FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/imgutils.h"
30 #include "libavutil/timer.h"
31 #include "internal.h"
32 #include "cabac.h"
33 #include "cabac_functions.h"
34 #include "error_resilience.h"
35 #include "avcodec.h"
36 #include "h264.h"
37 #include "h264data.h"
38 #include "h264chroma.h"
39 #include "h264_mvpred.h"
40 #include "golomb.h"
41 #include "mathops.h"
42 #include "mpegutils.h"
43 #include "rectangle.h"
44 #include "thread.h"
45 
46 
47 static const uint8_t rem6[QP_MAX_NUM + 1] = {
48  0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
49  3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
50  0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
51  3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
52  0, 1, 2, 3,
53 };
54 
55 static const uint8_t div6[QP_MAX_NUM + 1] = {
56  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
57  3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
58  7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10,
59  10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13,
60  14,14,14,14,
61 };
62 
63 static const uint8_t field_scan[16+1] = {
64  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
65  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
66  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
67  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
68 };
69 
70 static const uint8_t field_scan8x8[64+1] = {
71  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
72  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
73  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
74  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
75  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
76  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
77  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
78  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
79  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
80  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
81  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
82  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
83  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
84  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
85  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
86  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
87 };
88 
89 static const uint8_t field_scan8x8_cavlc[64+1] = {
90  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
91  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
92  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
93  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
94  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
95  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
96  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
97  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
98  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
99  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
100  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
101  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
102  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
103  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
104  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
105  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
106 };
107 
108 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
109 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
110  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
111  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
112  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
113  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
114  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
115  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
116  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
117  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
118  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
119  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
120  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
121  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
122  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
123  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
124  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
125  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
126 };
127 
128 static const uint8_t dequant4_coeff_init[6][3] = {
129  { 10, 13, 16 },
130  { 11, 14, 18 },
131  { 13, 16, 20 },
132  { 14, 18, 23 },
133  { 16, 20, 25 },
134  { 18, 23, 29 },
135 };
136 
137 static const uint8_t dequant8_coeff_init_scan[16] = {
138  0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1
139 };
140 
141 static const uint8_t dequant8_coeff_init[6][6] = {
142  { 20, 18, 32, 19, 25, 24 },
143  { 22, 19, 35, 21, 28, 26 },
144  { 26, 23, 42, 24, 33, 31 },
145  { 28, 25, 45, 26, 35, 33 },
146  { 32, 28, 51, 30, 40, 38 },
147  { 36, 32, 58, 34, 46, 43 },
148 };
149 
150 
151 static void release_unused_pictures(H264Context *h, int remove_current)
152 {
153  int i;
154 
155  /* release non reference frames */
156  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
157  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
158  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
159  ff_h264_unref_picture(h, &h->DPB[i]);
160  }
161  }
162 }
163 
164 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
165 {
166  const H264Context *h = sl->h264;
167  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
168 
169  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
170  // edge emu needs blocksize + filter length - 1
171  // (= 21x21 for h264)
172  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
173 
175  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
177  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
178 
179  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
180  !sl->top_borders[0] || !sl->top_borders[1]) {
