FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
twinvq.c
Go to the documentation of this file.
1 /*
2  * TwinVQ decoder
3  * Copyright (c) 2009 Vitor Sessak
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <math.h>
23 #include <stdint.h>
24 
26 #include "libavutil/float_dsp.h"
27 #include "avcodec.h"
28 #include "fft.h"
29 #include "internal.h"
30 #include "lsp.h"
31 #include "sinewin.h"
32 #include "twinvq.h"
33 
34 /**
35  * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
36  * spectrum pairs.
37  *
38  * @param lsp a vector of the cosine of the LSP values
39  * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
40  * @param order the order of the LSP (and the size of the *lsp buffer). Must
41  * be a multiple of four.
42  * @return the LPC value
43  *
44  * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
45  */
46 static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
47 {
48  int j;
49  float p = 0.5f;
50  float q = 0.5f;
51  float two_cos_w = 2.0f * cos_val;
52 
53  for (j = 0; j + 1 < order; j += 2 * 2) {
54  // Unroll the loop once since order is a multiple of four
55  q *= lsp[j] - two_cos_w;
56  p *= lsp[j + 1] - two_cos_w;
57 
58  q *= lsp[j + 2] - two_cos_w;
59  p *= lsp[j + 3] - two_cos_w;
60  }
61 
62  p *= p * (2.0f - two_cos_w);
63  q *= q * (2.0f + two_cos_w);
64 
65  return 0.5 / (p + q);
66 }
67 
68 /**
69  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
70  */
71 static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
72 {
73  int i;
74  const TwinVQModeTab *mtab = tctx->mtab;
75  int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
76 
77  for (i = 0; i < size_s / 2; i++) {
78  float cos_i = tctx->cos_tabs[0][i];
79  lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
80  lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
81  }
82 }
83 
84 static void interpolate(float *out, float v1, float v2, int size)
85 {
86  int i;
87  float step = (v1 - v2) / (size + 1);
88 
89  for (i = 0; i < size; i++) {
90  v2 += step;
91  out[i] = v2;
92  }
93 }
94 
95 static inline float get_cos(int idx, int part, const float *cos_tab, int size)
96 {
97  return part ? -cos_tab[size - idx - 1]
98  : cos_tab[idx];
99 }
100 
101 /**
102  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
103  * Probably for speed reasons, the coefficients are evaluated as
104  * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
105  * where s is an evaluated value, i is a value interpolated from the others
106  * and b might be either calculated or interpolated, depending on an
107  * unexplained condition.
108  *
109  * @param step the size of a block "siiiibiiii"
110  * @param in the cosine of the LSP data
111  * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
112  * (negative cosine values)
113  * @param size the size of the whole output
114  */
115 static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
116  enum TwinVQFrameType ftype,
117  float *out, const float *in,
118  int size, int step, int part)
119 {
120  int i;
121  const TwinVQModeTab *mtab = tctx->mtab;
122  const float *cos_tab = tctx->cos_tabs[ftype];
123 
124  // Fill the 's'
125  for (i = 0; i < size; i += step)
126  out[i] =
128  get_cos(i, part, cos_tab, size),
129  mtab->n_lsp);
130 
131  // Fill the 'iiiibiiii'
132  for (i = step; i <= size - 2 * step; i += step) {
133  if (out[i + step] + out[i - step] > 1.95 * out[i] ||
134  out[i + step] >= out[i - step]) {
135  interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
136  } else {
137  out[i - step / 2] =
139  get_cos(i - step / 2, part, cos_tab, size),
140  mtab->n_lsp);
141  interpolate(out + i - step + 1, out[i - step / 2],
142  out[i - step], step / 2 - 1);
143  interpolate(out + i - step / 2 + 1, out[i],
144  out[i - step / 2], step / 2 - 1);
145  }
146  }
147 
148  interpolate(out + size - 2 * step + 1, out[size - step],
149  out[size - 2 * step], step - 1);
150 }
151 
152 static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
153  const float *buf, float *lpc,
154  int size, int step)
155 {
156  eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
157  eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
158  2 * step, 1);
159 
160  interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
161  lpc[size / 2 - step], step);
162 
163  twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
164  2 * step - 1);
165 }
166 
167 /**
168  * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
169  * bitstream, sum the corresponding vectors and write the result to *out
170  * after permutation.
