvalue, refdist;
1283  int scalesame1, scalesame2;
1284  int scalezone1_y, zone1offset_y;
1285  int table_index = dir ^ v->second_field;
1286 
1287  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1288  refdist = v->refdist;
1289  else
1290  refdist = dir ? v->brfd : v->frfd;
1291  if (refdist > 3)
1292  refdist = 3;
1293  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1294  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1295  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
1296  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
1297 
1298  if (FFABS(n) > 63)
1299  scaledvalue = n;
1300  else {
1301  if (FFABS(n) < scalezone1_y)
1302  scaledvalue = (n * scalesame1) >> 8;
1303  else {
1304  if (n < 0)
1305  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
1306  else
1307  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
1308  }
1309  }
1310 
1311  if (v->cur_field_type && !v->ref_field_type[dir])
1312  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1313  else
1314  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1315 }
1316 
1317 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
1318 {
1319  int scalezone1_x, zone1offset_x;
1320  int scaleopp1, scaleopp2, brfd;
1321  int scaledvalue;
1322 
1323  brfd = FFMIN(v->brfd, 3);
1324  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
1325  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
1326  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1327  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1328 
1329  if (FFABS(n) > 255)
1330  scaledvalue = n;
1331  else {
1332  if (FFABS(n) < scalezone1_x)
1333  scaledvalue = (n * scaleopp1) >> 8;
1334  else {
1335  if (n < 0)
1336  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
1337  else
1338  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
1339  }
1340  }
1341  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1342 }
1343 
1344 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
1345 {
1346  int scalezone1_y, zone1offset_y;
1347  int scaleopp1, scaleopp2, brfd;
1348  int scaledvalue;
1349 
1350  brfd = FFMIN(v->brfd, 3);
1351  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
1352  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
1353  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1354  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1355 
1356  if (FFABS(n) > 63)
1357  scaledvalue = n;
1358  else {
1359  if (FFABS(n) < scalezone1_y)
1360  scaledvalue = (n * scaleopp1) >> 8;
1361  else {
1362  if (n < 0)
1363  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
1364  else
1365  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
1366  }
1367  }
1368  if (v->cur_field_type && !v->ref_field_type[dir]) {
1369  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1370  } else {
1371  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1372  }
1373 }
1374 
1375 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
1376  int dim, int dir)
1377 {
1378  int brfd, scalesame;
1379  int hpel = 1 - v->s.quarter_sample;
1380 
1381  n >>= hpel;
1382  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
1383  if (dim)
1384  n = scaleforsame_y(v, i, n, dir) << hpel;
1385  else
1386  n = scaleforsame_x(v, n, dir) << hpel;
1387  return n;
1388  }
1389  brfd = FFMIN(v->brfd, 3);
1390  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
1391 
1392  n = (n * scalesame >> 8) << hpel;
1393  return n;
1394 }
1395 
1396 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
1397  int dim, int dir)
1398 {
1399  int refdist, scaleopp;
1400  int hpel = 1 - v->s.quarter_sample;
1401 
1402  n >>= hpel;
1403  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
1404  if (dim)
1405  n = scaleforopp_y(v, n, dir) << hpel;
1406  else
1407  n = scaleforopp_x(v, n) << hpel;
1408  return n;
1409  }
1410  if (v->s.pict_type != AV_PICTURE_TYPE_B)
1411  refdist = FFMIN(v->refdist, 3);
1412  else
1413  refdist = dir ? v->brfd : v->frfd;
1414  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
1415 
1416  n = (n * scaleopp >> 8) << hpel;
1417  return n;
1418 }
1419 
1420 /** Predict and set motion vector
1421  */
1422 static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
1423  int mv1, int r_x, int r_y, uint8_t* is_intra,
1424  int pred_flag, int dir)
1425 {
1426  MpegEncContext *s = &v->s;
1427  int xy, wrap, off = 0;
1428  int16_t *A, *B, *C;
1429  int px, py;
1430  int sum;
1431  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
1432  int opposite, a_f, b_f, c_f;
1433  int16_t field_predA[2];
1434  int16_t field_predB[2];
1435  int16_t field_predC[2];
1436  int a_valid, b_valid, c_valid;
1437  int hybridmv_thresh, y_bias = 0;
1438 
1439  if (v->mv_mode == MV_PMODE_MIXED_MV ||
1441  mixedmv_pic = 1;
1442  else
1443  mixedmv_pic = 0;
1444  /* scale MV difference to be quad-pel */
1445  dmv_x <<= 1 - s->quarter_sample;
1446  dmv_y <<= 1 - s->quarter_sample;
1447 
1448  wrap = s->b8_stride;
1449  xy = s->block_index[n];
1450 
1451  if (s->mb_intra) {
1452  s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
1453  s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
1454  s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
1455  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
1456  if (mv1) { /* duplicate motion data for 1-MV block */
1457  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
1458  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
1459  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
1460  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
1461  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
1462  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
1463  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1464  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
1465  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
1466  s->current_picture.motion_val[1][xy + wrap][0] = 0;
1467  s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
1468  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
1469  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
1470  }
1471  return;
1472  }
1473 
1474  C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
1475  A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
1476  if (mv1) {
1477  if (v->field_mode && mixedmv_pic)
1478  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1479  else
1480  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1481  } else {
1482  //in 4-MV mode different blocks have different B predictor position
1483  switch (n) {
1484  case 0:
1485  off = (s->mb_x > 0) ? -1 : 1;
1486  break;
1487  case 1:
1488  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1489  break;
1490  case 2:
1491  off = 1;
1492  break;
1493  case 3:
1494  off = -1;
1495  }
1496  }
1497  B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
1498 
1499  a_valid = !s->first_slice_line || (n == 2 || n == 3);
1500  b_valid = a_valid && (s->mb_width > 1);
1501  c_valid = s->mb_x || (n == 1 || n == 3);
1502  if (v->field_mode) {
1503  a_valid = a_valid && !is_intra[xy - wrap];
1504  b_valid = b_valid && !is_intra[xy - wrap + off];
1505  c_valid = c_valid && !is_intra[xy - 1];
1506  }
1507 
1508  if (a_valid) {
1509  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
1510  num_oppfield += a_f;
1511  num_samefield += 1 - a_f;
1512  field_predA[0] = A[0];
1513  field_predA[1] = A[1];
1514  } else {
1515  field_predA[0] = field_predA[1] = 0;
1516  a_f = 0;
1517  }
1518  if (b_valid) {
1519  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
1520  num_oppfield += b_f;
1521  num_samefield += 1 - b_f;
1522  field_predB[0] = B[0];
1523  field_predB[1] = B[1];
1524  } else {
1525  field_predB[0] = field_predB[1] = 0;
1526  b_f = 0;
1527  }
1528  if (c_valid) {
1529  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
1530  num_oppfield += c_f;
1531  num_samefield += 1 - c_f;
1532  field_predC[0] = C[0];
1533  field_predC[1] = C[1];
1534  } else {
1535  field_predC[0] = field_predC[1] = 0;
1536  c_f = 0;
1537  }
1538 
1539  if (v->field_mode) {
1540  if (!v->numref)
1541  // REFFIELD determines if the last field or the second-last field is
1542  // to be used as reference
1543  opposite = 1 - v->reffield;
1544  else {
1545  if (num_samefield <= num_oppfield)
1546  opposite = 1 - pred_flag;
1547  else
1548  opposite = pred_flag;
1549  }
1550  } else
1551  opposite = 0;
1552  if (opposite) {
1553  if (a_valid && !a_f) {
1554  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
1555  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
1556  }
1557  if (b_valid && !b_f) {
1558  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
1559  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
1560  }
1561  if (c_valid && !c_f) {
1562  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
1563  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
1564  }
1565  v->mv_f[dir][xy + v->blocks_off] = 1;
1566  v->ref_field_type[dir] = !v->cur_field_type;
1567  } else {
1568  if (a_valid && a_f) {
1569  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
1570  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
1571  }
1572  if (b_valid && b_f) {
1573  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
1574  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
1575  }
1576  if (c_valid && c_f) {
1577  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
1578  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
1579  }
1580  v->mv_f[dir][xy + v->blocks_off] = 0;
1581  v->ref_field_type[dir] = v->cur_field_type;
1582  }
1583 
1584  if (a_valid) {
1585  px = field_predA[0];
1586  py = field_predA[1];
1587  } else if (c_valid) {
1588  px = field_predC[0];
1589  py = field_predC[1];
1590  } else if (b_valid) {
1591  px = field_predB[0];
1592  py = field_predB[1];
1593  } else {
1594  px = 0;
1595  py = 0;
1596  }
1597 
1598  if (num_samefield + num_oppfield > 1) {
1599  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
1600  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
1601  }
1602 
1603  /* Pullback MV as specified in 8.3.5.3.4 */
1604  if (!v->field_mode) {
1605  int qx, qy, X, Y;
1606  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
1607  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
1608  X = (s->mb_width << 6) - 4;
1609  Y = (s->mb_height << 6) - 4;
1610  if (mv1) {
1611  if (qx + px < -60) px = -60 - qx;
1612  if (qy + py < -60) py = -60 - qy;
1613  } else {
1614  if (qx + px < -28) px = -28 - qx;
1615  if (qy + py < -28) py = -28 - qy;
1616  }
1617  if (qx + px > X) px = X - qx;
1618  if (qy + py > Y) py = Y - qy;
1619  }
1620 
1621  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
1622  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
1623  hybridmv_thresh = 32;
1624  if (a_valid && c_valid) {
1625  if (is_intra[xy - wrap])
1626  sum = FFABS(px) + FFABS(py);
1627  else
1628  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
1629  if (sum > hybridmv_thresh) {
1630  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
1631  px = field_predA[0];
1632  py = field_predA[1];
1633  } else {
1634  px = field_predC[0];
1635  py = field_predC[1];
1636  }
1637  } else {
1638  if (is_intra[xy - 1])
1639  sum = FFABS(px) + FFABS(py);
1640  else
1641  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
1642  if (sum > hybridmv_thresh) {
1643  if (get_bits1(&s->gb)) {
1644  px = field_predA[0];
1645  py = field_predA[1];
1646  } else {
1647  px = field_predC[0];
1648  py = field_predC[1];
1649  }
1650  }
1651  }
1652  }
1653  }
1654 
1655  if (v->field_mode && v->numref)
1656  r_y >>= 1;
1657  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
1658  y_bias = 1;
1659  /* store MV using signed modulus of MV range defined in 4.11 */
1660  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1661  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
1662  if (mv1) { /* duplicate motion data for 1-MV block */
1663  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
1664  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
1665  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
1666  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
