FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
imdct15.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013-2014 Mozilla Corporation
3  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Celt non-power of 2 iMDCT
25  */
26 
27 #include <float.h>
28 #include <math.h>
29 #include <stddef.h>
30 
31 #include "config.h"
32 
33 #include "libavutil/attributes.h"
34 #include "libavutil/common.h"
35 
36 #include "imdct15.h"
37 
38 // complex c = a * b
39 #define CMUL3(cre, cim, are, aim, bre, bim) \
40 do { \
41  cre = are * bre - aim * bim; \
42  cim = are * bim + aim * bre; \
43 } while (0)
44 
45 #define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
46 
48 {
49  IMDCT15Context *s = *ps;
50 
51  if (!s)
52  return;
53 
54  ff_fft_end(&s->ptwo_fft);
55 
59  av_freep(&s->tmp);
60 
61  av_freep(ps);
62 }
63 
64 static void imdct15_half(IMDCT15Context *s, float *dst, const float *src,
65  ptrdiff_t stride, float scale);
66 
68 {
69  int i, j;
70  const int b_ptwo = s->ptwo_fft.nbits; /* Bits for the power of two FFTs */
71  const int l_ptwo = 1 << b_ptwo; /* Total length for the power of two FFTs */
72  const int inv_1 = l_ptwo << ((4 - b_ptwo) & 3); /* (2^b_ptwo)^-1 mod 15 */
73  const int inv_2 = 0xeeeeeeef & ((1U << b_ptwo) - 1); /* 15^-1 mod 2^b_ptwo */
74 
75  s->pfa_prereindex = av_malloc(15 * l_ptwo * sizeof(*s->pfa_prereindex));
76  if (!s->pfa_prereindex)
77  return 1;
78 
79  s->pfa_postreindex = av_malloc(15 * l_ptwo * sizeof(*s->pfa_postreindex));
80  if (!s->pfa_postreindex)
81  return 1;
82 
83  /* Pre/Post-reindex */
84  for (i = 0; i < l_ptwo; i++) {
85  for (j = 0; j < 15; j++) {
86  const int q_pre = ((l_ptwo * j)/15 + i) >> b_ptwo;
87  const int q_post = (((j*inv_1)/15) + (i*inv_2)) >> b_ptwo;
88  const int k_pre = 15*i + (j - q_pre*15)*l_ptwo;
89  const int k_post = i*inv_2*15 + j*inv_1 - 15*q_post*l_ptwo;
90  s->pfa_prereindex[i*15 + j] = k_pre;
91  s->pfa_postreindex[k_post] = l_ptwo*j + i;
92  }
93  }
94 
95  return 0;
96 }
97 
99 {
100  IMDCT15Context *s;
101  int len2 = 15 * (1 << N);
102  int len = 2 * len2;
103  int i;
104 
105  /* Tested and verified to work on everything in between */
106  if ((N < 2) || (N > 13))
107  return AVERROR(EINVAL);
108 
109  s = av_mallocz(sizeof(*s));
110  if (!s)
111  return AVERROR(ENOMEM);
112 
113  s->fft_n = N - 1;
114  s->len4 = len2 / 2;
115  s->len2 = len2;
117 
118  if (ff_fft_init(&s->ptwo_fft, N - 1, 1) < 0)
119  goto fail;
120 
121  if (init_pfa_reindex_tabs(s))
122  goto fail;
123 
124  s->tmp = av_malloc_array(len, 2 * sizeof(*s->tmp));
125  if (!s->tmp)
126  goto fail;
127 
128  s->twiddle_exptab = av_malloc_array(s->len4, sizeof(*s->twiddle_exptab));
129  if (!s->twiddle_exptab)
130  goto fail;
131 
132  for (i = 0; i < s->len4; i++) {
133  s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125f + s->len4) / len);
134  s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125f + s->len4) / len);
135  }
136 
137  /* 15-point FFT exptab */
138  for (i = 0; i < 19; i++) {
139  if (i < 15) {
140  double theta = (2.0f * M_PI * i) / 15.0f;
141  s->exptab[i].re = cos(theta);
142  s->exptab[i].im = sin(theta);
143  } else { /* Wrap around to simplify fft15 */
144  s->exptab[i] = s->exptab[i - 15];
145  }
146  }
147 
148  /* 5-point FFT exptab */
149  s->exptab[19].re = cos(2.0f * M_PI / 5.0f);
150  s->exptab[19].im = sin(2.0f * M_PI / 5.0f);
151  s->exptab[20].re = cos(1.0f * M_PI / 5.0f);
152  s->exptab[20].im = sin(1.0f * M_PI / 5.0f);