171  */
172 static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
173  enum TwinVQFrameType ftype,
174  const int16_t *cb0, const int16_t *cb1, int cb_len)
175 {
176  int pos = 0;
177  int i, j;
178 
179  for (i = 0; i < tctx->n_div[ftype]; i++) {
180  int tmp0, tmp1;
181  int sign0 = 1;
182  int sign1 = 1;
183  const int16_t *tab0, *tab1;
184  int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
185  int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
186 
187  int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
188  tmp0 = *cb_bits++;
189  if (bits == 7) {
190  if (tmp0 & 0x40)
191  sign0 = -1;
192  tmp0 &= 0x3F;
193  }
194 
195  bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
196  tmp1 = *cb_bits++;
197  if (bits == 7) {
198  if (tmp1 & 0x40)
199  sign1 = -1;
200  tmp1 &= 0x3F;
201  }
202 
203  tab0 = cb0 + tmp0 * cb_len;
204  tab1 = cb1 + tmp1 * cb_len;
205 
206  for (j = 0; j < length; j++)
207  out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
208  sign1 * tab1[j];
209 
210  pos += length;
211  }
212 }
213 
214 static void dec_gain(TwinVQContext *tctx,
215  enum TwinVQFrameType ftype, float *out)
216 {
217  const TwinVQModeTab *mtab = tctx->mtab;
218  const TwinVQFrameData *bits = &tctx->bits;
219  int i, j;
220  int sub = mtab->fmode[ftype].sub;
221  float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1);
222  float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
223 
224  if (ftype == TWINVQ_FT_LONG) {
225  for (i = 0; i < tctx->avctx->channels; i++)
226  out[i] = (1.0 / (1 << 13)) *
227  twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
229  } else {
230  for (i = 0; i < tctx->avctx->channels; i++) {
231  float val = (1.0 / (1 << 23)) *
232  twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
234 
235  for (j = 0; j < sub; j++)
236  out[i * sub + j] =
237  val * twinvq_mulawinv(sub_step * 0.5 +
238  sub_step * bits->sub_gain_bits[i * sub + j],
240  }
241  }
242 }
243 
244 /**
245  * Rearrange the LSP coefficients so that they have a minimum distance of
246  * min_dist. This function does it exactly as described in section of 3.2.4
247  * of the G.729 specification (but interestingly is different from what the
248  * reference decoder actually does).
249  */
250 static void rearrange_lsp(int order, float *lsp, float min_dist)
251 {
252  int i;
253  float min_dist2 = min_dist * 0.5;
254  for (i = 1; i < order; i++)
255  if (lsp[i] - lsp[i - 1] < min_dist) {
256  float avg = (lsp[i] + lsp[i - 1]) * 0.5;
257 
258  lsp[i - 1] = avg - min_dist2;
259  lsp[i] = avg + min_dist2;
260  }
261 }
262 
263 static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
264  int lpc_hist_idx, float *lsp, float *hist)
265 {
266  const TwinVQModeTab *mtab = tctx->mtab;
267  int i, j;
268 
269  const float *cb = mtab->lspcodebook;
270  const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp;
271  const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
272 
273  const int8_t funny_rounding[4] = {
274  -2,
275  mtab->lsp_split == 4 ? -2 : 1,
276  mtab->lsp_split == 4 ? -2 : 1,
277  0
278  };
279 
280  j = 0;
281  for (i = 0; i < mtab->lsp_split; i++) {
282  int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
283  mtab->lsp_split;
284  for (; j < chunk_end; j++)
285  lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] +
286  cb2[lpc_idx2[i] * mtab->n_lsp + j];
287  }
288 
289  rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
290 
291  for (i = 0; i < mtab->n_lsp; i++) {
292  float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i];
293  float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
294  hist[i] = lsp[i];
295  lsp[i] = lsp[i] * tmp1 + tmp2;
296  }
297 
298  rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
299  rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
301 }
302 
303 static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
304  enum TwinVQFrameType ftype, float *lpc)
305 {
306  int i;
307  int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
308 
309  for (i = 0; i < tctx->mtab->n_lsp; i++)
310  lsp[i] = 2 * cos(lsp[i]);
311 
312  switch (ftype) {
313  case TWINVQ_FT_LONG:
314  eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
315  break;
316  case TWINVQ_FT_MEDIUM:
317  eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
318  break;
319  case TWINVQ_FT_SHORT:
320  eval_lpcenv(tctx, lsp, lpc);
321  break;