1667  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
1668  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
1669  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1670  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1671  }
1672 }
1673 
1674 /** Predict and set motion vector for interlaced frame picture MBs
1675  */
1676 static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
1677  int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
1678 {
1679  MpegEncContext *s = &v->s;
1680  int xy, wrap, off = 0;
1681  int A[2], B[2], C[2];
1682  int px = 0, py = 0;
1683  int a_valid = 0, b_valid = 0, c_valid = 0;
1684  int field_a, field_b, field_c; // 0: same, 1: opposit
1685  int total_valid, num_samefield, num_oppfield;
1686  int pos_c, pos_b, n_adj;
1687 
1688  wrap = s->b8_stride;
1689  xy = s->block_index[n];
1690 
1691  if (s->mb_intra) {
1692  s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1693  s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1694  s->current_picture.motion_val[1][xy][0] = 0;
1695  s->current_picture.motion_val[1][xy][1] = 0;
1696  if (mvn == 1) { /* duplicate motion data for 1-MV block */
1697  s->current_picture.motion_val[0][xy + 1][0] = 0;
1698  s->current_picture.motion_val[0][xy + 1][1] = 0;
1699  s->current_picture.motion_val[0][xy + wrap][0] = 0;
1700  s->current_picture.motion_val[0][xy + wrap][1] = 0;
1701  s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1702  s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1703  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1704  s->current_picture.motion_val[1][xy + 1][0] = 0;
1705  s->current_picture.motion_val[1][xy + 1][1] = 0;
1706  s->current_picture.motion_val[1][xy + wrap][0] = 0;
1707  s->current_picture.motion_val[1][xy + wrap][1] = 0;
1708  s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1709  s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1710  }
1711  return;
1712  }
1713 
1714  off = ((n == 0) || (n == 1)) ? 1 : -1;
1715  /* predict A */
1716  if (s->mb_x || (n == 1) || (n == 3)) {
1717  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
1718  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
1719  A[0] = s->current_picture.motion_val[dir][xy - 1][0];
1720  A[1] = s->current_picture.motion_val[dir][xy - 1][1];
1721  a_valid = 1;
1722  } else { // current block has frame mv and cand. has field MV (so average)
1723  A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
1724  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
1725  A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
1726  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
1727  a_valid = 1;
1728  }
1729  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
1730  a_valid = 0;
1731  A[0] = A[1] = 0;
1732  }
1733  } else
1734  A[0] = A[1] = 0;
1735  /* Predict B and C */
1736  B[0] = B[1] = C[0] = C[1] = 0;
1737  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
1738  if (!s->first_slice_line) {
1739  if (!v->is_intra[s->mb_x - s->mb_stride]) {
1740  b_valid = 1;
1741  n_adj = n | 2;
1742  pos_b = s->block_index[n_adj] - 2 * wrap;
1743  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
1744  n_adj = (n & 2) | (n & 1);
1745  }
1746  B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
1747  B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
1748  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
1749  B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
1750  B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
1751  }
1752  }
1753  if (s->mb_width > 1) {
1754  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
1755  c_valid = 1;
1756  n_adj = 2;
1757  pos_c = s->block_index[2] - 2 * wrap + 2;
1758  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1759  n_adj = n & 2;
1760  }
1761  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
1762  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
1763  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1764  C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
1765  C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
1766  }
1767  if (s->mb_x == s->mb_width - 1) {
1768  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
1769  c_valid = 1;
1770  n_adj = 3;
1771  pos_c = s->block_index[3] - 2 * wrap - 2;
1772  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1773  n_adj = n | 1;
1774  }
1775  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
1776  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
1777  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1778  C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
1779  C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
1780  }
1781  } else
1782  c_valid = 0;
1783  }
1784  }
1785  }
1786  }
1787  } else {
1788  pos_b = s->block_index[1];
1789  b_valid = 1;
1790  B[0] = s->current_picture.motion_val[dir][pos_b][0];
1791  B[1] = s->current_picture.motion_val[dir][pos_b][1];
1792  pos_c = s->block_index[0];
1793  c_valid = 1;
1794  C[0] = s->current_picture.motion_val[dir][pos_c][0];
1795  C[1] = s->current_picture.motion_val[dir][pos_c][1];
1796  }
1797 
1798  total_valid = a_valid + b_valid + c_valid;
1799  // check if predictor A is out of bounds
1800  if (!s->mb_x && !(n == 1 || n == 3)) {
1801  A[0] = A[1] = 0;
1802  }
1803  // check if predictor B is out of bounds
1804  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
1805  B[0] = B[1] = C[0] = C[1] = 0;
1806  }
1807  if (!v->blk_mv_type[xy]) {
1808  if (s->mb_width == 1) {
1809  px = B[0];
1810  py = B[1];
1811  } else {
1812  if (total_valid >= 2) {
1813  px = mid_pred(A[0], B[0], C[0]);
1814  py = mid_pred(A[1], B[1], C[1]);
1815  } else if (total_valid) {
1816  if (a_valid) { px = A[0]; py = A[1]; }
1817  else if (b_valid) { px = B[0]; py = B[1]; }
1818  else { px = C[0]; py = C[1]; }
1819  }
1820  }
1821  } else {
1822  if (a_valid)
1823  field_a = (A[1] & 4) ? 1 : 0;
1824  else
1825  field_a = 0;
1826  if (b_valid)
1827  field_b = (B[1] & 4) ? 1 : 0;
1828  else
1829  field_b = 0;
1830  if (c_valid)
1831  field_c = (C[1] & 4) ? 1 : 0;
1832  else
1833  field_c = 0;
1834 
1835  num_oppfield = field_a + field_b + field_c;
1836  num_samefield = total_valid - num_oppfield;
1837  if (total_valid == 3) {
1838  if ((num_samefield == 3) || (num_oppfield == 3)) {
1839  px = mid_pred(A[0], B[0], C[0]);
1840  py = mid_pred(A[1], B[1], C[1]);
1841  } else if (num_samefield >= num_oppfield) {
1842  /* take one MV from same field set depending on priority
1843  the check for B may not be necessary */
1844  px = !field_a ? A[0] : B[0];
1845  py = !field_a ? A[1] : B[1];
1846  } else {
1847  px = field_a ? A[0] : B[0];
1848  py = field_a ? A[1] : B[1];
1849  }
1850  } else if (total_valid == 2) {
1851  if (num_samefield >= num_oppfield) {
1852  if (!field_a && a_valid) {
1853  px = A[0];
1854  py = A[1];
1855  } else if (!field_b && b_valid) {
1856  px = B[0];
1857  py = B[1];
1858  } else /*if (c_valid)*/ {
1859  av_assert1(c_valid);
1860  px = C[0];
1861  py = C[1];
1862  } /*else px = py = 0;*/
1863  } else {
1864  if (field_a && a_valid) {
1865  px = A[0];
1866  py = A[1];
1867  } else /*if (field_b && b_valid)*/ {
1868  av_assert1(field_b && b_valid);
1869  px = B[0];
1870  py = B[1];
1871  } /*else if (c_valid) {
1872  px = C[0];
1873  py = C[1];
1874  }*/
1875  }
1876  } else if (total_valid == 1) {
1877  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
1878  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
1879  }
1880  }
1881 
1882  /* store MV using signed modulus of MV range defined in 4.11 */
1883  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1884  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1885  if (mvn == 1) { /* duplicate motion data for 1-MV block */
1886  s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
1887  s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
1888  s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
1889  s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
1890  s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
1891  s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
1892  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
1893  s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
1894  s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
1895  s->mv[dir][n + 1][0] = s->mv[dir][n][0];
1896  s->mv[dir][n + 1][1] = s->mv[dir][n][1];
1897  }
1898 }
1899 
1900 /** Motion compensation for direct or interpolated blocks in B-frames
1901  */
1903 {
1904  MpegEncContext *s = &v->s;
1905  H264ChromaContext *h264chroma = &v->h264chroma;
1906  uint8_t *srcY, *srcU, *srcV;
1907  int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1908  int off, off_uv;
1909  int v_edge_pos = s->v_edge_pos >> v->field_mode;
1910  int use_ic = v->next_use_ic;
1911 
1912  if (!v->field_mode && !v->s.next_picture.f.data[0])
1913  return;
1914 
1915  mx = s->mv[1][0][0];
1916  my = s->mv[1][0][1];
1917  uvmx = (mx + ((mx & 3) == 3)) >> 1;
1918  uvmy = (my + ((my & 3) == 3)) >> 1;
1919  if (v->field_mode) {
1920  if (v->cur_field_type != v->ref_field_type[1])
1921  my = my - 2 + 4 * v->cur_field_type;
1922  uvmy = uvmy - 2 + 4 * v->cur_field_type;
1923  }
1924  if (v->fastuvmc) {
1925  uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
1926  uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
1927  }
1928  srcY = s->next_picture.f.data[0];
1929  srcU = s->next_picture.f.data[1];
1930  srcV = s->next_picture.f.data[2];
1931 
1932  src_x = s->mb_x * 16 + (mx >> 2);
1933  src_y = s->mb_y * 16 + (my >> 2);
1934  uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1935  uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1936 
1937  if (v->profile != PROFILE_ADVANCED) {
1938  src_x = av_clip( src_x, -16, s->mb_width * 16);
1939  src_y = av_clip( src_y, -16, s->mb_height * 16);
1940  uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1941  uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1942  } else {
1943  src_x = av_clip( src_x, -17, s->avctx->coded_width);
1944  src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1945  uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1946  uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1947  }
1948 
1949  srcY += src_y * s->linesize + src_x;
1950  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1951  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1952 
1953  if (v->field_mode && v->ref_field_type[1]) {
1954  srcY += s->current_picture_ptr->f.linesize[0];
1955  srcU += s->current_picture_ptr->f.linesize[1];
1956  srcV += s->current_picture_ptr->f.linesize[2];
1957  }
1958 
1959  /* for grayscale we should not try to read from unknown area */
1960  if (s->flags & CODEC_FLAG_GRAY) {
1961  srcU = s->edge_emu_buffer + 18 * s->linesize;
1962  srcV = s->edge_emu_buffer + 18 * s->linesize;
1963  }
1964 
1965  if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22 || use_ic
1966  || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
1967  || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
1968  uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
1969 
1970  srcY -= s->mspel * (1 + s->linesize);
1972  17 + s->mspel * 2, 17 + s->mspel * 2,
1973  src_x - s->mspel, src_y - s->mspel,
1974  s->h_edge_pos, v_edge_pos);
1975  srcY = s->edge_emu_buffer;
1976  s->vdsp.emulated_edge_mc(uvbuf, s->uvlinesize, srcU, s->uvlinesize,
1977  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
1978  s->h_edge_pos >> 1, v_edge_pos >> 1);
1979  s->vdsp.emulated_edge_mc(uvbuf + 16, s->uvlinesize, srcV, s->uvlinesize,
1980  8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
1981  s->h_edge_pos >> 1, v_edge_pos >> 1);
1982  srcU = uvbuf;
1983  srcV = uvbuf + 16;
1984  /* if we deal with range reduction we need to scale source blocks */
1985  if (v->rangeredfrm) {
1986  int i, j;
1987  uint8_t *src, *src2;
1988 
1989  src = srcY;
1990  for (j = 0; j < 17 + s->mspel * 2; j++) {
1991  for (i = 0; i < 17 + s->mspel * 2; i++)
1992  src[i] = ((src[i] - 128) >> 1) + 128;
1993  src += s->linesize;
1994  }
1995  src = srcU;
1996  src2 = srcV;
1997  for (j = 0; j < 9; j++) {
1998  for (i = 0; i < 9; i++) {