153 
154  /* Invert the phase for an inverse transform, do nothing for a forward transform */
155  s->exptab[19].im *= -1;
156  s->exptab[20].im *= -1;
157 
158  *ps = s;
159 
160  return 0;
161 
162 fail:
163  ff_imdct15_uninit(&s);
164  return AVERROR(ENOMEM);
165 }
166 
167 /* Stride is hardcoded to 3 */
168 static inline void fft5(const FFTComplex exptab[2], FFTComplex *out,
169  const FFTComplex *in)
170 {
171  FFTComplex z0[4], t[6];
172 
173  t[0].re = in[3].re + in[12].re;
174  t[0].im = in[3].im + in[12].im;
175  t[1].im = in[3].re - in[12].re;
176  t[1].re = in[3].im - in[12].im;
177  t[2].re = in[6].re + in[ 9].re;
178  t[2].im = in[6].im + in[ 9].im;
179  t[3].im = in[6].re - in[ 9].re;
180  t[3].re = in[6].im - in[ 9].im;
181 
182  out[0].re = in[0].re + in[3].re + in[6].re + in[9].re + in[12].re;
183  out[0].im = in[0].im + in[3].im + in[6].im + in[9].im + in[12].im;
184 
185  t[4].re = exptab[0].re * t[2].re - exptab[1].re * t[0].re;
186  t[4].im = exptab[0].re * t[2].im - exptab[1].re * t[0].im;
187  t[0].re = exptab[0].re * t[0].re - exptab[1].re * t[2].re;
188  t[0].im = exptab[0].re * t[0].im - exptab[1].re * t[2].im;
189  t[5].re = exptab[0].im * t[3].re - exptab[1].im * t[1].re;
190  t[5].im = exptab[0].im * t[3].im - exptab[1].im * t[1].im;
191  t[1].re = exptab[0].im * t[1].re + exptab[1].im * t[3].re;
192  t[1].im = exptab[0].im * t[1].im + exptab[1].im * t[3].im;
193 
194  z0[0].re = t[0].re - t[1].re;
195  z0[0].im = t[0].im - t[1].im;
196  z0[1].re = t[4].re + t[5].re;
197  z0[1].im = t[4].im + t[5].im;
198 
199  z0[2].re = t[4].re - t[5].re;
200  z0[2].im = t[4].im - t[5].im;
201  z0[3].re = t[0].re + t[1].re;
202  z0[3].im = t[0].im + t[1].im;
203 
204  out[1].re = in[0].re + z0[3].re;
205  out[1].im = in[0].im + z0[0].im;
206  out[2].re = in[0].re + z0[2].re;
207  out[2].im = in[0].im + z0[1].im;
208  out[3].re = in[0].re + z0[1].re;
209  out[3].im = in[0].im + z0[2].im;
210  out[4].re = in[0].re + z0[0].re;
211  out[4].im = in[0].im + z0[3].im;
212 }
213 
214 static inline void fft15(const FFTComplex exptab[22], FFTComplex *out,
215  const FFTComplex *in, size_t stride)
216 {
217  int k;
218  FFTComplex tmp1[5], tmp2[5], tmp3[5];
219 
220  fft5(exptab + 19, tmp1, in + 0);
221  fft5(exptab + 19, tmp2, in + 1);
222  fft5(exptab + 19, tmp3, in + 2);
223 
224  for (k = 0; k < 5; k++) {
225  FFTComplex t[2];
226 
227  CMUL(t[0], tmp2[k], exptab[k]);
228  CMUL(t[1], tmp3[k], exptab[2 * k]);
229  out[stride*k].re = tmp1[k].re + t[0].re + t[1].re;
230  out[stride*k].im = tmp1[k].im + t[0].im + t[1].im;
231 
232  CMUL(t[0], tmp2[k], exptab[k + 5]);
233  CMUL(t[1], tmp3[k], exptab[2 * (k + 5)]);
234  out[stride*(k + 5)].re = tmp1[k].re + t[0].re + t[1].re;
235  out[stride*(k + 5)].im = tmp1[k].im + t[0].im + t[1].im;
236 
237  CMUL(t[0], tmp2[k], exptab[k + 10]);
238  CMUL(t[1], tmp3[k], exptab[2 * k + 5]);
239  out[stride*(k + 10)].re = tmp1[k].re + t[0].re + t[1].re;
240  out[stride*(k + 10)].im = tmp1[k].im + t[0].im + t[1].im;
241  }
242 }
243 
244 static void imdct15_half(IMDCT15Context *s, float *dst, const float *src,
245  ptrdiff_t stride, float scale)
246 {
247  FFTComplex fft15in[15];
248  FFTComplex *z = (FFTComplex *)dst;
249  int i, j, len8 = s->len4 >> 1, l_ptwo = 1 << s->ptwo_fft.nbits;
250  const float *in1 = src, *in2 = src + (s->len2 - 1) * stride;
251 
252  /* Reindex input, putting it into a buffer and doing an Nx15 FFT */
253  for (i = 0; i < l_ptwo; i++) {