322  }
323 }
324 
325 static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
326 
327 static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
328  int wtype, float *in, float *prev, int ch)
329 {
330  FFTContext *mdct = &tctx->mdct_ctx[ftype];
331  const TwinVQModeTab *mtab = tctx->mtab;
332  int bsize = mtab->size / mtab->fmode[ftype].sub;
333  int size = mtab->size;
334  float *buf1 = tctx->tmp_buf;
335  int j, first_wsize, wsize; // Window size
336  float *out = tctx->curr_frame + 2 * ch * mtab->size;
337  float *out2 = out;
338  float *prev_buf;
339  int types_sizes[] = {
340  mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub,
341  mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub,
342  mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
343  };
344 
345  wsize = types_sizes[wtype_to_wsize[wtype]];
346  first_wsize = wsize;
347  prev_buf = prev + (size - bsize) / 2;
348 
349  for (j = 0; j < mtab->fmode[ftype].sub; j++) {
350  int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
351 
352  if (!j && wtype == 4)
353  sub_wtype = 4;
354  else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
355  sub_wtype = 7;
356 
357  wsize = types_sizes[wtype_to_wsize[sub_wtype]];
358 
359  mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
360 
361  tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
362  buf1 + bsize * j,
363  ff_sine_windows[av_log2(wsize)],
364  wsize / 2);
365  out2 += wsize;
366 
367  memcpy(out2, buf1 + bsize * j + wsize / 2,
368  (bsize - wsize / 2) * sizeof(float));
369 
370  out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
371 
372  prev_buf = buf1 + bsize * j + bsize / 2;
373  }
374 
375  tctx->last_block_pos[ch] = (size + first_wsize) / 2;
376 }
377 
378 static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
379  int wtype, float **out)
380 {
381  const TwinVQModeTab *mtab = tctx->mtab;
382  float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
383  int size1, size2, i;
384 
385  for (i = 0; i < tctx->avctx->channels; i++)
386  imdct_and_window(tctx, ftype, wtype,
387  tctx->spectrum + i * mtab->size,
388  prev_buf + 2 * i * mtab->size,
389  i);
390 
391  if (!out)
392  return;
393 
394  size2 = tctx->last_block_pos[0];
395  size1 = mtab->size - size2;
396 
397  memcpy(&out[0][0], prev_buf, size1 * sizeof(out[0][0]));
398  memcpy(&out[0][size1], tctx->curr_frame, size2 * sizeof(out[0][0]));
399 
400  if (tctx->avctx->channels == 2) {
401  memcpy(&out[1][0], &prev_buf[2 * mtab->size],
402  size1 * sizeof(out[1][0]));
403  memcpy(&out[1][size1], &tctx->curr_frame[2 * mtab->size],
404  size2 * sizeof(out[1][0]));
405  tctx->fdsp.butterflies_float(out[0], out[1], mtab->size);
406  }
407 }
408 
409 static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
410  enum TwinVQFrameType ftype)
411 {
412  const TwinVQModeTab *mtab = tctx->mtab;
413  TwinVQFrameData *bits = &tctx->bits;
414  int channels = tctx->avctx->channels;
415  int sub = mtab->fmode[ftype].sub;
416  int block_size = mtab->size / sub;
418  float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
419 
420  int i, j;
421 
422  dequant(tctx, bits->main_coeffs, out, ftype,
423  mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
424  mtab->fmode[ftype].cb_len_read);
425 
426  dec_gain(tctx, ftype, gain);
427 
428  if (ftype == TWINVQ_FT_LONG) {
429  int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
430  tctx->n_div[3];
431  dequant(tctx, bits->ppc_coeffs, ppc_shape,
433  mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
434  cb_len_p);
435  }
436 
437  for (i = 0; i < channels; i++) {
438  float *chunk = out + mtab->size * i;
439  float lsp[TWINVQ_LSP_COEFS_MAX];
440 
441  for (j = 0; j < sub; j++) {
442  tctx->dec_bark_env(tctx, bits->bark1[i][j],
443  bits->bark_use_hist[i][j], i,
444  tctx->tmp_buf, gain[sub * i + j], ftype);
445 
446  tctx->fdsp.vector_fmul(chunk + block_size * j,
447  chunk + block_size * j,
448  tctx->tmp_buf, block_size);
449  }
450 
451  if (ftype == TWINVQ_FT_LONG)
452  tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
453  ppc_shape + i * mtab->ppc_shape_len, chunk);
454 
455  decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
456  bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
457 
458  dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
459 
460  for (j = 0; j < mtab->fmode[ftype].sub; j++) {