1999  src[i] = ((src[i] - 128) >> 1) + 128;
2000  src2[i] = ((src2[i] - 128) >> 1) + 128;
2001  }
2002  src += s->uvlinesize;
2003  src2 += s->uvlinesize;
2004  }
2005  }
2006 
2007  if (use_ic) {
2008  uint8_t (*luty )[256] = v->next_luty;
2009  uint8_t (*lutuv)[256] = v->next_lutuv;
2010  int i, j;
2011  uint8_t *src, *src2;
2012 
2013  src = srcY;
2014  for (j = 0; j < 17 + s->mspel * 2; j++) {
2015  int f = v->field_mode ? v->ref_field_type[1] : ((j+src_y - s->mspel) & 1);
2016  for (i = 0; i < 17 + s->mspel * 2; i++)
2017  src[i] = luty[f][src[i]];
2018  src += s->linesize;
2019  }
2020  src = srcU;
2021  src2 = srcV;
2022  for (j = 0; j < 9; j++) {
2023  int f = v->field_mode ? v->ref_field_type[1] : ((j+uvsrc_y) & 1);
2024  for (i = 0; i < 9; i++) {
2025  src[i] = lutuv[f][src[i]];
2026  src2[i] = lutuv[f][src2[i]];
2027  }
2028  src += s->uvlinesize;
2029  src2 += s->uvlinesize;
2030  }
2031  }
2032  srcY += s->mspel * (1 + s->linesize);
2033  }
2034 
2035  off = 0;
2036  off_uv = 0;
2037 
2038  if (s->mspel) {
2039  dxy = ((my & 3) << 2) | (mx & 3);
2040  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
2041  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
2042  srcY += s->linesize * 8;
2043  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
2044  v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
2045  } else { // hpel mc
2046  dxy = (my & 2) | ((mx & 2) >> 1);
2047 
2048  if (!v->rnd)
2049  s->hdsp.avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
2050  else
2051  s->hdsp.avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
2052  }
2053 
2054  if (s->flags & CODEC_FLAG_GRAY) return;
2055  /* Chroma MC always uses qpel blilinear */
2056  uvmx = (uvmx & 3) << 1;
2057  uvmy = (uvmy & 3) << 1;
2058  if (!v->rnd) {
2059  h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
2060  h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
2061  } else {
2062  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
2063  v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
2064  }
2065 }
2066 
2067 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
2068 {
2069  int n = bfrac;
2070 
2071 #if B_FRACTION_DEN==256
2072  if (inv)
2073  n -= 256;
2074  if (!qs)
2075  return 2 * ((value * n + 255) >> 9);
2076  return (value * n + 128) >> 8;
2077 #else
2078  if (inv)
2079  n -= B_FRACTION_DEN;
2080  if (!qs)
2081  return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
2082  return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
2083 #endif
2084 }
2085 
2086 /** Reconstruct motion vector for B-frame and do motion compensation
2087  */
2088 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
2089  int direct, int mode)
2090 {
2091  if (direct) {
2092  vc1_mc_1mv(v, 0);
2093  vc1_interp_mc(v);
2094  return;
2095  }
2096  if (mode == BMV_TYPE_INTERPOLATED) {
2097  vc1_mc_1mv(v, 0);
2098  vc1_interp_mc(v);
2099  return;
2100  }
2101 
2102  vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
2103 }
2104 
2105 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
2106  int direct, int mvtype)
2107 {
2108  MpegEncContext *s = &v->s;
2109  int xy, wrap, off = 0;
2110  int16_t *A, *B, *C;
2111  int px, py;
2112  int sum;
2113  int r_x, r_y;
2114  const uint8_t *is_intra = v->mb_type[0];
2115 
2116  r_x = v->range_x;
2117  r_y = v->range_y;
2118  /* scale MV difference to be quad-pel */
2119  dmv_x[0] <<= 1 - s->quarter_sample;
2120  dmv_y[0] <<= 1 - s->quarter_sample;
2121  dmv_x[1] <<= 1 - s->quarter_sample;
2122  dmv_y[1] <<= 1 - s->quarter_sample;
2123 
2124  wrap = s->b8_stride;
2125  xy = s->block_index[0];
2126 
2127  if (s->mb_intra) {
2128  s->current_picture.motion_val[0][xy + v->blocks_off][0] =
2129  s->current_picture.motion_val[0][xy + v->blocks_off][1] =
2130  s->current_picture.motion_val[1][xy + v->blocks_off][0] =
2131  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
2132  return;
2133  }
2134  if (!v->field_mode) {
2135  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
2136  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
2137  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
2138  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
2139 
2140  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2141  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2142  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2143  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2144  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2145  }
2146  if (direct) {
2147  s->current_picture.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
2148  s->current_picture.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
2149  s->current_picture.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
2150  s->current_picture.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
2151  return;
2152  }
2153 
2154  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2155  C = s->current_picture.motion_val[0][xy - 2];
2156  A = s->current_picture.motion_val[0][xy - wrap * 2];
2157  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2158  B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
2159 
2160  if (!s->mb_x) C[0] = C[1] = 0;
2161  if (!s->first_slice_line) { // predictor A is not out of bounds
2162  if (s->mb_width == 1) {
2163  px = A[0];
2164  py = A[1];
2165  } else {
2166  px = mid_pred(A[0], B[0], C[0]);
2167  py = mid_pred(A[1], B[1], C[1]);
2168  }
2169  } else if (s->mb_x) { // predictor C is not out of bounds
2170  px = C[0];
2171  py = C[1];
2172  } else {
2173  px = py = 0;
2174  }
2175  /* Pullback MV as specified in 8.3.5.3.4 */
2176  {
2177  int qx, qy, X, Y;
2178  if (v->profile < PROFILE_ADVANCED) {
2179  qx = (s->mb_x << 5);
2180  qy = (s->mb_y << 5);
2181  X = (s->mb_width << 5) - 4;
2182  Y = (s->mb_height << 5) - 4;
2183  if (qx + px < -28) px = -28 - qx;
2184  if (qy + py < -28) py = -28 - qy;
2185  if (qx + px > X) px = X - qx;
2186  if (qy + py > Y) py = Y - qy;
2187  } else {
2188  qx = (s->mb_x << 6);
2189  qy = (s->mb_y << 6);
2190  X = (s->mb_width << 6) - 4;
2191  Y = (s->mb_height << 6) - 4;
2192  if (qx + px < -60) px = -60 - qx;
2193  if (qy + py < -60) py = -60 - qy;
2194  if (qx + px > X) px = X - qx;
2195  if (qy + py > Y) py = Y - qy;
2196  }
2197  }
2198  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2199  if (0 && !s->first_slice_line && s->mb_x) {
2200  if (is_intra[xy - wrap])
2201  sum = FFABS(px) + FFABS(py);
2202  else
2203  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2204  if (sum > 32) {
2205  if (get_bits1(&s->gb)) {
2206  px = A[0];
2207  py = A[1];
2208  } else {
2209  px = C[0];
2210  py = C[1];
2211  }
2212  } else {
2213  if (is_intra[xy - 2])
2214  sum = FFABS(px) + FFABS(py);
2215  else
2216  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2217  if (sum > 32) {
2218  if (get_bits1(&s->gb)) {
2219  px = A[0];
2220  py = A[1];
2221  } else {
2222  px = C[0];
2223  py = C[1];
2224  }
2225  }
2226  }
2227  }
2228  /* store MV using signed modulus of MV range defined in 4.11 */
2229  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2230  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2231  }
2232  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2233  C = s->current_picture.motion_val[1][xy - 2];
2234  A = s->current_picture.motion_val[1][xy - wrap * 2];
2235  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2236  B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
2237 
2238  if (!s->mb_x)
2239  C[0] = C[1] = 0;
2240  if (!s->first_slice_line) { // predictor A is not out of bounds
2241  if (s->mb_width == 1) {
2242  px = A[0];
2243  py = A[1];
2244  } else {
2245  px = mid_pred(A[0], B[0], C[0]);
2246  py = mid_pred(A[1], B[1], C[1]);
2247  }
2248  } else if (s->mb_x) { // predictor C is not out of bounds
2249  px = C[0];
2250  py = C[1];
2251  } else {
2252  px = py = 0;
2253  }
2254  /* Pullback MV as specified in 8.3.5.3.4 */
2255  {
2256  int qx, qy, X, Y;
2257  if (v->profile < PROFILE_ADVANCED) {
2258  qx = (s->mb_x << 5);
2259  qy = (s->mb_y << 5);
2260  X = (s->mb_width << 5) - 4;
2261  Y = (s->mb_height << 5) - 4;
2262  if (qx + px < -28) px = -28 - qx;
2263  if (qy + py < -28) py = -28 - qy;
2264  if (qx + px > X) px = X - qx;
2265  if (qy + py > Y) py = Y - qy;
2266  } else {
2267  qx = (s->mb_x << 6);
2268  qy = (s->mb_y << 6);
2269  X = (s->mb_width << 6) - 4;
2270  Y = (s->mb_height << 6) - 4;
2271  if (qx + px < -60) px = -60 - qx;
2272  if (qy + py < -60) py = -60 - qy;
2273  if (qx + px > X) px = X - qx;
2274  if (qy + py > Y) py = Y - qy;
2275  }
2276  }
2277  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2278  if (0 && !s->first_slice_line && s->mb_x) {
2279  if (is_intra[xy - wrap])
2280  sum = FFABS(px) + FFABS(py);
2281  else
2282  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2283  if (sum > 32) {
2284  if (get_bits1(&s->gb)) {
2285  px = A[0];
2286  py = A[1];
2287  } else {
2288  px = C[0];
2289  py = C[1];
2290  }
2291  } else {
2292  if (is_intra[xy - 2])
2293  sum = FFABS(px) + FFABS(py);
2294  else
2295  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2296  if (sum > 32) {
2297  if (get_bits1(&s->gb)) {
2298  px = A[0];
2299  py = A[1];
2300  } else {
2301  px = C[0];
2302  py = C[1];
2303  }
2304  }
2305  }
2306  }
2307  /* store MV using signed modulus of MV range defined in 4.11 */
2308 
2309  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2310  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2311  }
2312  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2313  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2314  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2315  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2316 }
2317 
2318 static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
2319 {
2320  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
2321  MpegEncContext *s = &v->s;
2322  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2323 
2324  if (v->bmvtype == BMV_TYPE_DIRECT) {
2325  int total_opp, k, f;
2326  if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
2327  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
2328  v->bfraction, 0, s->quarter_sample);
2329  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
2330  v->bfraction, 0, s->quarter_sample);
2331  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
2332  v->bfraction, 1, s->quarter_sample);
2333  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
2334  v->bfraction, 1, s->quarter_sample);
2335 
2336  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
2337  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
2338  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
2339  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
2340  f = (total_opp > 2) ? 1 : 0;
2341  } else {
2342  s->mv[0][0][0] = s->mv[0][0][1] = 0;
2343  s->mv[1][0][0] = s->mv[1][0][1] = 0;
2344  f = 0;
2345  }
2346  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
2347  for (k = 0; k < 4; k++) {
2348  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
2349  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
2350  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
2351  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
2352  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
2353  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
2354  }
2355  return;
2356  }
2357  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
2358  vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2359  vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2360  return;
2361  }
2362  if (dir) { // backward
2363  vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2364  if (n == 3 || mv1) {
2365  vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
2366  }
2367  } else { // forward
2368  vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2369  if (n == 3 || mv1) {
2370  vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
2371  }
2372  }
2373 }
2374 
2375 /** Get predicted DC value for I-frames only
2376  * prediction dir: left=0, top=1
2377  * @param s MpegEncContext
2378  * @param overlap flag indicating that overlap filtering is used