183  av_freep(&sl->top_borders[0]);
184  av_freep(&sl->top_borders[1]);
185 
188  sl->top_borders_allocated[0] = 0;
189  sl->top_borders_allocated[1] = 0;
190  return AVERROR(ENOMEM);
191  }
192 
193  return 0;
194 }
195 
197 {
198  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
199  const int mb_array_size = h->mb_stride * h->mb_height;
200  const int b4_stride = h->mb_width * 4 + 1;
201  const int b4_array_size = b4_stride * h->mb_height * 4;
202 
203  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
205  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
206  sizeof(uint32_t), av_buffer_allocz);
207  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
208  sizeof(int16_t), av_buffer_allocz);
209  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
210 
211  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
212  !h->ref_index_pool) {
217  return AVERROR(ENOMEM);
218  }
219 
220  return 0;
221 }
222 
224 {
225  int i, ret = 0;
226 
227  av_assert0(!pic->f->data[0]);
228 
229  pic->tf.f = pic->f;
230  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
232  if (ret < 0)
233  goto fail;
234 
235  pic->crop = h->sps.crop;
236  pic->crop_top = h->sps.crop_top;
237  pic->crop_left= h->sps.crop_left;
238 
239  if (h->avctx->hwaccel) {
240  const AVHWAccel *hwaccel = h->avctx->hwaccel;
242  if (hwaccel->frame_priv_data_size) {
244  if (!pic->hwaccel_priv_buf)
245  return AVERROR(ENOMEM);
247  }
248  }
249  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & CODEC_FLAG_GRAY && pic->f->data[2]) {
250  int h_chroma_shift, v_chroma_shift;
252  &h_chroma_shift, &v_chroma_shift);
253 
254  for(i=0; i<FF_CEIL_RSHIFT(h->avctx->height, v_chroma_shift); i++) {
255  memset(pic->f->data[1] + pic->f->linesize[1]*i,
256  0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift));
257  memset(pic->f->data[2] + pic->f->linesize[2]*i,
258  0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift));
259  }
260  }
261 
262  if (!h->qscale_table_pool) {
263  ret = init_table_pools(h);
264  if (ret < 0)
265  goto fail;
266  }
267 
270  if (!pic->qscale_table_buf || !pic->mb_type_buf)
271  goto fail;
272 
273  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
274  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
275 
276  for (i = 0; i < 2; i++) {
279  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
280  goto fail;
281 
282  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
283  pic->ref_index[i] = pic->ref_index_buf[i]->data;
284  }
285 
286  return 0;
287 fail:
288  ff_h264_unref_picture(h, pic);
289  return (ret < 0) ? ret : AVERROR(ENOMEM);
290 }
291 
292 static inline int pic_is_unused(H264Context *h, H264Picture *pic)
293 {
294  if (!pic->f->buf[0])
295  return 1;
296  return 0;
297 }
298 
300 {
301  int i;
302 
303  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
304  if (pic_is_unused(h, &h->DPB[i]))
305  break;
306  }
307  if (i == H264_MAX_PICTURE_COUNT)
308  return AVERROR_INVALIDDATA;
309 
310  return i;
311 }
312 
313 
315 {
316  int i, j, q, x;
317  const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
318 
319  for (i = 0; i < 6; i++) {
320  h->dequant8_coeff[i] = h->dequant8_buffer[i];
321  for (j = 0; j < i; j++)
322  if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
323  64 * sizeof(uint8_t))) {
324  h->dequant8_coeff[i] = h->dequant8_buffer[j];
325  break;
326  }
327  if (j < i)
328  continue;
329 
330  for (q = 0; q < max_qp + 1; q++) {
331  int shift = div6[q];
332  int idx = rem6[q];
333  for (x = 0; x < 64; x++)
334  h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
335  ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
336  h->pps.scaling_matrix8[i][x]) << shift;
337  }
338  }
339 }
340 
342 {
343  int i, j, q, x;
344  const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
345  for (i = 0; i < 6; i++) {
346  h->dequant4_coeff[i] = h->dequant4_buffer[i];
347  for (j = 0; j < i; j++)
348  if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
349  16 * sizeof(uint8_t))) {
350  h->dequant4_coeff[i] = h->dequant4_buffer[j];
351  break;
352  }
353  if (j < i)
354  continue;
355 
356  for (q = 0; q < max_qp + 1; q++) {
357  int shift = div6[q] + 2;
358  int idx = rem6[q];
359  for (x = 0; x < 16; x++)
360  h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
361  ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
362  h->pps.scaling_matrix4[i][x]) << shift;
363  }
364  }
365 }
366 
368 {
369  int i, x;
371  memset(h->dequant8_coeff, 0, sizeof(h->dequant8_coeff));
372 
373  if (h->pps.transform_8x8_mode)
375  if (h->sps.transform_bypass) {
376  for (i = 0; i < 6; i++)
377  for (x = 0; x < 16; x++)
378  h->dequant4_coeff[i][0][x] = 1 << 6;
380  for (i = 0; i < 6; i++)
381  for (x = 0; x < 64; x++)
382  h->dequant8_coeff[i][0][x] = 1 << 6;
383  }
384 }
385 
386 #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
387 
388 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
389  (((pic) && (pic) >= (old_ctx)->DPB && \
390  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
391  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
392 
394  H264Context *new_base,
395  H264Context *old_base)
396 {
397  int i;
398 
399  for (i = 0; i < count; i++) {
400  av_assert1((IN_RANGE(from[i], old_base, 1) ||
401  IN_RANGE(from[i], old_base->DPB,
403  !from[i]));
404  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
405  }
406 }
407 
408 static int copy_parameter_set(void **to, void **from, int count, int size)
409 {
410  int i;
411 
412  for (i = 0; i < count; i++) {
413  if (to[i] && !from[i]) {
414  av_freep(&to[i]);
415  } else if (from[i] && !to[i]) {
416  to[i] = av_malloc(size);
417  if (!to[i])
418  return AVERROR(ENOMEM);
419  }
420 
421  if (from[i])
422  memcpy(to[i], from[i], size);
423  }
424 
425  return 0;
426 }
427 
428 #define copy_fields(to, from, start_field, end_field) \
429  memcpy(&(to)->start_field, &(from)->start_field, \
430  (char *)&(to)->end_field - (char *)&(to)->start_field)
431 
433 
435  const AVCodecContext *src)