461  tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
462  chunk += block_size;
463  }
464  }
465 }
466 
470  TWINVQ_FT_MEDIUM
471 };
472 
474  int *got_frame_ptr, AVPacket *avpkt)
475 {
476  AVFrame *frame = data;
477  const uint8_t *buf = avpkt->data;
478  int buf_size = avpkt->size;
479  TwinVQContext *tctx = avctx->priv_data;
480  const TwinVQModeTab *mtab = tctx->mtab;
481  float **out = NULL;
482  int ret;
483 
484  /* get output buffer */
485  if (tctx->discarded_packets >= 2) {
486  frame->nb_samples = mtab->size;
487  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
488  return ret;
489  out = (float **)frame->extended_data;
490  }
491 
492  if (buf_size < avctx->block_align) {
493  av_log(avctx, AV_LOG_ERROR,
494  "Frame too small (%d bytes). Truncated file?\n", buf_size);
495  return AVERROR(EINVAL);
496  }
497 
498  if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
499  return ret;
500 
501  read_and_decode_spectrum(tctx, tctx->spectrum, tctx->bits.ftype);
502 
503  imdct_output(tctx, tctx->bits.ftype, tctx->bits.window_type, out);
504 
505  FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
506 
507  if (tctx->discarded_packets < 2) {
508  tctx->discarded_packets++;
509  *got_frame_ptr = 0;
510  return buf_size;
511  }
512 
513  *got_frame_ptr = 1;
514 
515  return ret;
516 }
517 
518 /**
519  * Init IMDCT and windowing tables
520  */
522 {
523  int i, j, ret;
524  const TwinVQModeTab *mtab = tctx->mtab;
525  int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
526  int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
527  int channels = tctx->avctx->channels;
528  float norm = channels == 1 ? 2.0 : 1.0;
529 
530  for (i = 0; i < 3; i++) {
531  int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
532  if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
533  -sqrt(norm / bsize) / (1 << 15))))
534  return ret;
535  }
536 
537  FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
538  mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
539 
540  FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
541  2 * mtab->size * channels * sizeof(*tctx->spectrum),
542  alloc_fail);
543  FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
544  2 * mtab->size * channels * sizeof(*tctx->curr_frame),
545  alloc_fail);
546  FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
547  2 * mtab->size * channels * sizeof(*tctx->prev_frame),
548  alloc_fail);
549 
550  for (i = 0; i < 3; i++) {
551  int m = 4 * mtab->size / mtab->fmode[i].sub;
552  double freq = 2 * M_PI / m;
553  FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
554  (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
555 
556  for (j = 0; j <= m / 8; j++)
557  tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
558  for (j = 1; j < m / 8; j++)
559  tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
560  }
561 
563  ff_init_ff_sine_windows(av_log2(size_s / 2));
565 
566  return 0;
567 
568 alloc_fail:
569  return AVERROR(ENOMEM);
570 }
571 
572 /**
573  * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
574  * each line do a cyclic permutation, i.e.
575  * abcdefghijklm -> defghijklmabc
576  * where the amount to be shifted is evaluated depending on the column.
577  */
578 static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
579  int block_size,
580  const uint8_t line_len[2], int length_div,
581  enum TwinVQFrameType ftype)
582 {
583  int i, j;
584 
585  for (i = 0; i < line_len[0]; i++) {
586  int shift;
587 
588  if (num_blocks == 1 ||
589  (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
590  (ftype != TWINVQ_FT_LONG && num_vect & 1) ||
591  i == line_len[1]) {
592  shift = 0;
593  } else if (ftype == TWINVQ_FT_LONG) {
594  shift = i;
595  } else
596  shift = i * i;
597 
598  for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
599  tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
600  }
601 }
602 
603 /**
604  * Interpret the input data as in the following table:
605  *
606  * @verbatim
607  *
608  * abcdefgh
609  * ijklmnop
610  * qrstuvw
611  * x123456
612  *
613  * @endverbatim
614  *
615  * and transpose it, giving the output
616  * aiqxbjr1cks2dlt3emu4fvn5gow6hp
617  */
618 static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
619  const uint8_t line_len[2], int length_div)
620 {
621  int i, j;
622  int cont = 0;
623 
624  for (i = 0; i < num_vect; i++)