2379  * @param pq integer part of picture quantizer
2380  * @param[in] n block index in the current MB
2381  * @param dc_val_ptr Pointer to DC predictor
2382  * @param dir_ptr Prediction direction for use in AC prediction
2383  */
2384 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2385  int16_t **dc_val_ptr, int *dir_ptr)
2386 {
2387  int a, b, c, wrap, pred, scale;
2388  int16_t *dc_val;
2389  static const uint16_t dcpred[32] = {
2390  -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2391  114, 102, 93, 85, 79, 73, 68, 64,
2392  60, 57, 54, 51, 49, 47, 45, 43,
2393  41, 39, 38, 37, 35, 34, 33
2394  };
2395 
2396  /* find prediction - wmv3_dc_scale always used here in fact */
2397  if (n < 4) scale = s->y_dc_scale;
2398  else scale = s->c_dc_scale;
2399 
2400  wrap = s->block_wrap[n];
2401  dc_val = s->dc_val[0] + s->block_index[n];
2402 
2403  /* B A
2404  * C X
2405  */
2406  c = dc_val[ - 1];
2407  b = dc_val[ - 1 - wrap];
2408  a = dc_val[ - wrap];
2409 
2410  if (pq < 9 || !overlap) {
2411  /* Set outer values */
2412  if (s->first_slice_line && (n != 2 && n != 3))
2413  b = a = dcpred[scale];
2414  if (s->mb_x == 0 && (n != 1 && n != 3))
2415  b = c = dcpred[scale];
2416  } else {
2417  /* Set outer values */
2418  if (s->first_slice_line && (n != 2 && n != 3))
2419  b = a = 0;
2420  if (s->mb_x == 0 && (n != 1 && n != 3))
2421  b = c = 0;
2422  }
2423 
2424  if (abs(a - b) <= abs(b - c)) {
2425  pred = c;
2426  *dir_ptr = 1; // left
2427  } else {
2428  pred = a;
2429  *dir_ptr = 0; // top
2430  }
2431 
2432  /* update predictor */
2433  *dc_val_ptr = &dc_val[0];
2434  return pred;
2435 }
2436 
2437 
2438 /** Get predicted DC value
2439  * prediction dir: left=0, top=1
2440  * @param s MpegEncContext
2441  * @param overlap flag indicating that overlap filtering is used
2442  * @param pq integer part of picture quantizer
2443  * @param[in] n block index in the current MB
2444  * @param a_avail flag indicating top block availability
2445  * @param c_avail flag indicating left block availability
2446  * @param dc_val_ptr Pointer to DC predictor
2447  * @param dir_ptr Prediction direction for use in AC prediction
2448  */
2449 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2450  int a_avail, int c_avail,
2451  int16_t **dc_val_ptr, int *dir_ptr)
2452 {
2453  int a, b, c, wrap, pred;
2454  int16_t *dc_val;
2455  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2456  int q1, q2 = 0;
2457  int dqscale_index;
2458 
2459  wrap = s->block_wrap[n];
2460  dc_val = s->dc_val[0] + s->block_index[n];
2461 
2462  /* B A
2463  * C X
2464  */
2465  c = dc_val[ - 1];
2466  b = dc_val[ - 1 - wrap];
2467  a = dc_val[ - wrap];
2468  /* scale predictors if needed */
2469  q1 = s->current_picture.qscale_table[mb_pos];
2470  dqscale_index = s->y_dc_scale_table[q1] - 1;
2471  if (dqscale_index < 0)
2472  return 0;
2473  if (c_avail && (n != 1 && n != 3)) {
2474  q2 = s->current_picture.qscale_table[mb_pos - 1];
2475  if (q2 && q2 != q1)
2476  c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2477  }
2478  if (a_avail && (n != 2 && n != 3)) {
2479  q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2480  if (q2 && q2 != q1)
2481  a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2482  }
2483  if (a_avail && c_avail && (n != 3)) {
2484  int off = mb_pos;
2485  if (n != 1)
2486  off--;
2487  if (n != 2)
2488  off -= s->mb_stride;
2489  q2 = s->current_picture.qscale_table[off];
2490  if (q2 && q2 != q1)
2491  b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2492  }
2493 
2494  if (a_avail && c_avail) {
2495  if (abs(a - b) <= abs(b - c)) {
2496  pred = c;
2497  *dir_ptr = 1; // left
2498  } else {
2499  pred = a;
2500  *dir_ptr = 0; // top
2501  }
2502  } else if (a_avail) {
2503  pred = a;
2504  *dir_ptr = 0; // top
2505  } else if (c_avail) {
2506  pred = c;
2507  *dir_ptr = 1; // left
2508  } else {
2509  pred = 0;
2510  *dir_ptr = 1; // left
2511  }
2512 
2513  /* update predictor */
2514  *dc_val_ptr = &dc_val[0];
2515  return pred;
2516 }
2517 
2518 /** @} */ // Block group
2519 
2520 /**
2521  * @name VC1 Macroblock-level functions in Simple/Main Profiles
2522  * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2523  * @{
2524  */
2525 
2526 static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
2527  uint8_t **coded_block_ptr)
2528 {
2529  int xy, wrap, pred, a, b, c;
2530 
2531  xy = s->block_index[n];
2532  wrap = s->b8_stride;
2533 
2534  /* B C
2535  * A X
2536  */
2537  a = s->coded_block[xy - 1 ];
2538  b = s->coded_block[xy - 1 - wrap];
2539  c = s->coded_block[xy - wrap];
2540 
2541  if (b == c) {
2542  pred = a;
2543  } else {
2544  pred = c;
2545  }
2546 
2547  /* store value */
2548  *coded_block_ptr = &s->coded_block[xy];
2549 
2550  return pred;
2551 }
2552 
2553 /**
2554  * Decode one AC coefficient
2555  * @param v The VC1 context
2556  * @param last Last coefficient
2557  * @param skip How much zero coefficients to skip
2558  * @param value Decoded AC coefficient value
2559  * @param codingset set of VLC to decode data
2560  * @see 8.1.3.4
2561  */
2562 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
2563  int *value, int codingset)
2564 {
2565  GetBitContext *gb = &v->s.gb;
2566  int index, escape, run = 0, level = 0, lst = 0;
2567 
2568  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2569  if (index != ff_vc1_ac_sizes[codingset] - 1) {
2570  run = vc1_index_decode_table[codingset][index][0];
2571  level = vc1_index_decode_table[codingset][index][1];
2572  lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
2573  if (get_bits1(gb))
2574  level = -level;
2575  } else {
2576  escape = decode210(gb);
2577  if (escape != 2) {
2578  index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2579  run = vc1_index_decode_table[codingset][index][0];
2580  level = vc1_index_decode_table[codingset][index][1];
2581  lst = index >= vc1_last_decode_table[codingset];
2582  if (escape == 0) {
2583  if (lst)
2584  level += vc1_last_delta_level_table[codingset][run];
2585  else
2586  level += vc1_delta_level_table[codingset][run];
2587  } else {
2588  if (lst)
2589  run += vc1_last_delta_run_table[codingset][level] + 1;
2590  else
2591  run += vc1_delta_run_table[codingset][level] + 1;
2592  }
2593  if (get_bits1(gb))
2594  level = -level;
2595  } else {
2596  int sign;
2597  lst = get_bits1(gb);
2598  if (v->s.esc3_level_length == 0) {
2599  if (v->pq < 8 || v->dquantfrm) { // table 59
2600  v->s.esc3_level_length = get_bits(gb, 3);
2601  if (!v->s.esc3_level_length)
2602  v->s.esc3_level_length = get_bits(gb, 2) + 8;
2603  } else { // table 60
2604  v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2605  }
2606  v->s.esc3_run_length = 3 + get_bits(gb, 2);
2607  }
2608  run = get_bits(gb, v->s.esc3_run_length);
2609  sign = get_bits1(gb);
2610  level = get_bits(gb, v->s.esc3_level_length);
2611  if (sign)
2612  level = -level;
2613  }
2614  }
2615 
2616  *last = lst;
2617  *skip = run;
2618  *value = level;
2619 }
2620 
2621 /** Decode intra block in intra frames - should be faster than decode_intra_block
2622  * @param v VC1Context
2623  * @param block block to decode
2624  * @param[in] n subblock index
2625  * @param coded are AC coeffs present or not
2626  * @param codingset set of VLC to decode data
2627  */
2628 static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
2629  int coded, int codingset)
2630 {
2631  GetBitContext *gb = &v->s.gb;
2632  MpegEncContext *s = &v->s;
2633  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2634  int i;
2635  int16_t *dc_val;
2636  int16_t *ac_val, *ac_val2;
2637  int dcdiff;
2638 
2639  /* Get DC differential */
2640  if (n < 4) {
2642  } else {
2644  }
2645  if (dcdiff < 0) {
2646  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2647  return -1;
2648  }
2649  if (dcdiff) {
2650  if (dcdiff == 119 /* ESC index value */) {
2651  /* TODO: Optimize */
2652  if (v->pq == 1) dcdiff = get_bits(gb, 10);
2653  else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2654  else dcdiff = get_bits(gb, 8);
2655  } else {
2656  if (v->pq == 1)
2657  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2658  else if (v->pq == 2)
2659  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2660  }
2661  if (get_bits1(gb))
2662  dcdiff = -dcdiff;
2663  }
2664 
2665  /* Prediction */
2666  dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2667  *dc_val = dcdiff;
2668 
2669  /* Store the quantized DC coeff, used for prediction */
2670  if (n < 4) {
2671  block[0] = dcdiff * s->y_dc_scale;
2672  } else {
2673  block[0] = dcdiff * s->c_dc_scale;
2674  }
2675  /* Skip ? */
2676  if (!coded) {
2677  goto not_coded;
2678  }
2679 
2680  // AC Decoding
2681  i = 1;
2682 
2683  {
2684  int last = 0, skip, value;
2685  const uint8_t *zz_table;
2686  int scale;
2687  int k;
2688 
2689  scale = v->pq * 2 + v->halfpq;
2690 
2691  if (v->s.ac_pred) {
2692  if (!dc_pred_dir)
2693  zz_table = v->zz_8x8[2];
2694  else
2695  zz_table = v->zz_8x8[3];
2696  } else
2697  zz_table = v->zz_8x8[1];
2698 
2699  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2700  ac_val2 = ac_val;
2701  if (dc_pred_dir) // left
2702  ac_val -= 16;
2703  else // top
2704  ac_val -= 16 * s->block_wrap[n];
2705 
2706  while (!last) {
2707  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2708  i += skip;
2709  if (i > 63)
2710  break;
2711  block[zz_table[i++]] = value;
2712  }
2713 
2714  /* apply AC prediction if needed */
2715  if (s->ac_pred) {
2716  if (dc_pred_dir) { // left
2717  for (k = 1; k < 8; k++)
2718  block[k << v->left_blk_sh] += ac_val[k];
2719  } else { // top
2720  for (k = 1; k < 8; k++)
2721  block[k << v->top_blk_sh] += ac_val[k + 8];
2722  }
2723  }
2724  /* save AC coeffs for further prediction */
2725  for (k = 1; k < 8; k++) {
2726  ac_val2[k] = block[k << v->left_blk_sh];
2727  ac_val2[k + 8] = block[k << v->top_blk_sh];
2728  }
2729 
2730  /* scale AC coeffs */
2731  for (k = 1; k < 64; k++)
2732  if (block[k]) {
2733  block[k] *= scale;
2734  if (!v->pquantizer)
2735  block[k] += (block[k] < 0) ? -v->pq : v->pq;
2736  }
2737 
2738  if (s->ac_pred) i = 63;
2739  }
2740 
2741 not_coded:
2742  if (!coded) {
2743  int k, scale;
2744  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2745  ac_val2 = ac_val;
2746 
2747  i = 0;
2748  scale = v->pq * 2 + v->halfpq;
2749  memset(ac_val2, 0, 16 * 2);
2750  if (dc_pred_dir) { // left
2751  ac_val -= 16;
2752  if (s->ac_pred)
2753  memcpy(ac_val2, ac_val, 8 * 2);
2754  } else { // top
2755  ac_val -= 16 * s->block_wrap[n];
2756  if (s->ac_pred)
2757  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2758  }
2759 
2760  /* apply AC prediction if needed */
2761  if (s->ac_pred) {
2762  if (dc_pred_dir) { //left
2763  for (k = 1; k < 8; k++) {
2764  block[k << v->left_blk_sh] = ac_val[k] * scale;
2765  if (!v->pquantizer && block[k << v->left_blk_sh])
2766  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
2767  }
2768  } else { // top
2769  for (k = 1; k < 8; k++) {
2770  block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
2771  if (!v->pquantizer && block[k << v->top_blk_sh])
2772  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
2773  }
2774  }
2775  i = 63;
2776  }
2777  }
2778  s->block_last_index[n] = i;
2779 
2780  return 0;
2781 }
2782 
2783 /** Decode intra block in intra frames - should be faster than decode_intra_block
2784  * @param v VC1Context
2785  * @param block block to decode
2786  * @param[in] n subblock number
2787  * @param coded are AC coeffs present or not
2788  * @param codingset set of VLC to decode data
2789  * @param mquant quantizer value for this macroblock
2790  */
2791 static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
2792  int coded, int codingset, int mquant)
2793 {
2794  GetBitContext *gb = &v->s.gb;
2795  MpegEncContext *s = &v->s;
2796  int dc_pred_dir = 0; /* Direction of the DC prediction used */
2797  int i;
2798  int16_t *dc_val = NULL;
2799  int16_t *ac_val, *ac_val2;
2800  int dcdiff;
2801  int a_avail = v->a_avail, c_avail = v->c_avail;
2802  int use_pred = s->ac_pred;
2803  int scale;
2804  int q1, q2 = 0;