436 {
437  H264Context *h = dst->priv_data, *h1 = src->priv_data;
438  int inited = h->context_initialized, err = 0;
439  int need_reinit = 0;
440  int i, ret;
441 
442  if (dst == src)
443  return 0;
444 
445  if (inited &&
446  (h->width != h1->width ||
447  h->height != h1->height ||
448  h->mb_width != h1->mb_width ||
449  h->mb_height != h1->mb_height ||
450  h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
451  h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
452  h->sps.colorspace != h1->sps.colorspace)) {
453 
454  need_reinit = 1;
455  }
456 
457  /* copy block_offset since frame_start may not be called */
458  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
459 
460  // SPS/PPS
461  if ((ret = copy_parameter_set((void **)h->sps_buffers,
462  (void **)h1->sps_buffers,
463  MAX_SPS_COUNT, sizeof(SPS))) < 0)
464  return ret;
465  h->sps = h1->sps;
466  if ((ret = copy_parameter_set((void **)h->pps_buffers,
467  (void **)h1->pps_buffers,
468  MAX_PPS_COUNT, sizeof(PPS))) < 0)
469  return ret;
470  h->pps = h1->pps;
471 
472  if (need_reinit || !inited) {
473  h->width = h1->width;
474  h->height = h1->height;
475  h->mb_height = h1->mb_height;
476  h->mb_width = h1->mb_width;
477  h->mb_num = h1->mb_num;
478  h->mb_stride = h1->mb_stride;
479  h->b_stride = h1->b_stride;
480 
481  if (h->context_initialized || h1->context_initialized) {
482  if ((err = h264_slice_header_init(h)) < 0) {
483  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
484  return err;
485  }
486  }
487  /* copy block_offset since frame_start may not be called */
488  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
489  }
490 
491  h->avctx->coded_height = h1->avctx->coded_height;
492  h->avctx->coded_width = h1->avctx->coded_width;
493  h->avctx->width = h1->avctx->width;
494  h->avctx->height = h1->avctx->height;
495  h->coded_picture_number = h1->coded_picture_number;
496  h->first_field = h1->first_field;
497  h->picture_structure = h1->picture_structure;
498  h->droppable = h1->droppable;
499  h->low_delay = h1->low_delay;
500 
501  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
502  ff_h264_unref_picture(h, &h->DPB[i]);
503  if (h1->DPB[i].f->buf[0] &&
504  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
505  return ret;
506  }
507 
508  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
510  if (h1->cur_pic.f->buf[0]) {
511  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
512  if (ret < 0)
513  return ret;
514  }
515 
516  h->enable_er = h1->enable_er;
517  h->workaround_bugs = h1->workaround_bugs;
518  h->low_delay = h1->low_delay;
519  h->droppable = h1->droppable;
520 
521  // extradata/NAL handling
522  h->is_avc = h1->is_avc;
523  h->nal_length_size = h1->nal_length_size;
524  h->x264_build = h1->x264_build;
525 
526  // Dequantization matrices
527  // FIXME these are big - can they be only copied when PPS changes?
528  copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
529 
530  for (i = 0; i < 6; i++)
531  h->dequant4_coeff[i] = h->dequant4_buffer[0] +
532  (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
533 
534  for (i = 0; i < 6; i++)
535  h->dequant8_coeff[i] = h->dequant8_buffer[0] +
536  (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
537 
538  h->dequant_coeff_pps = h1->dequant_coeff_pps;
539 
540  // POC timing
541  copy_fields(h, h1, poc_lsb, default_ref_list);
542 
543  // reference lists
544  copy_fields(h, h1, short_ref, current_slice);
545 
546  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
547  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
548  copy_picture_range(h->delayed_pic, h1->delayed_pic,
549  MAX_DELAYED_PIC_COUNT + 2, h, h1);
550 
551  h->frame_recovered = h1->frame_recovered;
552 
553  if (!h->cur_pic_ptr)
554  return 0;
555 
556  if (!h->droppable) {
558  h->prev_poc_msb = h->poc_msb;
559  h->prev_poc_lsb = h->poc_lsb;
560  }
562  h->prev_frame_num = h->frame_num;
563 
564  h->recovery_frame = h1->recovery_frame;
565 
566  return err;
567 }
568 
570 {
571  H264Picture *pic;
572  int i, ret;
573  const int pixel_shift = h->pixel_shift;
574  int c[4] = {
575  1<<(h->sps.bit_depth_luma-1),
576  1<<(h->sps.bit_depth_chroma-1),
577  1<<(h->sps.bit_depth_chroma-1),
578  -1
579  };
580 
581  if (!ff_thread_can_start_frame(h->avctx)) {
582  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
583  return -1;
584  }
585 
587  h->cur_pic_ptr = NULL;
588 
589  i = find_unused_picture(h);
590  if (i < 0) {
591  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
592  return i;
593  }
594  pic = &h->DPB[i];
595 
596  pic->reference = h->droppable ? 0 : h->picture_structure;
599 
600  /*
601  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
602  * in later.
603  * See decode_nal_units().
604  */
605  pic->f->key_frame = 0;
606  pic->mmco_reset = 0;
607  pic->recovered = 0;
608  pic->invalid_gap = 0;
610 
611  if ((ret = alloc_picture(h, pic)) < 0)
612  return ret;
613  if(!h->frame_recovered && !h->avctx->hwaccel &&
615  avpriv_color_frame(pic->f, c);
616 
617  h->cur_pic_ptr = pic;
619  if (CONFIG_ERROR_RESILIENCE) {
621  }
622 
623  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
624  return ret;
625 
626  for (i = 0; i < h->nb_slice_ctx; i++) {
627  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
628  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
629  }
630 
631  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
635  }
636 
637  for (i = 0; i < 16; i++) {
638  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
639  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
640  }
641  for (i = 0; i < 16; i++) {
642  h->block_offset[16 + i] =
643  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
644  h->block_offset[48 + 16 + i] =
645  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
646  }
647 
648  /* We mark the current picture as non-reference after allocating it, so
649  * that if we break out due to an error it can be released automatically
650  * in the next ff_mpv_frame_start().