625  for (j = 0; j < line_len[i >= length_div]; j++)
626  out[cont++] = in[j * num_vect + i];
627 }
628 
629 static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
630 {
631  int block_size = size / n_blocks;
632  int i;
633 
634  for (i = 0; i < size; i++)
635  out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
636 }
637 
639  enum TwinVQFrameType ftype)
640 {
641  int block_size, size;
642  const TwinVQModeTab *mtab = tctx->mtab;
643  int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
644 
645  if (ftype == TWINVQ_FT_PPC) {
646  size = tctx->avctx->channels;
647  block_size = mtab->ppc_shape_len;
648  } else {
649  size = tctx->avctx->channels * mtab->fmode[ftype].sub;
650  block_size = mtab->size / mtab->fmode[ftype].sub;
651  }
652 
653  permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
654  block_size, tctx->length[ftype],
655  tctx->length_change[ftype], ftype);
656 
657  transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
658  tctx->length[ftype], tctx->length_change[ftype]);
659 
660  linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
661  size * block_size);
662 }
663 
665 {
666  const TwinVQModeTab *mtab = tctx->mtab;
667  int n_ch = tctx->avctx->channels;
668  int total_fr_bits = tctx->avctx->bit_rate * mtab->size /
669  tctx->avctx->sample_rate;
670 
671  int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
672  mtab->lsp_split * mtab->lsp_bit2);
673 
674  int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
675  mtab->ppc_period_bit);
676 
677  int bsize_no_main_cb[3], bse_bits[3], i;
678  enum TwinVQFrameType frametype;
679 
680  for (i = 0; i < 3; i++)
681  // +1 for history usage switch
682  bse_bits[i] = n_ch *
683  (mtab->fmode[i].bark_n_coef *
684  mtab->fmode[i].bark_n_bit + 1);
685 
686  bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
688 
689  for (i = 0; i < 2; i++)
690  bsize_no_main_cb[i] =
691  lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
693  mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
694 
695  if (tctx->codec == TWINVQ_CODEC_METASOUND) {
696  bsize_no_main_cb[1] += 2;
697  bsize_no_main_cb[2] += 2;
698  }
699 
700  // The remaining bits are all used for the main spectrum coefficients
701  for (i = 0; i < 4; i++) {
702  int bit_size, vect_size;
703  int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
704  if (i == 3) {
705  bit_size = n_ch * mtab->ppc_shape_bit;
706  vect_size = n_ch * mtab->ppc_shape_len;
707  } else {
708  bit_size = total_fr_bits - bsize_no_main_cb[i];
709  vect_size = n_ch * mtab->size;
710  }
711 
712  tctx->n_div[i] = (bit_size + 13) / 14;
713 
714  rounded_up = (bit_size + tctx->n_div[i] - 1) /
715  tctx->n_div[i];
716  rounded_down = (bit_size) / tctx->n_div[i];
717  num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
718  num_rounded_up = tctx->n_div[i] - num_rounded_down;
719  tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2;
720  tctx->bits_main_spec[1][i][0] = rounded_up / 2;
721  tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2;
722  tctx->bits_main_spec[1][i][1] = rounded_down / 2;
723  tctx->bits_main_spec_change[i] = num_rounded_up;
724 
725  rounded_up = (vect_size + tctx->n_div[i] - 1) /
726  tctx->n_div[i];
727  rounded_down = (vect_size) / tctx->n_div[i];
728  num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
729  num_rounded_up = tctx->n_div[i] - num_rounded_down;
730  tctx->length[i][0] = rounded_up;
731  tctx->length[i][1] = rounded_down;
732  tctx->length_change[i] = num_rounded_up;
733  }
734 
735  for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
736  construct_perm_table(tctx, frametype);
737 }
738 
740 {
741  TwinVQContext *tctx = avctx->priv_data;
742  int i;
743 
744  for (i = 0; i < 3; i++) {
745  ff_mdct_end(&tctx->mdct_ctx[i]);
746  av_free(tctx->cos_tabs[i]);
747  }
748 
749  av_free(tctx->curr_frame);
750  av_free(tctx->spectrum);
751  av_free(tctx->prev_frame);
752  av_free(tctx->tmp_buf);
753 
754  return 0;
755 }
756 
758 {
759  int ret;
760  TwinVQContext *tctx = avctx->priv_data;
761 
762  tctx->avctx = avctx;
764 
766  if ((ret = init_mdct_win(tctx))) {
767  av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
768  ff_twinvq_decode_close(avctx);
769  return ret;
770  }
771  init_bitstream_params(tctx);
772 
773  twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
774  FF_ARRAY_ELEMS(tctx->bark_hist));
775 
776  return 0;
777 }