00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 #include "libavutil/common.h"
00023 #include "libavutil/lls.h"
00024 
00025 #define LPC_USE_DOUBLE
00026 #include "lpc.h"
00027 #include "libavutil/avassert.h"
00028 
00029 
00033 static void lpc_apply_welch_window_c(const int32_t *data, int len,
00034                                      double *w_data)
00035 {
00036     int i, n2;
00037     double w;
00038     double c;
00039 
00040     
00041 
00042     av_assert2(!(len & 1));
00043 
00044     n2 = (len >> 1);
00045     c = 2.0 / (len - 1.0);
00046 
00047     w_data+=n2;
00048       data+=n2;
00049     for(i=0; i<n2; i++) {
00050         w = c - n2 + i;
00051         w = 1.0 - (w * w);
00052         w_data[-i-1] = data[-i-1] * w;
00053         w_data[+i  ] = data[+i  ] * w;
00054     }
00055 }
00056 
00061 static void lpc_compute_autocorr_c(const double *data, int len, int lag,
00062                                    double *autoc)
00063 {
00064     int i, j;
00065 
00066     for(j=0; j<lag; j+=2){
00067         double sum0 = 1.0, sum1 = 1.0;
00068         for(i=j; i<len; i++){
00069             sum0 += data[i] * data[i-j];
00070             sum1 += data[i] * data[i-j-1];
00071         }
00072         autoc[j  ] = sum0;
00073         autoc[j+1] = sum1;
00074     }
00075 
00076     if(j==lag){
00077         double sum = 1.0;
00078         for(i=j-1; i<len; i+=2){
00079             sum += data[i  ] * data[i-j  ]
00080                  + data[i+1] * data[i-j+1];
00081         }
00082         autoc[j] = sum;
00083     }
00084 }
00085 
00089 static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
00090                                int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
00091 {
00092     int i;
00093     double cmax, error;
00094     int32_t qmax;
00095     int sh;
00096 
00097     
00098     qmax = (1 << (precision - 1)) - 1;
00099 
00100     
00101     cmax = 0.0;
00102     for(i=0; i<order; i++) {
00103         cmax= FFMAX(cmax, fabs(lpc_in[i]));
00104     }
00105 
00106     
00107     if(cmax * (1 << max_shift) < 1.0) {
00108         *shift = zero_shift;
00109         memset(lpc_out, 0, sizeof(int32_t) * order);
00110         return;
00111     }
00112 
00113     
00114     sh = max_shift;
00115     while((cmax * (1 << sh) > qmax) && (sh > 0)) {
00116         sh--;
00117     }
00118 
00119     
00120 
00121     if(sh == 0 && cmax > qmax) {
00122         double scale = ((double)qmax) / cmax;
00123         for(i=0; i<order; i++) {
00124             lpc_in[i] *= scale;
00125         }
00126     }
00127 
00128     
00129     error=0;
00130     for(i=0; i<order; i++) {
00131         error -= lpc_in[i] * (1 << sh);
00132         lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
00133         error -= lpc_out[i];
00134     }
00135     *shift = sh;
00136 }
00137 
00138 static int estimate_best_order(double *ref, int min_order, int max_order)
00139 {
00140     int i, est;
00141 
00142     est = min_order;
00143     for(i=max_order-1; i>=min_order-1; i--) {
00144         if(ref[i] > 0.10) {
00145             est = i+1;
00146             break;
00147         }
00148     }
00149     return est;
00150 }
00151 
00158 int ff_lpc_calc_coefs(LPCContext *s,
00159                       const int32_t *samples, int blocksize, int min_order,
00160                       int max_order, int precision,
00161                       int32_t coefs[][MAX_LPC_ORDER], int *shift,
00162                       enum FFLPCType lpc_type, int lpc_passes,
00163                       int omethod, int max_shift, int zero_shift)
00164 {
00165     double autoc[MAX_LPC_ORDER+1];
00166     double ref[MAX_LPC_ORDER];
00167     double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
00168     int i, j, pass;
00169     int opt_order;
00170 
00171     av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
00172            lpc_type > FF_LPC_TYPE_FIXED);
00173 
00174     
00175     if (blocksize != s->blocksize || max_order != s->max_order ||
00176         lpc_type  != s->lpc_type) {
00177         ff_lpc_end(s);
00178         ff_lpc_init(s, blocksize, max_order, lpc_type);
00179     }
00180 
00181     if (lpc_type == FF_LPC_TYPE_LEVINSON) {
00182         s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
00183 
00184         s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
00185 
00186         compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
00187 
00188         for(i=0; i<max_order; i++)
00189             ref[i] = fabs(lpc[i][i]);
00190     } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
00191         LLSModel m[2];
00192         double var[MAX_LPC_ORDER+1], av_uninit(weight);
00193 
00194         if(lpc_passes <= 0)
00195             lpc_passes = 2;
00196 
00197         for(pass=0; pass<lpc_passes; pass++){
00198             av_init_lls(&m[pass&1], max_order);
00199 
00200             weight=0;
00201             for(i=max_order; i<blocksize; i++){
00202                 for(j=0; j<=max_order; j++)
00203                     var[j]= samples[i-j];
00204 
00205                 if(pass){
00206                     double eval, inv, rinv;
00207                     eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
00208                     eval= (512>>pass) + fabs(eval - var[0]);
00209                     inv = 1/eval;
00210                     rinv = sqrt(inv);
00211                     for(j=0; j<=max_order; j++)
00212                         var[j] *= rinv;
00213                     weight += inv;
00214                 }else
00215                     weight++;
00216 
00217                 av_update_lls(&m[pass&1], var, 1.0);
00218             }
00219             av_solve_lls(&m[pass&1], 0.001, 0);
00220         }
00221 
00222         for(i=0; i<max_order; i++){
00223             for(j=0; j<max_order; j++)
00224                 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
00225             ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
00226         }
00227         for(i=max_order-1; i>0; i--)
00228             ref[i] = ref[i-1] - ref[i];
00229     }
00230     opt_order = max_order;
00231 
00232     if(omethod == ORDER_METHOD_EST) {
00233         opt_order = estimate_best_order(ref, min_order, max_order);
00234         i = opt_order-1;
00235         quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
00236     } else {
00237         for(i=min_order-1; i<max_order; i++) {
00238             quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
00239         }
00240     }
00241 
00242     return opt_order;
00243 }
00244 
00245 av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
00246                         enum FFLPCType lpc_type)
00247 {
00248     s->blocksize = blocksize;
00249     s->max_order = max_order;
00250     s->lpc_type  = lpc_type;
00251 
00252     if (lpc_type == FF_LPC_TYPE_LEVINSON) {
00253         s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
00254                                         sizeof(*s->windowed_samples));
00255         if (!s->windowed_buffer)
00256             return AVERROR(ENOMEM);
00257         s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
00258     } else {
00259         s->windowed_samples = NULL;
00260     }
00261 
00262     s->lpc_apply_welch_window = lpc_apply_welch_window_c;
00263     s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
00264 
00265     if (HAVE_MMX)
00266         ff_lpc_init_x86(s);
00267 
00268     return 0;
00269 }
00270 
00271 av_cold void ff_lpc_end(LPCContext *s)
00272 {
00273     av_freep(&s->windowed_buffer);
00274 }