651  */
652  h->cur_pic_ptr->reference = 0;
653 
654  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
655 
656  h->next_output_pic = NULL;
657 
658  assert(h->cur_pic_ptr->long_ref == 0);
659 
660  return 0;
661 }
662 
664  uint8_t *src_y,
665  uint8_t *src_cb, uint8_t *src_cr,
666  int linesize, int uvlinesize,
667  int simple)
668 {
669  uint8_t *top_border;
670  int top_idx = 1;
671  const int pixel_shift = h->pixel_shift;
672  int chroma444 = CHROMA444(h);
673  int chroma422 = CHROMA422(h);
674 
675  src_y -= linesize;
676  src_cb -= uvlinesize;
677  src_cr -= uvlinesize;
678 
679  if (!simple && FRAME_MBAFF(h)) {
680  if (sl->mb_y & 1) {
681  if (!MB_MBAFF(sl)) {
682  top_border = sl->top_borders[0][sl->mb_x];
683  AV_COPY128(top_border, src_y + 15 * linesize);
684  if (pixel_shift)
685  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
686  if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
687  if (chroma444) {
688  if (pixel_shift) {
689  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
690  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
691  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
692  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
693  } else {
694  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
695  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
696  }
697  } else if (chroma422) {
698  if (pixel_shift) {
699  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
700  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
701  } else {
702  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
703  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
704  }
705  } else {
706  if (pixel_shift) {
707  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
708  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
709  } else {
710  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
711  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
712  }
713  }
714  }
715  }
716  } else if (MB_MBAFF(sl)) {
717  top_idx = 0;
718  } else
719  return;
720  }
721 
722  top_border = sl->top_borders[top_idx][sl->mb_x];
723  /* There are two lines saved, the line above the top macroblock
724  * of a pair, and the line above the bottom macroblock. */
725  AV_COPY128(top_border, src_y + 16 * linesize);
726  if (pixel_shift)
727  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
728 
729  if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
730  if (chroma444) {
731  if (pixel_shift) {
732  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
733  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
734  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
735  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
736  } else {
737  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
738  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
739  }
740  } else if (chroma422) {
741  if (pixel_shift) {
742  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
743  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
744  } else {
745  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
746  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
747  }
748  } else {
749  if (pixel_shift) {
750  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
751  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
752  } else {
753  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
754  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
755  }
756  }
757  }
758 }
759 
760 /**
761  * Initialize implicit_weight table.
762  * @param field 0/1 initialize the weight for interlaced MBAFF
763  * -1 initializes the rest
764  */
765 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
766 {
767  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
768 
769  for (i = 0; i < 2; i++) {
770  sl->luma_weight_flag[i] = 0;
771  sl->chroma_weight_flag[i] = 0;
772  }
773 
774  if (field < 0) {
775  if (h->picture_structure == PICT_FRAME) {
776  cur_poc = h->cur_pic_ptr->poc;
777  } else {
778  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
779  }
780  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
781  sl->ref_list[0][0].poc + sl->ref_list[1][0].poc == 2 * cur_poc) {
782  sl->use_weight = 0;
783  sl->use_weight_chroma = 0;
784  return;
785  }
786  ref_start = 0;
787  ref_count0 = sl->ref_count[0];
788  ref_count1 = sl->ref_count[1];
789  } else {
790  cur_poc = h->cur_pic_ptr->field_poc[field];
791  ref_start = 16;
792  ref_count0 = 16 + 2 * sl->ref_count[0];
793  ref_count1 = 16 + 2 * sl->ref_count[1];
794  }
795 
796  sl->use_weight = 2;
797  sl->use_weight_chroma = 2;
798  sl->luma_log2_weight_denom = 5;
799  sl->chroma_log2_weight_denom = 5;
800 
801  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
802  int poc0 = sl->ref_list[0][ref0].poc;
803  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