2805  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2806 
2807  /* Get DC differential */
2808  if (n < 4) {
2810  } else {
2812  }
2813  if (dcdiff < 0) {
2814  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2815  return -1;
2816  }
2817  if (dcdiff) {
2818  if (dcdiff == 119 /* ESC index value */) {
2819  /* TODO: Optimize */
2820  if (mquant == 1) dcdiff = get_bits(gb, 10);
2821  else if (mquant == 2) dcdiff = get_bits(gb, 9);
2822  else dcdiff = get_bits(gb, 8);
2823  } else {
2824  if (mquant == 1)
2825  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2826  else if (mquant == 2)
2827  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2828  }
2829  if (get_bits1(gb))
2830  dcdiff = -dcdiff;
2831  }
2832 
2833  /* Prediction */
2834  dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2835  *dc_val = dcdiff;
2836 
2837  /* Store the quantized DC coeff, used for prediction */
2838  if (n < 4) {
2839  block[0] = dcdiff * s->y_dc_scale;
2840  } else {
2841  block[0] = dcdiff * s->c_dc_scale;
2842  }
2843 
2844  //AC Decoding
2845  i = 1;
2846 
2847  /* check if AC is needed at all */
2848  if (!a_avail && !c_avail)
2849  use_pred = 0;
2850  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2851  ac_val2 = ac_val;
2852 
2853  scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2854 
2855  if (dc_pred_dir) // left
2856  ac_val -= 16;
2857  else // top
2858  ac_val -= 16 * s->block_wrap[n];
2859 
2860  q1 = s->current_picture.qscale_table[mb_pos];
2861  if ( dc_pred_dir && c_avail && mb_pos)
2862  q2 = s->current_picture.qscale_table[mb_pos - 1];
2863  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
2864  q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2865  if ( dc_pred_dir && n == 1)
2866  q2 = q1;
2867  if (!dc_pred_dir && n == 2)
2868  q2 = q1;
2869  if (n == 3)
2870  q2 = q1;
2871 
2872  if (coded) {
2873  int last = 0, skip, value;
2874  const uint8_t *zz_table;
2875  int k;
2876 
2877  if (v->s.ac_pred) {
2878  if (!use_pred && v->fcm == ILACE_FRAME) {
2879  zz_table = v->zzi_8x8;
2880  } else {
2881  if (!dc_pred_dir) // top
2882  zz_table = v->zz_8x8[2];
2883  else // left
2884  zz_table = v->zz_8x8[3];
2885  }
2886  } else {
2887  if (v->fcm != ILACE_FRAME)
2888  zz_table = v->zz_8x8[1];
2889  else
2890  zz_table = v->zzi_8x8;
2891  }
2892 
2893  while (!last) {
2894  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2895  i += skip;
2896  if (i > 63)
2897  break;
2898  block[zz_table[i++]] = value;
2899  }
2900 
2901  /* apply AC prediction if needed */
2902  if (use_pred) {
2903  /* scale predictors if needed*/
2904  if (q2 && q1 != q2) {
2905  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2906  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2907 
2908  if (q1 < 1)
2909  return AVERROR_INVALIDDATA;
2910  if (dc_pred_dir) { // left
2911  for (k = 1; k < 8; k++)
2912  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2913  } else { // top
2914  for (k = 1; k < 8; k++)
2915  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2916  }
2917  } else {
2918  if (dc_pred_dir) { //left
2919  for (k = 1; k < 8; k++)
2920  block[k << v->left_blk_sh] += ac_val[k];
2921  } else { //top
2922  for (k = 1; k < 8; k++)
2923  block[k << v->top_blk_sh] += ac_val[k + 8];
2924  }
2925  }
2926  }
2927  /* save AC coeffs for further prediction */
2928  for (k = 1; k < 8; k++) {
2929  ac_val2[k ] = block[k << v->left_blk_sh];
2930  ac_val2[k + 8] = block[k << v->top_blk_sh];
2931  }
2932 
2933  /* scale AC coeffs */
2934  for (k = 1; k < 64; k++)
2935  if (block[k]) {
2936  block[k] *= scale;
2937  if (!v->pquantizer)
2938  block[k] += (block[k] < 0) ? -mquant : mquant;
2939  }
2940 
2941  if (use_pred) i = 63;
2942  } else { // no AC coeffs
2943  int k;
2944 
2945  memset(ac_val2, 0, 16 * 2);
2946  if (dc_pred_dir) { // left
2947  if (use_pred) {
2948  memcpy(ac_val2, ac_val, 8 * 2);
2949  if (q2 && q1 != q2) {
2950  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2951  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2952  if (q1 < 1)
2953  return AVERROR_INVALIDDATA;
2954  for (k = 1; k < 8; k++)
2955  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2956  }
2957  }
2958  } else { // top
2959  if (use_pred) {
2960  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2961  if (q2 && q1 != q2) {
2962  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2963  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2964  if (q1 < 1)
2965  return AVERROR_INVALIDDATA;
2966  for (k = 1; k < 8; k++)
2967  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2968  }
2969  }
2970  }
2971 
2972  /* apply AC prediction if needed */
2973  if (use_pred) {
2974  if (dc_pred_dir) { // left
2975  for (k = 1; k < 8; k++) {
2976  block[k << v->left_blk_sh] = ac_val2[k] * scale;
2977  if (!v->pquantizer && block[k << v->left_blk_sh])
2978  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
2979  }
2980  } else { // top
2981  for (k = 1; k < 8; k++) {
2982  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
2983  if (!v->pquantizer && block[k << v->top_blk_sh])
2984  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
2985  }
2986  }
2987  i = 63;
2988  }
2989  }
2990  s->block_last_index[n] = i;
2991 
2992  return 0;
2993 }
2994 
2995 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2996  * @param v VC1Context
2997  * @param block block to decode
2998  * @param[in] n subblock index
2999  * @param coded are AC coeffs present or not
3000  * @param mquant block quantizer
3001  * @param codingset set of VLC to decode data
3002  */
3003 static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
3004  int coded, int mquant, int codingset)
3005 {
3006  GetBitContext *gb = &v->s.gb;
3007  MpegEncContext *s = &v->s;
3008  int dc_pred_dir = 0; /* Direction of the DC prediction used */
3009  int i;
3010  int16_t *dc_val = NULL;
3011  int16_t *ac_val, *ac_val2;
3012  int dcdiff;
3013  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3014  int a_avail = v->a_avail, c_avail = v->c_avail;
3015  int use_pred = s->ac_pred;
3016  int scale;
3017  int q1, q2 = 0;
3018 
3019  s->dsp.clear_block(block);
3020 
3021  /* XXX: Guard against dumb values of mquant */
3022  mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
3023 
3024  /* Set DC scale - y and c use the same */
3025  s->y_dc_scale = s->y_dc_scale_table[mquant];
3026  s->c_dc_scale = s->c_dc_scale_table[mquant];
3027 
3028  /* Get DC differential */
3029  if (n < 4) {
3031  } else {
3033  }
3034  if (dcdiff < 0) {
3035  av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
3036  return -1;
3037  }
3038  if (dcdiff) {
3039  if (dcdiff == 119 /* ESC index value */) {
3040  /* TODO: Optimize */
3041  if (mquant == 1) dcdiff = get_bits(gb, 10);
3042  else if (mquant == 2) dcdiff = get_bits(gb, 9);
3043  else dcdiff = get_bits(gb, 8);
3044  } else {
3045  if (mquant == 1)
3046  dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
3047  else if (mquant == 2)
3048  dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
3049  }
3050  if (get_bits1(gb))
3051  dcdiff = -dcdiff;
3052  }
3053 
3054  /* Prediction */
3055  dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
3056  *dc_val = dcdiff;
3057 
3058  /* Store the quantized DC coeff, used for prediction */
3059 
3060  if (n < 4) {
3061  block[0] = dcdiff * s->y_dc_scale;
3062  } else {
3063  block[0] = dcdiff * s->c_dc_scale;
3064  }
3065 
3066  //AC Decoding
3067  i = 1;
3068 
3069  /* check if AC is needed at all and adjust direction if needed */
3070  if (!a_avail) dc_pred_dir = 1;
3071  if (!c_avail) dc_pred_dir = 0;
3072  if (!a_avail && !c_avail) use_pred = 0;
3073  ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
3074  ac_val2 = ac_val;
3075 
3076  scale = mquant * 2 + v->halfpq;
3077 
3078  if (dc_pred_dir) //left
3079  ac_val -= 16;
3080  else //top
3081  ac_val -= 16 * s->block_wrap[n];
3082 
3083  q1 = s->current_picture.qscale_table[mb_pos];
3084  if (dc_pred_dir && c_avail && mb_pos)
3085  q2 = s->current_picture.qscale_table[mb_pos - 1];
3086  if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
3087  q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
3088  if ( dc_pred_dir && n == 1)
3089  q2 = q1;
3090  if (!dc_pred_dir && n == 2)
3091  q2 = q1;
3092  if (n == 3) q2 = q1;
3093 
3094  if (coded) {
3095  int last = 0, skip, value;
3096  int k;
3097 
3098  while (!last) {
3099  vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
3100  i += skip;
3101  if (i > 63)
3102  break;
3103  if (v->fcm == PROGRESSIVE)
3104  block[v->zz_8x8[0][i++]] = value;
3105  else {
3106  if (use_pred && (v->fcm == ILACE_FRAME)) {
3107  if (!dc_pred_dir) // top
3108  block[v->zz_8x8[2][i++]] = value;
3109  else // left
3110  block[v->zz_8x8[3][i++]] = value;
3111  } else {
3112  block[v->zzi_8x8[i++]] = value;
3113  }
3114  }
3115  }
3116 
3117  /* apply AC prediction if needed */
3118  if (use_pred) {
3119  /* scale predictors if needed*/
3120  if (q2 && q1 != q2) {
3121  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3122  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3123 
3124  if (q1 < 1)
3125  return AVERROR_INVALIDDATA;
3126  if (dc_pred_dir) { // left
3127  for (k = 1; k < 8; k++)
3128  block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3129  } else { //top
3130  for (k = 1; k < 8; k++)
3131  block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3132  }
3133  } else {
3134  if (dc_pred_dir) { // left
3135  for (k = 1; k < 8; k++)
3136  block[k << v->left_blk_sh] += ac_val[k];
3137  } else { // top
3138  for (k = 1; k < 8; k++)
3139  block[k << v->top_blk_sh] += ac_val[k + 8];
3140  }
3141  }
3142  }
3143  /* save AC coeffs for further prediction */
3144  for (k = 1; k < 8; k++) {
3145  ac_val2[k ] = block[k << v->left_blk_sh];
3146  ac_val2[k + 8] = block[k << v->top_blk_sh];
3147  }
3148 
3149  /* scale AC coeffs */
3150  for (k = 1; k < 64; k++)
3151  if (block[k]) {
3152  block[k] *= scale;
3153  if (!v->pquantizer)
3154  block[k] += (block[k] < 0) ? -mquant : mquant;
3155  }
3156 
3157  if (use_pred) i = 63;
3158  } else { // no AC coeffs
3159  int k;
3160 
3161  memset(ac_val2, 0, 16 * 2);
3162  if (dc_pred_dir) { // left
3163  if (use_pred) {
3164  memcpy(ac_val2, ac_val, 8 * 2);
3165  if (q2 && q1 != q2) {
3166  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3167  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3168  if (q1 < 1)
3169  return AVERROR_INVALIDDATA;
3170  for (k = 1; k < 8; k++)
3171  ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3172  }
3173  }
3174  } else { // top
3175  if (use_pred) {
3176  memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3177  if (q2 && q1 != q2) {
3178  q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3179  q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3180  if (q1 < 1)
3181  return AVERROR_INVALIDDATA;
3182  for (k = 1; k < 8; k++)
3183  ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3184  }
3185  }
3186  }
3187 
3188  /* apply AC prediction if needed */
3189  if (use_pred) {
3190  if (dc_pred_dir) { // left
3191  for (k = 1; k < 8; k++) {
3192  block[k << v->left_blk_sh] = ac_val2[k] * scale;
3193  if (!v->pquantizer && block[k << v->left_blk_sh])
3194  block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
3195  }
3196  } else { // top
3197  for (k = 1; k < 8; k++) {
3198  block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
3199  if (!v->pquantizer && block[k << v->top_blk_sh])
3200  block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
3201  }
3202  }
3203  i = 63;
3204  }
3205  }
3206  s->block_last_index[n] = i;
3207 
3208  return 0;
3209 }
3210 
3211 /** Decode P block
3212  */
3213 static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
3214  int mquant, int ttmb, int first_block,
3215  uint8_t *dst, int linesize, int skip_block,
3216  int *ttmb_out)
3217 {
3218  MpegEncContext *s = &v->s;
3219  GetBitContext *gb = &s->gb;
3220  int i, j;
3221  int subblkpat = 0;
3222  int scale, off, idx, last, skip, value;
3223  int ttblk = ttmb & 7;
3224  int pat = 0;
3225 
3226  s->dsp.clear_block(block);
3227 
3228  if (ttmb == -1) {
3230  }
3231  if (ttblk == TT_4X4) {