254  for (j = 0; j < 15; j++) {
255  const int k = s->pfa_prereindex[i*15 + j];
256  FFTComplex tmp = { *(in2 - 2*k*stride), *(in1 + 2*k*stride) };
257  CMUL(fft15in[j], tmp, s->twiddle_exptab[k]);
258  }
259  fft15(s->exptab, s->tmp + s->ptwo_fft.revtab[i], fft15in, l_ptwo);
260  }
261 
262  /* Then a 15xN FFT (where N is a power of two) */
263  for (i = 0; i < 15; i++)
264  s->ptwo_fft.fft_calc(&s->ptwo_fft, s->tmp + l_ptwo*i);
265 
266  /* Reindex again, apply twiddles and output */
267  for (i = 0; i < len8; i++) {
268  float re0, im0, re1, im1;
269  const int i0 = len8 + i, i1 = len8 - i - 1;
270  const int s0 = s->pfa_postreindex[i0], s1 = s->pfa_postreindex[i1];
271 
272  CMUL3(re0, im1, s->tmp[s1].im, s->tmp[s1].re, s->twiddle_exptab[i1].im, s->twiddle_exptab[i1].re);
273  CMUL3(re1, im0, s->tmp[s0].im, s->tmp[s0].re, s->twiddle_exptab[i0].im, s->twiddle_exptab[i0].re);
274  z[i1].re = scale * re0;
275  z[i1].im = scale * im0;
276  z[i0].re = scale * re1;
277  z[i0].im = scale * im1;
278  }
279 }
const char * s
Definition: avisynth_c.h:768
float re
Definition: fft.c:82
static void fft5(const FFTComplex exptab[2], FFTComplex *out, const FFTComplex *in)
Definition: imdct15.c:168
FFTSample re
Definition: avfft.h:38
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:252
static int init_pfa_reindex_tabs(IMDCT15Context *s)
Definition: imdct15.c:67
#define src
Definition: vp8dsp.c:254
Macro definitions for various function/variable attributes.
FFTContext ptwo_fft
Definition: imdct15.h:33
FFTComplex * tmp
Definition: imdct15.h:35
static void imdct15_half(IMDCT15Context *s, float *dst, const float *src, ptrdiff_t stride, float scale)
Definition: imdct15.c:244
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
#define N
Definition: vf_pp7.c:73
FFTComplex * twiddle_exptab
Definition: imdct15.h:37
#define U(x)
Definition: vp56_arith.h:37
#define AVERROR(e)
Definition: error.h:43
#define s0
Definition: regdef.h:37
av_cold void ff_imdct15_uninit(IMDCT15Context **ps)
Free an iMDCT.
Definition: imdct15.c:47
#define fail()
Definition: checkasm.h:85
static struct @119 * exptab
int nbits
Definition: fft.h:89
#define ff_fft_init
Definition: fft.h:149
static void fft15(const FFTComplex exptab[22], FFTComplex *out, const FFTComplex *in, size_t stride)
Definition: imdct15.c:214
int * pfa_prereindex
Definition: imdct15.h:30
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
FFTComplex exptab[21]
Definition: imdct15.h:40
#define CMUL(c, a, b)
Definition: imdct15.c:45
float im
Definition: fft.c:82
void(* imdct_half)(struct IMDCT15Context *s, float *dst, const float *src, ptrdiff_t src_stride, float scale)
Calculate the middle half of the iMDCT.
Definition: imdct15.h:45
#define s1
Definition: regdef.h:38
av_cold int ff_imdct15_init(IMDCT15Context **ps, int N)
Init an iMDCT of the length 2 * 15 * (2^N)
Definition: imdct15.c:98
int * pfa_postreindex
Definition: imdct15.h:31
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
FFTSample im
Definition: avfft.h:38
common internal and external API header
#define ff_fft_end
Definition: fft.h:150
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
Definition: fft.h:106
int len
FILE * out
Definition: movenc.c:54
#define av_freep(p)
uint16_t * revtab
Definition: fft.h:91
#define M_PI
Definition: mathematics.h:52
#define av_malloc_array(a, b)
#define stride
#define CMUL3(cre, cim, are, aim, bre, bim)
Definition: imdct15.c:39
static uint8_t tmp[11]
Definition: aes_ctr.c:26