804  int w = 32;
805  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
806  int poc1 = sl->ref_list[1][ref1].poc;
807  int td = av_clip_int8(poc1 - poc0);
808  if (td) {
809  int tb = av_clip_int8(cur_poc - poc0);
810  int tx = (16384 + (FFABS(td) >> 1)) / td;
811  int dist_scale_factor = (tb * tx + 32) >> 8;
812  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
813  w = 64 - dist_scale_factor;
814  }
815  }
816  if (field < 0) {
817  sl->implicit_weight[ref0][ref1][0] =
818  sl->implicit_weight[ref0][ref1][1] = w;
819  } else {
820  sl->implicit_weight[ref0][ref1][field] = w;
821  }
822  }
823  }
824 }
825 
826 /**
827  * initialize scan tables
828  */
830 {
831  int i;
832  for (i = 0; i < 16; i++) {
833 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
834  h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]);
835  h->field_scan[i] = TRANSPOSE(field_scan[i]);
836 #undef TRANSPOSE
837  }
838  for (i = 0; i < 64; i++) {
839 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
844 #undef TRANSPOSE
845  }
846  if (h->sps.transform_bypass) { // FIXME same ugly
847  memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 ));
848  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
850  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
851  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
853  } else {
854  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
855  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
857  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
858  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
860  }
861 }
862 
863 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
864 {
865 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
866  CONFIG_H264_D3D11VA_HWACCEL + \
867  CONFIG_H264_VAAPI_HWACCEL + \
868  (CONFIG_H264_VDA_HWACCEL * 2) + \
869  CONFIG_H264_VDPAU_HWACCEL)
870  enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
871  const enum AVPixelFormat *choices = pix_fmts;
872  int i;
873 
874  switch (h->sps.bit_depth_luma) {
875  case 9:
876  if (CHROMA444(h)) {
877  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
878  *fmt++ = AV_PIX_FMT_GBRP9;
879  } else
880  *fmt++ = AV_PIX_FMT_YUV444P9;
881  } else if (CHROMA422(h))
882  *fmt++ = AV_PIX_FMT_YUV422P9;
883  else
884  *fmt++ = AV_PIX_FMT_YUV420P9;
885  break;
886  case 10:
887  if (CHROMA444(h)) {
888  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
889  *fmt++ = AV_PIX_FMT_GBRP10;
890  } else
891  *fmt++ = AV_PIX_FMT_YUV444P10;
892  } else if (CHROMA422(h))
893  *fmt++ = AV_PIX_FMT_YUV422P10;
894  else
895  *fmt++ = AV_PIX_FMT_YUV420P10;
896  break;
897  case 12:
898  if (CHROMA444(h)) {
899  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
900  *fmt++ = AV_PIX_FMT_GBRP12;
901  } else
902  *fmt++ = AV_PIX_FMT_YUV444P12;
903  } else if (CHROMA422(h))
904  *fmt++ = AV_PIX_FMT_YUV422P12;
905  else
906  *fmt++ = AV_PIX_FMT_YUV420P12;
907  break;
908  case 14:
909  if (CHROMA444(h)) {
910  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
911  *fmt++ = AV_PIX_FMT_GBRP14;
912  } else
913  *fmt++ = AV_PIX_FMT_YUV444P14;
914  } else if (CHROMA422(h))
915  *fmt++ = AV_PIX_FMT_YUV422P14;
916  else
917  *fmt++ = AV_PIX_FMT_YUV420P14;
918  break;
919  case 8:
920 #if CONFIG_H264_VDPAU_HWACCEL
921  *fmt++ = AV_PIX_FMT_VDPAU;
922 #endif
923  if (CHROMA444(h)) {
924  if (h->avctx->colorspace == AVCOL_SPC_RGB)
925  *fmt++ = AV_PIX_FMT_GBRP;
926  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
927  *fmt++ = AV_PIX_FMT_YUVJ444P;
928  else
929  *fmt++ = AV_PIX_FMT_YUV444P;
930  } else if (CHROMA422(h)) {
932  *fmt++ = AV_PIX_FMT_YUVJ422P;
933  else
934  *fmt++ = AV_PIX_FMT_YUV422P;
935  } else {
936 #if CONFIG_H264_DXVA2_HWACCEL
937  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
938 #endif
939 #if CONFIG_H264_D3D11VA_HWACCEL
940  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
941 #endif
942 #if CONFIG_H264_VAAPI_HWACCEL
943  *fmt++ = AV_PIX_FMT_VAAPI_VLD;
944 #endif
945 #if CONFIG_H264_VDA_HWACCEL
946  *fmt++ = AV_PIX_FMT_VDA_VLD;
947  *fmt++ = AV_PIX_FMT_VDA;
948 #endif
949  if (h->avctx->codec->pix_fmts)
950  choices = h->avctx->codec->pix_fmts;
951  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
952  *fmt++ = AV_PIX_FMT_YUVJ420P;
953  else
954  *fmt++ = AV_PIX_FMT_YUV420P;
955  }
956  break;
957  default:
959  "Unsupported bit depth %d\n", h->sps.bit_depth_luma);
960  return AVERROR_INVALIDDATA;
961  }
962 
963  *fmt = AV_PIX_FMT_NONE;
964 
965  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
966  if (choices[i] == h->avctx->pix_fmt && !force_callback)
967  return choices[i];
968  return ff_thread_get_format(h->avctx, choices);
969 }
970 
971 /* export coded and cropped frame dimensions to AVCodecContext */
973 {