3232  subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
3233  }
3234  if ((ttblk != TT_8X8 && ttblk != TT_4X4)
3235  && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
3236  || (!v->res_rtm_flag && !first_block))) {
3237  subblkpat = decode012(gb);
3238  if (subblkpat)
3239  subblkpat ^= 3; // swap decoded pattern bits
3240  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
3241  ttblk = TT_8X4;
3242  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
3243  ttblk = TT_4X8;
3244  }
3245  scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
3246 
3247  // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
3248  if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
3249  subblkpat = 2 - (ttblk == TT_8X4_TOP);
3250  ttblk = TT_8X4;
3251  }
3252  if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
3253  subblkpat = 2 - (ttblk == TT_4X8_LEFT);
3254  ttblk = TT_4X8;
3255  }
3256  switch (ttblk) {
3257  case TT_8X8:
3258  pat = 0xF;
3259  i = 0;
3260  last = 0;
3261  while (!last) {
3262  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3263  i += skip;
3264  if (i > 63)
3265  break;
3266  if (!v->fcm)
3267  idx = v->zz_8x8[0][i++];
3268  else
3269  idx = v->zzi_8x8[i++];
3270  block[idx] = value * scale;
3271  if (!v->pquantizer)
3272  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3273  }
3274  if (!skip_block) {
3275  if (i == 1)
3276  v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
3277  else {
3278  v->vc1dsp.vc1_inv_trans_8x8(block);
3279  s->dsp.add_pixels_clamped(block, dst, linesize);
3280  }
3281  }
3282  break;
3283  case TT_4X4:
3284  pat = ~subblkpat & 0xF;
3285  for (j = 0; j < 4; j++) {
3286  last = subblkpat & (1 << (3 - j));
3287  i = 0;
3288  off = (j & 1) * 4 + (j & 2) * 16;
3289  while (!last) {
3290  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3291  i += skip;
3292  if (i > 15)
3293  break;
3294  if (!v->fcm)
3296  else
3297  idx = ff_vc1_adv_interlaced_4x4_zz[i++];
3298  block[idx + off] = value * scale;
3299  if (!v->pquantizer)
3300  block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3301  }
3302  if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
3303  if (i == 1)
3304  v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3305  else
3306  v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3307  }
3308  }
3309  break;
3310  case TT_8X4:
3311  pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
3312  for (j = 0; j < 2; j++) {
3313  last = subblkpat & (1 << (1 - j));
3314  i = 0;
3315  off = j * 32;
3316  while (!last) {
3317  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3318  i += skip;
3319  if (i > 31)
3320  break;
3321  if (!v->fcm)
3322  idx = v->zz_8x4[i++] + off;
3323  else
3324  idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
3325  block[idx] = value * scale;
3326  if (!v->pquantizer)
3327  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3328  }
3329  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3330  if (i == 1)
3331  v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
3332  else
3333  v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
3334  }
3335  }
3336  break;
3337  case TT_4X8:
3338  pat = ~(subblkpat * 5) & 0xF;
3339  for (j = 0; j < 2; j++) {
3340  last = subblkpat & (1 << (1 - j));
3341  i = 0;
3342  off = j * 4;
3343  while (!last) {
3344  vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3345  i += skip;
3346  if (i > 31)
3347  break;
3348  if (!v->fcm)
3349  idx = v->zz_4x8[i++] + off;
3350  else
3351  idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
3352  block[idx] = value * scale;
3353  if (!v->pquantizer)
3354  block[idx] += (block[idx] < 0) ? -mquant : mquant;
3355  }
3356  if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3357  if (i == 1)
3358  v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
3359  else
3360  v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3361  }
3362  }
3363  break;
3364  }
3365  if (ttmb_out)
3366  *ttmb_out |= ttblk << (n * 4);
3367  return pat;
3368 }
3369 
3370 /** @} */ // Macroblock group
3371 
3372 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
3373 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3374 
3376 {
3377  MpegEncContext *s = &v->s;
3378  int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
3379  block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
3380  mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
3381  block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
3382  int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3383  uint8_t *dst;
3384 
3385  if (block_num > 3) {
3386  dst = s->dest[block_num - 3];
3387  } else {
3388  dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
3389  }
3390  if (s->mb_y != s->end_mb_y || block_num < 2) {
3391  int16_t (*mv)[2];
3392  int mv_stride;
3393 
3394  if (block_num > 3) {
3395  bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
3396  bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
3397  mv = &v->luma_mv[s->mb_x - s->mb_stride];
3398  mv_stride = s->mb_stride;
3399  } else {
3400  bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
3401  : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
3402  bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
3403  : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
3404  mv_stride = s->b8_stride;
3405  mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
3406  }
3407 
3408  if (bottom_is_intra & 1 || block_is_intra & 1 ||
3409  mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
3410  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3411  } else {
3412  idx = ((bottom_cbp >> 2) | block_cbp) & 3;
3413  if (idx == 3) {
3414  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3415  } else if (idx) {
3416  if (idx == 1)
3417  v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3418  else
3419  v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3420  }
3421  }
3422  }
3423 
3424  dst -= 4 * linesize;
3425  ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
3426  if (ttblk == TT_4X4 || ttblk == TT_8X4) {
3427  idx = (block_cbp | (block_cbp >> 2)) & 3;
3428  if (idx == 3) {
3429  v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3430  } else if (idx) {
3431  if (idx == 1)
3432  v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3433  else
3434  v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3435  }
3436  }
3437 }
3438 
3440 {
3441  MpegEncContext *s = &v->s;
3442  int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
3443  block_cbp = mb_cbp >> (block_num * 4), right_cbp,
3444  mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
3445  block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
3446  int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3447  uint8_t *dst;
3448 
3449  if (block_num > 3) {
3450  dst = s->dest[block_num - 3] - 8 * linesize;
3451  } else {
3452  dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
3453  }
3454 
3455  if (s->mb_x != s->mb_width || !(block_num & 5)) {
3456  int16_t (*mv)[2];
3457 
3458  if (block_num > 3) {
3459  right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
3460  right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
3461  mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
3462  } else {
3463  right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3464  : (mb_cbp >> ((block_num + 1) * 4));
3465  right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3466  : (mb_is_intra >> ((block_num + 1) * 4));
3467  mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
3468  }
3469  if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
3470  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3471  } else {
3472  idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
3473  if (idx == 5) {
3474  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3475  } else if (idx) {
3476  if (idx == 1)
3477  v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
3478  else
3479  v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3480  }
3481  }
3482  }
3483 
3484  dst -= 4;
3485  ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
3486  if (ttblk == TT_4X4 || ttblk == TT_4X8) {
3487  idx = (block_cbp | (block_cbp >> 1)) & 5;
3488  if (idx == 5) {
3489  v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3490  } else if (idx) {
3491  if (idx == 1)
3492  v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
3493  else
3494  v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3495  }
3496  }
3497 }
3498 
3500 {
3501  MpegEncContext *s = &v->s;
3502  int i;
3503 
3504  for (i = 0; i < 6; i++) {
3506  }
3507 
3508  /* V always precedes H, therefore we run H one MB before V;
3509  * at the end of a row, we catch up to complete the row */
3510  if (s->mb_x) {
3511  for (i = 0; i < 6; i++) {
3513  }
3514  if (s->mb_x == s->mb_width - 1) {
3515  s->mb_x++;
3517  for (i = 0; i < 6; i++) {
3519  }
3520  }
3521  }
3522 }
3523 
3524 /** Decode one P-frame MB
3525  */
3527 {
3528  MpegEncContext *s = &v->s;
3529  GetBitContext *gb = &s->gb;
3530  int i, j;
3531  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3532  int cbp; /* cbp decoding stuff */
3533  int mqdiff, mquant; /* MB quantization */
3534  int ttmb = v->ttfrm; /* MB Transform type */
3535 
3536  int mb_has_coeffs = 1; /* last_flag */
3537  int dmv_x, dmv_y; /* Differential MV components */
3538  int index, index1; /* LUT indexes */
3539  int val, sign; /* temp values */
3540  int first_block = 1;
3541  int dst_idx, off;
3542  int skipped, fourmv;
3543  int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
3544 
3545  mquant = v->pq; /* lossy initialization */
3546 
3547  if (v->mv_type_is_raw)
3548  fourmv = get_bits1(gb);
3549  else
3550  fourmv = v->mv_type_mb_plane[mb_pos];
3551  if (v->skip_is_raw)
3552  skipped = get_bits1(gb);
3553  else
3554  skipped = v->s.mbskip_table[mb_pos];
3555 
3556  if (!fourmv) { /* 1MV mode */
3557  if (!skipped) {
3558  GET_MVDATA(dmv_x, dmv_y);
3559 
3560  if (s->mb_intra) {
3561  s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3562  s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3563  }
3565  vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3566 
3567  /* FIXME Set DC val for inter block ? */
3568  if (s->mb_intra && !mb_has_coeffs) {
3569  GET_MQUANT();
3570  s->ac_pred = get_bits1(gb);
3571  cbp = 0;
3572  } else if (mb_has_coeffs) {
3573  if (s->mb_intra)
3574  s->ac_pred = get_bits1(gb);
3575  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3576  GET_MQUANT();
3577  } else {
3578  mquant = v->pq;
3579  cbp = 0;
3580  }
3581  s->current_picture.qscale_table[mb_pos] = mquant;
3582 
3583  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3584  ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3585  VC1_TTMB_VLC_BITS, 2);
3586  if (!s->mb_intra) vc1_mc_1mv(v, 0);
3587  dst_idx = 0;
3588  for (i = 0; i < 6; i++) {
3589  s->dc_val[0][s->block_index[i]] = 0;
3590  dst_idx += i >> 2;
3591  val = ((cbp >> (5 - i)) & 1);
3592  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3593  v->mb_type[0][s->block_index[i]] = s->mb_intra;
3594  if (s->mb_intra) {
3595  /* check if prediction blocks A and C are available */
3596  v->a_avail = v->c_avail = 0;
3597  if (i == 2 || i == 3 || !s->first_slice_line)
3598  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3599  if (i == 1 || i == 3 || s->mb_x)
3600  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3601 
3602  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3603  (i & 4) ? v->codingset2 : v->codingset);
3604  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3605  continue;
3606  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3607  if (v->rangeredfrm)
3608  for (j = 0; j < 64; j++)
3609  s->block[i][j] <<= 1;
3610  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3611  if (v->pq >= 9 && v->overlap) {
3612  if (v->c_avail)
3613  v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3614  if (v->a_avail)
3615  v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3616  }
3617  block_cbp |= 0xF << (i << 2);
3618  block_intra |= 1 << i;
3619  } else if (val) {
3620  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
