29 double m00 = in[0][0], m01 = in[0][1], m02 = in[0][2],
30 m10 = in[1][0], m11 = in[1][1], m12 = in[1][2],
31 m20 = in[2][0], m21 = in[2][1], m22 = in[2][2];
35 out[0][0] = (m11 * m22 - m21 * m12);
36 out[0][1] = -(m01 * m22 - m21 * m02);
37 out[0][2] = (m01 * m12 - m11 * m02);
38 out[1][0] = -(m10 * m22 - m20 * m12);
39 out[1][1] = (m00 * m22 - m20 * m02);
40 out[1][2] = -(m00 * m12 - m10 * m02);
41 out[2][0] = (m10 * m21 - m20 * m11);
42 out[2][1] = -(m00 * m21 - m20 * m01);
43 out[2][2] = (m00 * m11 - m10 * m01);
45 det = m00 * out[0][0] + m10 * out[0][1] + m20 * out[0][2];
48 for (i = 0; i < 3; i++) {
49 for (j = 0; j < 3; j++)
55 const double src1[3][3],
const double src2[3][3])
59 for (m = 0; m < 3; m++)
60 for (n = 0; n < 3; n++)
61 dst[m][n] = src2[m][0] * src1[0][n] +
62 src2[m][1] * src1[1][n] +
63 src2[m][2] * src1[2][n];
72 double i[3][3], sr, sg, sb, zw;
74 rgb2xyz[0][0] = coeffs->
xr / coeffs->
yr;
75 rgb2xyz[0][1] = coeffs->
xg / coeffs->
yg;
76 rgb2xyz[0][2] = coeffs->
xb / coeffs->
yb;
77 rgb2xyz[1][0] = rgb2xyz[1][1] = rgb2xyz[1][2] = 1.0;
78 rgb2xyz[2][0] = (1.0 - coeffs->
xr - coeffs->
yr) / coeffs->
yr;
79 rgb2xyz[2][1] = (1.0 - coeffs->
xg - coeffs->
yg) / coeffs->
yg;
80 rgb2xyz[2][2] = (1.0 - coeffs->
xb - coeffs->
yb) / coeffs->
yb;
82 zw = 1.0 - wp->
xw - wp->
yw;
83 sr = i[0][0] * wp->
xw + i[0][1] * wp->
yw + i[0][2] * zw;
84 sg = i[1][0] * wp->
xw + i[1][1] * wp->
yw + i[1][2] * zw;
85 sb = i[2][0] * wp->
xw + i[2][1] * wp->
yw + i[2][2] * zw;
99 { -0.25, 0.5, -0.25 },
134 coeffs = &luma_coefficients[csp];
144 double bscale, rscale;
147 if (coeffs->
cr == 0.25 && coeffs->
cg == 0.5 && coeffs->
cb == 0.25) {
150 }
else if (coeffs->
cr == 1 && coeffs->
cg == 1 && coeffs->
cb == 1) {
151 memcpy(rgb2yuv,
gbr_matrix,
sizeof(
double) * 9);
155 rgb2yuv[0][0] = coeffs->
cr;
156 rgb2yuv[0][1] = coeffs->
cg;
157 rgb2yuv[0][2] = coeffs->
cb;
158 bscale = 0.5 / (coeffs->
cb - 1.0);
159 rscale = 0.5 / (coeffs->
cr - 1.0);
160 rgb2yuv[1][0] = bscale * coeffs->
cr;
161 rgb2yuv[1][1] = bscale * coeffs->
cg;
164 rgb2yuv[2][1] = rscale * coeffs->
cg;
165 rgb2yuv[2][2] = rscale * coeffs->
cb;
also ITU-R BT1361 / IEC 61966-2-4 xvYCC709 / SMPTE RP177 Annex B
This structure describes decoded (raw) audio or video data.
unsigned MaxCLL
Max content light level (cd/m^2).
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Content light level (based on CTA-861.3).
also ITU-R BT601-6 525 / ITU-R BT1358 525 / ITU-R BT1700 NTSC
Mastering display metadata associated with a video frame.
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
functionally identical to above
AVFrameSideData * av_frame_get_side_data(const AVFrame *frame, enum AVFrameSideDataType type)
AVColorSpace
YUV colorspace type.
Structure to hold side data for an AVFrame.
static double av_q2d(AVRational a)
Convert an AVRational to a double.
const struct LumaCoefficients * ff_get_luma_coefficients(enum AVColorSpace csp)
static const double ycgco_matrix[3][3]
Content light level needed by to transmit HDR over HDMI (CTA-861.3).
static const struct LumaCoefficients luma_coefficients[AVCOL_SPC_NB]
reference-counted frame API
SMPTE ST 2084 for 10-, 12-, 14- and 16-bit systems.
ITU-R BT2020 non-constant luminance system.
FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
void ff_update_hdr_metadata(AVFrame *in, double peak)
void ff_fill_rgb2yuv_table(const struct LumaCoefficients *coeffs, double rgb2yuv[3][3])
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
void ff_matrix_invert_3x3(const double in[3][3], double out[3][3])
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
static const double gbr_matrix[3][3]
ITU-R BT2020 constant luminance system.
void ff_matrix_mul_3x3(double dst[3][3], const double src1[3][3], const double src2[3][3])
enum AVColorTransferCharacteristic color_trc
double ff_determine_signal_peak(AVFrame *in)
void ff_fill_rgb2xyz_table(const struct PrimaryCoefficients *coeffs, const struct WhitepointCoefficients *wp, double rgb2xyz[3][3])