974  int width = h->width - (h->sps.crop_right + h->sps.crop_left);
975  int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
976  int crop_present = h->sps.crop_left || h->sps.crop_top ||
977  h->sps.crop_right || h->sps.crop_bottom;
978  av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width);
979  av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height);
980 
981  /* handle container cropping */
982  if (!crop_present &&
983  FFALIGN(h->avctx->width, 16) == h->width &&
984  FFALIGN(h->avctx->height, 16) == h->height) {
985  width = h->avctx->width;
986  height = h->avctx->height;
987  }
988 
989  if (width <= 0 || height <= 0) {
990  av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
991  width, height);
993  return AVERROR_INVALIDDATA;
994 
995  av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
996  h->sps.crop_bottom =
997  h->sps.crop_top =
998  h->sps.crop_right =
999  h->sps.crop_left =
1000  h->sps.crop = 0;
1001 
1002  width = h->width;
1003  height = h->height;
1004  }
1005 
1006  h->avctx->coded_width = h->width;
1007  h->avctx->coded_height = h->height;
1008  h->avctx->width = width;
1009  h->avctx->height = height;
1010 
1011  return 0;
1012 }
1013 
1015 {
1016  int nb_slices = (HAVE_THREADS &&
1018  h->avctx->thread_count : 1;
1019  int i, ret;
1020 
1021  ff_set_sar(h->avctx, h->sps.sar);
1023  &h->chroma_x_shift, &h->chroma_y_shift);
1024 
1025  if (h->sps.timing_info_present_flag) {
1026  int64_t den = h->sps.time_scale;
1027  if (h->x264_build < 44U)
1028  den *= 2;
1030  h->sps.num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
1031  }
1032 
1034 
1035  h->first_field = 0;
1036  h->prev_interlaced_frame = 1;
1037 
1038  init_scan_tables(h);
1039  ret = ff_h264_alloc_tables(h);
1040  if (ret < 0) {
1041  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
1042  goto fail;
1043  }
1044 
1045  if (h->avctx->codec &&
1047  (h->sps.bit_depth_luma != 8 || h->sps.chroma_format_idc > 1)) {
1049  "VDPAU decoding does not support video colorspace.\n");
1050  ret = AVERROR_INVALIDDATA;
1051  goto fail;
1052  }
1053 
1054  if (h->sps.bit_depth_luma < 8 || h->sps.bit_depth_luma > 14 ||
1055  h->sps.bit_depth_luma == 11 || h->sps.bit_depth_luma == 13
1056  ) {
1057  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
1058  h->sps.bit_depth_luma);
1059  ret = AVERROR_INVALIDDATA;
1060  goto fail;
1061  }
1062 
1063  h->cur_bit_depth_luma =
1066  h->pixel_shift = h->sps.bit_depth_luma > 8;
1069 
1071  h->sps.chroma_format_idc);
1075  h->sps.chroma_format_idc);
1077 
1078  if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
1079  int max_slices;
1080  if (h->mb_height)
1081  max_slices = FFMIN(H264_MAX_THREADS, h->mb_height);
1082  else
1083  max_slices = H264_MAX_THREADS;
1084  av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d,"
1085  " reducing to %d\n", nb_slices, max_slices);
1086  nb_slices = max_slices;
1087  }
1088  h->slice_context_count = nb_slices;
1089 
1090  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
1091  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
1092  if (ret < 0) {
1093  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1094  goto fail;
1095  }
1096  } else {
1097  for (i = 0; i < h->slice_context_count; i++) {
1098  H264SliceContext *sl = &h->slice_ctx[i];
1099 
1100  sl->h264 = h;
1101  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
1102  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
1103  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
1104 
1105  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
1106  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1107  goto fail;
1108  }
1109  }
1110  }
1111 
1112  h->context_initialized = 1;
1113 
1114  return 0;
1115 fail:
1117  h->context_initialized = 0;
1118  return ret;
1119 }
1120 
1122 {
1123  switch (a) {
1127  default:
1128  return a;
1129  }
1130 }
1131 
1132 /**
1133  * Decode a slice header.
1134  * This will (re)intialize the decoder and call h264_frame_start() as needed.
1135  *
1136  * @param h h264context
1137  *
1138  * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
1139  */
1141 {
1142  unsigned int first_mb_in_slice;
1143  unsigned int pps_id;
1144  int ret;
1145  unsigned int slice_type, tmp, i, j;
1146  int last_pic_structure, last_pic_droppable;
1147  int must_reinit;
1148  int needs_reinit = 0;
1149  int field_pic_flag, bottom_field_flag;
1150  int first_slice = sl == h->slice_ctx && !h->current_slice;
1151  int frame_num, picture_structure, droppable;
1152  int mb_aff_frame, last_mb_aff_frame;
1153  PPS *pps;
1154 
1157 
1158  first_mb_in_slice = get_ue_golomb_long(&sl->gb);
1159 
1160  if (first_mb_in_slice == 0) { // FIXME better field boundary detection
1161  if (h->current_slice) {
1162  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
1163  ff_h264_field_end(h, h->slice_ctx, 1);