3621  s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
3622  (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3623  block_cbp |= pat << (i << 2);
3624  if (!v->ttmbf && ttmb < 8)
3625  ttmb = -1;
3626  first_block = 0;
3627  }
3628  }
3629  } else { // skipped
3630  s->mb_intra = 0;
3631  for (i = 0; i < 6; i++) {
3632  v->mb_type[0][s->block_index[i]] = 0;
3633  s->dc_val[0][s->block_index[i]] = 0;
3634  }
3635  s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3636  s->current_picture.qscale_table[mb_pos] = 0;
3637  vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3638  vc1_mc_1mv(v, 0);
3639  }
3640  } else { // 4MV mode
3641  if (!skipped /* unskipped MB */) {
3642  int intra_count = 0, coded_inter = 0;
3643  int is_intra[6], is_coded[6];
3644  /* Get CBPCY */
3645  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3646  for (i = 0; i < 6; i++) {
3647  val = ((cbp >> (5 - i)) & 1);
3648  s->dc_val[0][s->block_index[i]] = 0;
3649  s->mb_intra = 0;
3650  if (i < 4) {
3651  dmv_x = dmv_y = 0;
3652  s->mb_intra = 0;
3653  mb_has_coeffs = 0;
3654  if (val) {
3655  GET_MVDATA(dmv_x, dmv_y);
3656  }
3657  vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3658  if (!s->mb_intra)
3659  vc1_mc_4mv_luma(v, i, 0, 0);
3660  intra_count += s->mb_intra;
3661  is_intra[i] = s->mb_intra;
3662  is_coded[i] = mb_has_coeffs;
3663  }
3664  if (i & 4) {
3665  is_intra[i] = (intra_count >= 3);
3666  is_coded[i] = val;
3667  }
3668  if (i == 4)
3669  vc1_mc_4mv_chroma(v, 0);
3670  v->mb_type[0][s->block_index[i]] = is_intra[i];
3671  if (!coded_inter)
3672  coded_inter = !is_intra[i] & is_coded[i];
3673  }
3674  // if there are no coded blocks then don't do anything more
3675  dst_idx = 0;
3676  if (!intra_count && !coded_inter)
3677  goto end;
3678  GET_MQUANT();
3679  s->current_picture.qscale_table[mb_pos] = mquant;
3680  /* test if block is intra and has pred */
3681  {
3682  int intrapred = 0;
3683  for (i = 0; i < 6; i++)
3684  if (is_intra[i]) {
3685  if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3686  || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
3687  intrapred = 1;
3688  break;
3689  }
3690  }
3691  if (intrapred)
3692  s->ac_pred = get_bits1(gb);
3693  else
3694  s->ac_pred = 0;
3695  }
3696  if (!v->ttmbf && coded_inter)
3698  for (i = 0; i < 6; i++) {
3699  dst_idx += i >> 2;
3700  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3701  s->mb_intra = is_intra[i];
3702  if (is_intra[i]) {
3703  /* check if prediction blocks A and C are available */
3704  v->a_avail = v->c_avail = 0;
3705  if (i == 2 || i == 3 || !s->first_slice_line)
3706  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3707  if (i == 1 || i == 3 || s->mb_x)
3708  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3709 
3710  vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
3711  (i & 4) ? v->codingset2 : v->codingset);
3712  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3713  continue;
3714  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3715  if (v->rangeredfrm)
3716  for (j = 0; j < 64; j++)
3717  s->block[i][j] <<= 1;
3718  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
3719  (i & 4) ? s->uvlinesize : s->linesize);
3720  if (v->pq >= 9 && v->overlap) {
3721  if (v->c_avail)
3722  v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3723  if (v->a_avail)
3724  v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3725  }
3726  block_cbp |= 0xF << (i << 2);
3727  block_intra |= 1 << i;
3728  } else if (is_coded[i]) {
3729  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3730  first_block, s->dest[dst_idx] + off,
3731  (i & 4) ? s->uvlinesize : s->linesize,
3732  (i & 4) && (s->flags & CODEC_FLAG_GRAY),
3733  &block_tt);
3734  block_cbp |= pat << (i << 2);
3735  if (!v->ttmbf && ttmb < 8)
3736  ttmb = -1;
3737  first_block = 0;
3738  }
3739  }
3740  } else { // skipped MB
3741  s->mb_intra = 0;
3742  s->current_picture.qscale_table[mb_pos] = 0;
3743  for (i = 0; i < 6; i++) {
3744  v->mb_type[0][s->block_index[i]] = 0;
3745  s->dc_val[0][s->block_index[i]] = 0;
3746  }
3747  for (i = 0; i < 4; i++) {
3748  vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3749  vc1_mc_4mv_luma(v, i, 0, 0);
3750  }
3751  vc1_mc_4mv_chroma(v, 0);
3752  s->current_picture.qscale_table[mb_pos] = 0;
3753  }
3754  }
3755 end:
3756  v->cbp[s->mb_x] = block_cbp;
3757  v->ttblk[s->mb_x] = block_tt;
3758  v->is_intra[s->mb_x] = block_intra;
3759 
3760  return 0;
3761 }
3762 
3763 /* Decode one macroblock in an interlaced frame p picture */
3764 
3766 {
3767  MpegEncContext *s = &v->s;
3768  GetBitContext *gb = &s->gb;
3769  int i;
3770  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3771  int cbp = 0; /* cbp decoding stuff */
3772  int mqdiff, mquant; /* MB quantization */
3773  int ttmb = v->ttfrm; /* MB Transform type */
3774 
3775  int mb_has_coeffs = 1; /* last_flag */
3776  int dmv_x, dmv_y; /* Differential MV components */
3777  int val; /* temp value */
3778  int first_block = 1;
3779  int dst_idx, off;
3780  int skipped, fourmv = 0, twomv = 0;
3781  int block_cbp = 0, pat, block_tt = 0;
3782  int idx_mbmode = 0, mvbp;
3783  int stride_y, fieldtx;
3784 
3785  mquant = v->pq; /* Lossy initialization */
3786 
3787  if (v->skip_is_raw)
3788  skipped = get_bits1(gb);
3789  else
3790  skipped = v->s.mbskip_table[mb_pos];
3791  if (!skipped) {
3792  if (v->fourmvswitch)
3793  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
3794  else
3795  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
3796  switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
3797  /* store the motion vector type in a flag (useful later) */
3798  case MV_PMODE_INTFR_4MV:
3799  fourmv = 1;
3800  v->blk_mv_type[s->block_index[0]] = 0;
3801  v->blk_mv_type[s->block_index[1]] = 0;
3802  v->blk_mv_type[s->block_index[2]] = 0;
3803  v->blk_mv_type[s->block_index[3]] = 0;
3804  break;
3806  fourmv = 1;
3807  v->blk_mv_type[s->block_index[0]] = 1;
3808  v->blk_mv_type[s->block_index[1]] = 1;
3809  v->blk_mv_type[s->block_index[2]] = 1;
3810  v->blk_mv_type[s->block_index[3]] = 1;
3811  break;
3813  twomv = 1;
3814  v->blk_mv_type[s->block_index[0]] = 1;
3815  v->blk_mv_type[s->block_index[1]] = 1;
3816  v->blk_mv_type[s->block_index[2]] = 1;
3817  v->blk_mv_type[s->block_index[3]] = 1;
3818  break;
3819  case MV_PMODE_INTFR_1MV:
3820  v->blk_mv_type[s->block_index[0]] = 0;
3821  v->blk_mv_type[s->block_index[1]] = 0;
3822  v->blk_mv_type[s->block_index[2]] = 0;
3823  v->blk_mv_type[s->block_index[3]] = 0;
3824  break;
3825  }
3826  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
3827  for (i = 0; i < 4; i++) {
3828  s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
3829  s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
3830  }
3831  s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3832  s->mb_intra = v->is_intra[s->mb_x] = 1;
3833  for (i = 0; i < 6; i++)
3834  v->mb_type[0][s->block_index[i]] = 1;
3835  fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
3836  mb_has_coeffs = get_bits1(gb);
3837  if (mb_has_coeffs)
3838  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3839  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
3840  GET_MQUANT();
3841  s->current_picture.qscale_table[mb_pos] = mquant;
3842  /* Set DC scale - y and c use the same (not sure if necessary here) */
3843  s->y_dc_scale = s->y_dc_scale_table[mquant];
3844  s->c_dc_scale = s->c_dc_scale_table[mquant];
3845  dst_idx = 0;
3846  for (i = 0; i < 6; i++) {
3847  s->dc_val[0][s->block_index[i]] = 0;
3848  dst_idx += i >> 2;
3849  val = ((cbp >> (5 - i)) & 1);
3850  v->mb_type[0][s->block_index[i]] = s->mb_intra;
3851  v->a_avail = v->c_avail = 0;
3852  if (i == 2 || i == 3 || !s->first_slice_line)
3853  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3854  if (i == 1 || i == 3 || s->mb_x)
3855  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3856 
3857  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3858  (i & 4) ? v->codingset2 : v->codingset);
3859  if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3860  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3861  if (i < 4) {
3862  stride_y = s->linesize << fieldtx;
3863  off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
3864  } else {
3865  stride_y = s->uvlinesize;
3866  off = 0;
3867  }
3868  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
3869  //TODO: loop filter
3870  }
3871 
3872  } else { // inter MB
3873  mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
3874  if (mb_has_coeffs)
3875  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3876  if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
3878  } else {
3879  if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
3880  || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
3882  }
3883  }
3884  s->mb_intra = v->is_intra[s->mb_x] = 0;
3885  for (i = 0; i < 6; i++)
3886  v->mb_type[0][s->block_index[i]] = 0;
3887  fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
3888  /* for all motion vector read MVDATA and motion compensate each block */
3889  dst_idx = 0;
3890  if (fourmv) {
3891  mvbp = v->fourmvbp;
3892  for (i = 0; i < 6; i++) {
3893  if (i < 4) {
3894  dmv_x = dmv_y = 0;
3895  val = ((mvbp >> (3 - i)) & 1);
3896  if (val) {
3897  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3898  }
3899  vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
3900  vc1_mc_4mv_luma(v, i, 0, 0);
3901  } else if (i == 4) {
3902  vc1_mc_4mv_chroma4(v, 0, 0, 0);
3903  }
3904  }
3905  } else if (twomv) {
3906  mvbp = v->twomvbp;
3907  dmv_x = dmv_y = 0;
3908  if (mvbp & 2) {
3909  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3910  }
3911  vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
3912  vc1_mc_4mv_luma(v, 0, 0, 0);
3913  vc1_mc_4mv_luma(v, 1, 0, 0);
3914  dmv_x = dmv_y = 0;
3915  if (mvbp & 1) {
3916  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3917  }
3918  vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
3919  vc1_mc_4mv_luma(v, 2, 0, 0);
3920  vc1_mc_4mv_luma(v, 3, 0, 0);
3921  vc1_mc_4mv_chroma4(v, 0, 0, 0);
3922  } else {
3923  mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
3924  dmv_x = dmv_y = 0;
3925  if (mvbp) {
3926  get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3927  }
3928  vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
3929  vc1_mc_1mv(v, 0);
3930  }
3931  if (cbp)
3932  GET_MQUANT(); // p. 227
3933  s->current_picture.qscale_table[mb_pos] = mquant;
3934  if (!v->ttmbf && cbp)
3936  for (i = 0; i < 6; i++) {
3937  s->dc_val[0][s->block_index[i]] = 0;
3938  dst_idx += i >> 2;
3939  val = ((cbp >> (5 - i)) & 1);
3940  if (!fieldtx)
3941  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3942  else
3943  off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
3944  if (val) {
3945  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3946  first_block, s->dest[dst_idx] + off,
3947  (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
3948  (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3949  block_cbp |= pat << (i << 2);
3950  if (!v->ttmbf && ttmb < 8)
3951  ttmb = -1;
3952  first_block = 0;
3953  }
3954  }
3955  }
3956  } else { // skipped
3957  s->mb_intra = v->is_intra[s->mb_x] = 0;
3958  for (i = 0; i < 6; i++) {
3959  v->mb_type[0][s->block_index[i]] = 0;
3960  s->dc_val[0][s->block_index[i]] = 0;
3961  }
3962  s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3963  s->current_picture.qscale_table[mb_pos] = 0;
3964  v->blk_mv_type[s->block_index[0]] = 0;
3965  v->blk_mv_type[s->block_index[1]] = 0;
3966  v->blk_mv_type[s->block_index[2]] = 0;
3967  v->blk_mv_type[s->block_index[3]] = 0;
3968  vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
3969  vc1_mc_1mv(v, 0);
3970  }
3971  if (s->mb_x == s->mb_width - 1)
3972  memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
3973  return 0;
3974 }
3975 
3977 {
3978  MpegEncContext *s = &v->s;
3979  GetBitContext *gb = &s->gb;
3980  int i;
3981  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3982  int cbp = 0; /* cbp decoding stuff */
3983  int mqdiff, mquant; /* MB quantization */
