31 #define BITSTREAM_READER_LE 39 #define TSCC2_VLC_BITS 9 56 const uint8_t *lens,
const void *syms,
64 lens, 1, syms, sym_length, sym_length, 0,
83 ac_vlc_lens, ac_vlc_syms, 2);
89 #define DEQUANT(val, q) (((q) * (val) + 0x80) >> 8) 90 #define DCT1D(d0, d1, d2, d3, s0, s1, s2, s3, OP) \ 91 OP(d0, 5 * ((s0) + (s1) + (s2)) + 2 * (s3)); \ 92 OP(d1, 5 * ((s0) - (s2) - (s3)) + 2 * (s1)); \ 93 OP(d2, 5 * ((s0) - (s2) + (s3)) - 2 * (s1)); \ 94 OP(d3, 5 * ((s0) - (s1) + (s2)) - 2 * (s3)); \ 96 #define COL_OP(a, b) a = (b) 97 #define ROW_OP(a, b) a = ((b) + 0x20) >> 6 105 for (i = 0; i < 4; i++) {
106 t0 =
DEQUANT(q[0 + (i & 1)], in[0 * 4 + i]);
107 t1 =
DEQUANT(q[1 + (i & 1)], in[1 * 4 + i]);
108 t2 =
DEQUANT(q[0 + (i & 1)], in[2 * 4 + i]);
109 t3 =
DEQUANT(q[1 + (i & 1)], in[3 * 4 + i]);
110 DCT1D(tblk[0 * 4 + i], tblk[1 * 4 + i],
111 tblk[2 * 4 + i], tblk[3 * 4 + i],
114 for (i = 0; i < 4; i++) {
115 DCT1D(dst[0], dst[1], dst[2], dst[3],
116 tblk[i * 4 + 0], tblk[i * 4 + 1],
117 tblk[i * 4 + 2], tblk[i * 4 + 3],
ROW_OP);
126 int prev_dc,
dc, nc, ac, bpos,
val;
132 for (i = 0; i < 8; i++, dst +=
stride)
133 memset(dst, val, 16);
137 for (i = 0; i < 8; i++) {
138 for (j = 0; j < 16; j++)
147 for (j = 0; j < 2; j++) {
148 for (k = 0; k < 4; k++) {
156 dc = (dc + prev_dc) & 0xFF;
163 memset(c->
block + 1, 0, 15 *
sizeof(*c->
block));
164 for (l = 0; l < nc; l++) {
182 const uint8_t *buf,
int buf_size)
190 for (mb_x = 0; mb_x < c->
mb_width; mb_x++) {
193 if (q == 0 || q == 3)
195 for (i = 0; i < 3; i++) {
211 int buf_size = avpkt->
size;
220 frame_type = bytestream2_get_byte(&gb);
221 if (frame_type > 1) {
227 if (frame_type == 0) {
241 c->
quant[0] = bytestream2_get_byte(&gb);
242 c->
quant[1] = bytestream2_get_byte(&gb);
250 for (i = 0; i < 3; i++) {
257 size = bytestream2_get_le32(&gb);
263 for (i = 0; i <
size; i++) {
264 val = bytestream2_get_byte(&gb);
267 if (pos + len > num_mb) {
281 size = bytestream2_peek_byte(&gb);
283 size = bytestream2_get_byte(&gb) - 1;
285 size = bytestream2_get_le32(&gb) >> 1;
288 int skip_row = 1, j, off = i * c->
mb_width;
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static const uint8_t tscc2_dc_vlc_lens[DC_VLC_COUNT]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static const uint8_t tscc2_nc_vlc_lens[NUM_VLC_SETS][16]
static void tscc2_idct4_put(int *in, int q[3], uint8_t *dst, int stride)
This structure describes decoded (raw) audio or video data.
ptrdiff_t const GLvoid * data
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static const uint16_t tscc2_dc_vlc_syms[DC_VLC_COUNT]
static av_cold int init(AVCodecContext *avctx)
static VLC nc_vlc[NUM_VLC_SETS]
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define FF_ARRAY_ELEMS(a)
static const int tscc2_ac_vlc_sizes[NUM_VLC_SETS]
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int tscc2_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
bitstream reader API header.
static const uint16_t table[]
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static VLC ac_vlc[NUM_VLC_SETS]
static int get_bits_left(GetBitContext *gb)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
int ff_reget_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Identical in function to ff_get_buffer(), except it reuses the existing buffer if available...
const uint8_t ff_zigzag_scan[16+1]
const char * name
Name of the codec implementation.
static const uint16_t tscc2_ac_vlc_syms[]
static av_cold int tscc2_decode_end(AVCodecContext *avctx)
static int tscc2_decode_mb(TSCC2Context *c, int *q, int vlc_set, uint8_t *dst, int stride, int plane)
int width
picture width / height.
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
static av_always_inline int bytestream2_tell(GetByteContext *g)
Libavcodec external API header.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
static const uint16_t tscc2_quants[NUM_VLC_SETS][3]
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
main external API structure.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff)*mv_scale Intra DC Prediction block[y][x] dc[1]
static unsigned int get_bits1(GetBitContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static av_cold void tscc2_init_vlcs(void)
int ff_init_vlc_from_lengths(VLC *vlc_arg, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
static av_cold int tscc2_decode_init(AVCodecContext *avctx)
static av_const int sign_extend(int val, unsigned bits)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define DCT1D(d0, d1, d2, d3, s0, s1, s2, s3, OP)
GLint GLenum GLboolean GLsizei stride
static const uint8_t tscc2_nc_vlc_syms[NUM_VLC_SETS][16]
common internal api header.
static int tscc2_decode_slice(TSCC2Context *c, int mb_y, const uint8_t *buf, int buf_size)
static av_cold void tscc2_init_vlc(VLC *vlc, int *offset, int nb_codes, const uint8_t *lens, const void *syms, int sym_length)
static int ff_thread_once(char *control, void(*routine)(void))
VLC_TYPE(* table)[2]
code, bits
static VLC_TYPE vlc_buf[16716][2]
static const uint8_t tscc2_ac_vlc_lens[]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
#define INIT_VLC_STATIC_OVERLONG
static double val(void *priv, double ch)
This structure stores compressed data.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators...
#define INIT_VLC_OUTPUT_LE