1164  h->current_slice = 0;
1165  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == NAL_IDR_SLICE) {
1166  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
1167  ff_h264_field_end(h, h->slice_ctx, 1);
1168  h->current_slice = 0;
1169  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1170  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1171  h->cur_pic_ptr = NULL;
1172  } else
1173  return AVERROR_INVALIDDATA;
1174  }
1175 
1176  if (!h->first_field) {
1177  if (h->cur_pic_ptr && !h->droppable) {
1180  }
1181  h->cur_pic_ptr = NULL;
1182  }
1183  }
1184 
1185  slice_type = get_ue_golomb_31(&sl->gb);
1186  if (slice_type > 9) {
1188  "slice type %d too large at %d\n",
1189  slice_type, first_mb_in_slice);
1190  return AVERROR_INVALIDDATA;
1191  }
1192  if (slice_type > 4) {
1193  slice_type -= 5;
1194  sl->slice_type_fixed = 1;
1195  } else
1196  sl->slice_type_fixed = 0;
1197 
1198  slice_type = golomb_to_pict_type[slice_type];
1199 
1200  sl->slice_type = slice_type;
1201  sl->slice_type_nos = slice_type & 3;
1202 
1203  if (h->nal_unit_type == NAL_IDR_SLICE &&
1205  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1206  return AVERROR_INVALIDDATA;
1207  }
1208 
1209  if (
1210  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
1214  h->avctx->skip_frame >= AVDISCARD_ALL) {
1215  return SLICE_SKIPED;
1216  }
1217 
1218  // to make a few old functions happy, it's wrong though
1219  h->pict_type = sl->slice_type;
1220 
1221  pps_id = get_ue_golomb(&sl->gb);
1222  if (pps_id >= MAX_PPS_COUNT) {
1223  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
1224  return AVERROR_INVALIDDATA;
1225  }
1226  if (!h->pps_buffers[pps_id]) {
1228  "non-existing PPS %u referenced\n",
1229  pps_id);
1230  return AVERROR_INVALIDDATA;
1231  }
1232  if (h->au_pps_id >= 0 && pps_id != h->au_pps_id) {
1234  "PPS change from %d to %d forbidden\n",
1235  h->au_pps_id, pps_id);
1236  return AVERROR_INVALIDDATA;
1237  }
1238 
1239  pps = h->pps_buffers[pps_id];
1240 
1241  if (!h->sps_buffers[pps->sps_id]) {
1243  "non-existing SPS %u referenced\n",
1244  h->pps.sps_id);
1245  return AVERROR_INVALIDDATA;
1246  }
1247  if (first_slice)
1248  h->pps = *h->pps_buffers[pps_id];
1249 
1250  if (pps->sps_id != h->sps.sps_id ||
1251  pps->sps_id != h->current_sps_id ||
1252  h->sps_buffers[pps->sps_id]->new) {
1253 
1254  if (!first_slice) {
1256  "SPS changed in the middle of the frame\n");
1257  return AVERROR_INVALIDDATA;
1258  }
1259 
1260  h->sps = *h->sps_buffers[h->pps.sps_id];
1261 
1262  if (h->mb_width != h->sps.mb_width ||
1263  h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) ||
1266  )
1267  needs_reinit = 1;
1268 
1269  if (h->bit_depth_luma != h->sps.bit_depth_luma ||
1271  needs_reinit = 1;
1272 
1273  if (h->flags & CODEC_FLAG_LOW_DELAY ||
1275  !h->sps.num_reorder_frames)) {
1276  if (h->avctx->has_b_frames > 1 || h->delayed_pic[0])
1277  av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. "
1278  "Reenabling low delay requires a codec flush.\n");
1279  else
1280  h->low_delay = 1;
1281  }
1282 
1283  if (h->avctx->has_b_frames < 2)
1284  h->avctx->has_b_frames = !h->low_delay;
1285 
1286  }
1287 
1288  h->avctx->profile = ff_h264_get_profile(&h->sps);
1289  h->avctx->level = h->sps.level_idc;
1290  h->avctx->refs = h->sps.ref_frame_count;
1291 
1292  must_reinit = (h->context_initialized &&
1293  ( 16*h->sps.mb_width != h->avctx->coded_width
1294  || 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height
1297  || h->mb_width != h->sps.mb_width
1298  || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag)
1299  ));
1300  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1302  must_reinit = 1;
1303 
1304  if (first_slice && av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio))
1305  must_reinit = 1;
1306 
1307  h->mb_width = h->sps.mb_width;
1308  h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
1309  h->mb_num = h->mb_width * h->mb_height;
1310  h->mb_stride = h->mb_width + 1;
1311 
1312  h->b_stride = h->mb_width * 4;
1313 
1314  h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
1315 
1316  h->width = 16 * h->mb_width;
1317  h->height = 16 * h->mb_height;
1318 
1319  ret = init_dimensions(h);
1320  if (ret < 0)
1321  return ret;
1322 
1325  : AVCOL_RANGE_MPEG;
1327  if (h->avctx->colorspace != h->sps.colorspace)
1328  needs_reinit = 1;
1330  h->avctx->color_trc = h->sps.color_trc;
1331  h->avctx->colorspace = h->sps.colorspace;
1332  }
1333  }
1334 
1335  if (h->context_initialized &&
1336  (must_reinit || needs_reinit)) {
1337  h->context_initialized = 0;
1338  if (sl != h->slice_ctx) {
1340  "changing width %d -> %d / height %d -> %d on "
1341  "slice %d\n",
1342  h->width, h->avctx->coded_width,
1343  h->height, h->avctx->coded_height,
1344  h->current_slice + 1);