3984  int ttmb = v->ttfrm; /* MB Transform type */
3985 
3986  int mb_has_coeffs = 1; /* last_flag */
3987  int dmv_x, dmv_y; /* Differential MV components */
3988  int val; /* temp values */
3989  int first_block = 1;
3990  int dst_idx, off;
3991  int pred_flag = 0;
3992  int block_cbp = 0, pat, block_tt = 0;
3993  int idx_mbmode = 0;
3994 
3995  mquant = v->pq; /* Lossy initialization */
3996 
3997  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
3998  if (idx_mbmode <= 1) { // intra MB
3999  s->mb_intra = v->is_intra[s->mb_x] = 1;
4000  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
4001  s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
4002  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
4003  GET_MQUANT();
4004  s->current_picture.qscale_table[mb_pos] = mquant;
4005  /* Set DC scale - y and c use the same (not sure if necessary here) */
4006  s->y_dc_scale = s->y_dc_scale_table[mquant];
4007  s->c_dc_scale = s->c_dc_scale_table[mquant];
4008  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
4009  mb_has_coeffs = idx_mbmode & 1;
4010  if (mb_has_coeffs)
4011  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
4012  dst_idx = 0;
4013  for (i = 0; i < 6; i++) {
4014  s->dc_val[0][s->block_index[i]] = 0;
4015  v->mb_type[0][s->block_index[i]] = 1;
4016  dst_idx += i >> 2;
4017  val = ((cbp >> (5 - i)) & 1);
4018  v->a_avail = v->c_avail = 0;
4019  if (i == 2 || i == 3 || !s->first_slice_line)
4020  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4021  if (i == 1 || i == 3 || s->mb_x)
4022  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4023 
4024  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4025  (i & 4) ? v->codingset2 : v->codingset);
4026  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4027  continue;
4028  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4029  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4030  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
4031  // TODO: loop filter
4032  }
4033  } else {
4034  s->mb_intra = v->is_intra[s->mb_x] = 0;
4035  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
4036  for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
4037  if (idx_mbmode <= 5) { // 1-MV
4038  dmv_x = dmv_y = pred_flag = 0;
4039  if (idx_mbmode & 1) {
4040  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
4041  }
4042  vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
4043  vc1_mc_1mv(v, 0);
4044  mb_has_coeffs = !(idx_mbmode & 2);
4045  } else { // 4-MV
4047  for (i = 0; i < 6; i++) {
4048  if (i < 4) {
4049  dmv_x = dmv_y = pred_flag = 0;
4050  val = ((v->fourmvbp >> (3 - i)) & 1);
4051  if (val) {
4052  get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
4053  }
4054  vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
4055  vc1_mc_4mv_luma(v, i, 0, 0);
4056  } else if (i == 4)
4057  vc1_mc_4mv_chroma(v, 0);
4058  }
4059  mb_has_coeffs = idx_mbmode & 1;
4060  }
4061  if (mb_has_coeffs)
4062  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4063  if (cbp) {
4064  GET_MQUANT();
4065  }
4066  s->current_picture.qscale_table[mb_pos] = mquant;
4067  if (!v->ttmbf && cbp) {
4069  }
4070  dst_idx = 0;
4071  for (i = 0; i < 6; i++) {
4072  s->dc_val[0][s->block_index[i]] = 0;
4073  dst_idx += i >> 2;
4074  val = ((cbp >> (5 - i)) & 1);
4075  off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
4076  if (val) {
4077  pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
4078  first_block, s->dest[dst_idx] + off,
4079  (i & 4) ? s->uvlinesize : s->linesize,
4080  (i & 4) && (s->flags & CODEC_FLAG_GRAY),
4081  &block_tt);
4082  block_cbp |= pat << (i << 2);
4083  if (!v->ttmbf && ttmb < 8) ttmb = -1;
4084  first_block = 0;
4085  }
4086  }
4087  }
4088  if (s->mb_x == s->mb_width - 1)
4089  memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
4090  return 0;
4091 }
4092 
4093 /** Decode one B-frame MB (in Main profile)
4094  */
4096 {
4097  MpegEncContext *s = &v->s;
4098  GetBitContext *gb = &s->gb;
4099  int i, j;
4100  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
4101  int cbp = 0; /* cbp decoding stuff */
4102  int mqdiff, mquant; /* MB quantization */
4103  int ttmb = v->ttfrm; /* MB Transform type */
4104  int mb_has_coeffs = 0; /* last_flag */
4105  int index, index1; /* LUT indexes */
4106  int val, sign; /* temp values */
4107  int first_block = 1;
4108  int dst_idx, off;
4109  int skipped, direct;
4110  int dmv_x[2], dmv_y[2];
4111  int bmvtype = BMV_TYPE_BACKWARD;
4112 
4113  mquant = v->pq; /* lossy initialization */
4114  s->mb_intra = 0;
4115 
4116  if (v->dmb_is_raw)
4117  direct = get_bits1(gb);
4118  else
4119  direct = v->direct_mb_plane[mb_pos];
4120  if (v->skip_is_raw)
4121  skipped = get_bits1(gb);
4122  else
4123  skipped = v->s.mbskip_table[mb_pos];
4124 
4125  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4126  for (i = 0; i < 6; i++) {
4127  v->mb_type[0][s->block_index[i]] = 0;
4128  s->dc_val[0][s->block_index[i]] = 0;
4129  }
4130  s->current_picture.qscale_table[mb_pos] = 0;
4131 
4132  if (!direct) {
4133  if (!skipped) {
4134  GET_MVDATA(dmv_x[0], dmv_y[0]);
4135  dmv_x[1] = dmv_x[0];
4136  dmv_y[1] = dmv_y[0];
4137  }
4138  if (skipped || !s->mb_intra) {
4139  bmvtype = decode012(gb);
4140  switch (bmvtype) {
4141  case 0:
4142  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
4143  break;
4144  case 1:
4145  bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
4146  break;
4147  case 2:
4148  bmvtype = BMV_TYPE_INTERPOLATED;
4149  dmv_x[0] = dmv_y[0] = 0;
4150  }
4151  }
4152  }
4153  for (i = 0; i < 6; i++)
4154  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4155 
4156  if (skipped) {
4157  if (direct)
4158  bmvtype = BMV_TYPE_INTERPOLATED;
4159  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4160  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4161  return;
4162  }
4163  if (direct) {
4164  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4165  GET_MQUANT();
4166  s->mb_intra = 0;
4167  s->current_picture.qscale_table[mb_pos] = mquant;
4168  if (!v->ttmbf)
4170  dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
4171  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4172  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4173  } else {
4174  if (!mb_has_coeffs && !s->mb_intra) {
4175  /* no coded blocks - effectively skipped */
4176  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4177  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4178  return;
4179  }
4180  if (s->mb_intra && !mb_has_coeffs) {
4181  GET_MQUANT();
4182  s->current_picture.qscale_table[mb_pos] = mquant;
4183  s->ac_pred = get_bits1(gb);
4184  cbp = 0;
4185  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4186  } else {
4187  if (bmvtype == BMV_TYPE_INTERPOLATED) {
4188  GET_MVDATA(dmv_x[0], dmv_y[0]);
4189  if (!mb_has_coeffs) {
4190  /* interpolated skipped block */
4191  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4192  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4193  return;
4194  }
4195  }
4196  vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
4197  if (!s->mb_intra) {
4198  vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4199  }
4200  if (s->mb_intra)
4201  s->ac_pred = get_bits1(gb);
4202  cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
4203  GET_MQUANT();
4204  s->current_picture.qscale_table[mb_pos] = mquant;
4205  if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
4207  }
4208  }
4209  dst_idx = 0;
4210  for (i = 0; i < 6; i++) {
4211  s->dc_val[0][s->block_index[i]] = 0;
4212  dst_idx += i >> 2;
4213  val = ((cbp >> (5 - i)) & 1);
4214  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4215  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4216  if (s->mb_intra) {
4217  /* check if prediction blocks A and C are available */
4218  v->a_avail = v->c_avail = 0;
4219  if (i == 2 || i == 3 || !s->first_slice_line)
4220  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4221  if (i == 1 || i == 3 || s->mb_x)
4222  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4223 
4224  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4225  (i & 4) ? v->codingset2 : v->codingset);
4226  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4227  continue;
4228  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4229  if (v->rangeredfrm)
4230  for (j = 0; j < 64; j++)
4231  s->block[i][j] <<= 1;
4232  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
4233  } else if (val) {
4234  vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
4235  first_block, s->dest[dst_idx] + off,
4236  (i & 4) ? s->uvlinesize : s->linesize,
4237  (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
4238  if (!v->ttmbf && ttmb < 8)
4239  ttmb = -1;
4240  first_block = 0;
4241  }
4242  }
4243 }
4244 
4245 /** Decode one B-frame MB (in interlaced field B picture)
4246  */
4248 {
4249  MpegEncContext *s = &v->s;
4250  GetBitContext *gb = &s->gb;
4251  int i, j;
4252  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
4253  int cbp = 0; /* cbp decoding stuff */
4254  int mqdiff, mquant; /* MB quantization */
4255  int ttmb = v->ttfrm; /* MB Transform type */
4256  int mb_has_coeffs = 0; /* last_flag */
4257  int val; /* temp value */
4258  int first_block = 1;
4259  int dst_idx, off;
4260  int fwd;
4261  int dmv_x[2], dmv_y[2], pred_flag[2];
4262  int bmvtype = BMV_TYPE_BACKWARD;
4263  int idx_mbmode;
4264 
4265  mquant = v->pq; /* Lossy initialization */
4266  s->mb_intra = 0;
4267 
4268  idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
4269  if (idx_mbmode <= 1) { // intra MB
4270  s->mb_intra = v->is_intra[s->mb_x] = 1;
4271  s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
4272  s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
4273  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
4274  GET_MQUANT();
4275  s->current_picture.qscale_table[mb_pos] = mquant;
4276  /* Set DC scale - y and c use the same (not sure if necessary here) */
4277  s->y_dc_scale = s->y_dc_scale_table[mquant];
4278  s->c_dc_scale = s->c_dc_scale_table[mquant];
4279  v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
4280  mb_has_coeffs = idx_mbmode & 1;
4281  if (mb_has_coeffs)
4282  cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
4283  dst_idx = 0;
4284  for (i = 0; i < 6; i++) {
4285  s->dc_val[0][s->block_index[i]] = 0;
4286  dst_idx += i >> 2;
4287  val = ((cbp >> (5 - i)) & 1);
4288  v->mb_type[0][s->block_index[i]] = s->mb_intra;
4289  v->a_avail = v->c_avail = 0;
4290  if (i == 2 || i == 3 || !s->first_slice_line)
4291  v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
4292  if (i == 1 || i == 3 || s->mb_x)
4293  v->c_avail = v->mb_type[0][s->block_index[i] - 1];
4294 
4295  vc1_decode_intra_block(v, s->block[i], i, val, mquant,
4296  (i & 4) ? v->codingset2 : v->codingset);
4297  if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
4298  continue;
4299  v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
4300  if (v->rangeredfrm)
4301  for (j = 0; j < 64; j++)
4302  s->block[i][j] <<= 1;
4303  off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
4304  s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
4305  // TODO: yet to perform loop filter
4306  }
4307  } else {
4308  s->mb_intra = v->is_intra[s->mb_x] = 0;
4309  s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
4310  for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
4311  if (v->fmb_is_raw)
4312  fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
4313  else
4314  fwd = v->forward_mb_plane[mb_pos];
4315  if (idx_mbmode <= 5) { // 1-MV
4316  int interpmvp = 0;
4317  dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4318  pred_flag[0] = pred_flag[1] = 0;
4319  if (fwd)
4320  bmvtype = BMV_TYPE_FORWARD;
4321  else {
4322  bmvtype = decode012(gb);
4323  switch (bmvtype) {
4324  case 0:
4325  bmvtype = BMV_TYPE_BACKWARD;
4326  break;
4327  case 1:
4328  bmvtype = BMV_TYPE_DIRECT;
4329  break;
4330  case 2:
4331  bmvtype = BMV_TYPE_INTERPOLATED;
4332  interpmvp = get_bits1(gb);
4333  }
4334  }
4335  v->bmvtype = bmvtype;
4336  if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
4337  get_mvdata_interlaced(v, &a