1345  return AVERROR_INVALIDDATA;
1346  }
1347 
1348  av_assert1(first_slice);
1349 
1351 
1352  if ((ret = get_pixel_format(h, 1)) < 0)
1353  return ret;
1354  h->avctx->pix_fmt = ret;
1355 
1356  av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
1357  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1358 
1359  if ((ret = h264_slice_header_init(h)) < 0) {
1361  "h264_slice_header_init() failed\n");
1362  return ret;
1363  }
1364  }
1365  if (!h->context_initialized) {
1366  if (sl != h->slice_ctx) {
1368  "Cannot (re-)initialize context during parallel decoding.\n");
1369  return AVERROR_PATCHWELCOME;
1370  }
1371 
1372  if ((ret = get_pixel_format(h, 1)) < 0)
1373  return ret;
1374  h->avctx->pix_fmt = ret;
1375 
1376  if ((ret = h264_slice_header_init(h)) < 0) {
1378  "h264_slice_header_init() failed\n");
1379  return ret;
1380  }
1381  }
1382 
1383  if (first_slice && h->dequant_coeff_pps != pps_id) {
1384  h->dequant_coeff_pps = pps_id;
1386  }
1387 
1388  frame_num = get_bits(&sl->gb, h->sps.log2_max_frame_num);
1389  if (!first_slice) {
1390  if (h->frame_num != frame_num) {
1391  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1392  h->frame_num, frame_num);
1393  return AVERROR_INVALIDDATA;
1394  }
1395  }
1396 
1397  sl->mb_mbaff = 0;
1398  mb_aff_frame = 0;
1399  last_mb_aff_frame = h->mb_aff_frame;
1400  last_pic_structure = h->picture_structure;
1401  last_pic_droppable = h->droppable;
1402  droppable = h->nal_ref_idc == 0;
1403  if (h->sps.frame_mbs_only_flag) {
1404  picture_structure = PICT_FRAME;
1405  } else {
1406  if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1407  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1408  return -1;
1409  }
1410  field_pic_flag = get_bits1(&sl->gb);
1411 
1412  if (field_pic_flag) {
1413  bottom_field_flag = get_bits1(&sl->gb);
1414  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1415  } else {
1416  picture_structure = PICT_FRAME;
1417  mb_aff_frame = h->sps.mb_aff;
1418  }
1419  }
1420  if (h->current_slice) {
1421  if (last_pic_structure != picture_structure ||
1422  last_pic_droppable != droppable ||
1423  last_mb_aff_frame != mb_aff_frame) {
1425  "Changing field mode (%d -> %d) between slices is not allowed\n",
1426  last_pic_structure, h->picture_structure);
1427  return AVERROR_INVALIDDATA;
1428  } else if (!h->cur_pic_ptr) {
1430  "unset cur_pic_ptr on slice %d\n",
1431  h->current_slice + 1);
1432  return AVERROR_INVALIDDATA;
1433  }
1434  }
1435 
1436  h->picture_structure = picture_structure;
1437  h->droppable = droppable;
1438  h->frame_num = frame_num;
1439  h->mb_aff_frame = mb_aff_frame;
1440  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1441 
1442  if (h->current_slice == 0) {
1443  /* Shorten frame num gaps so we don't have to allocate reference
1444  * frames just to throw them away */
1445  if (h->frame_num != h->prev_frame_num) {
1446  int unwrap_prev_frame_num = h->prev_frame_num;
1447  int max_frame_num = 1 << h->sps.log2_max_frame_num;
1448 
1449  if (unwrap_prev_frame_num > h->frame_num)
1450  unwrap_prev_frame_num -= max_frame_num;
1451 
1452  if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
1453  unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
1454  if (unwrap_prev_frame_num < 0)
1455  unwrap_prev_frame_num += max_frame_num;
1456 
1457  h->prev_frame_num = unwrap_prev_frame_num;
1458  }
1459  }
1460 
1461  /* See if we have a decoded first field looking for a pair...
1462  * Here, we're using that to see if we should mark previously
1463  * decode frames as "finished".
1464  * We have to do that before the "dummy" in-between frame allocation,
1465  * since that can modify h->cur_pic_ptr. */
1466  if (h->first_field) {
1467  av_assert0(h->cur_pic_ptr);
1468  av_assert0(h->cur_pic_ptr->f->buf[0]);
1469  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1470 
1471  /* Mark old field/frame as completed */
1472  if (h->cur_pic_ptr->tf.owner == h->avctx) {
1474  last_pic_structure == PICT_BOTTOM_FIELD);
1475  }
1476 
1477  /* figure out if we have a complementary field pair */
1478  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1479  /* Previous field is unmatched. Don't display it, but let it
1480  * remain for reference if marked as such. */
1481  if (last_pic_structure != PICT_FRAME) {
1483  last_pic_structure == PICT_TOP_FIELD);
1484  }
1485  } else {
1486  if (h->cur_pic_ptr->frame_num != h->frame_num) {
1487  /* This and previous field were reference, but had
1488  * different frame_nums. Consider this field first in
1489  * pair. Throw away previous field except for reference
1490  * purposes. */
1491  if (last_pic_structure != PICT_FRAME) {
1493  last_pic_structure == PICT_TOP_FIELD);
1494  }
1495  } else {
1496  /* Second field in complementary pair */
1497  if (!((last_pic_structure == PICT_TOP_FIELD &&
1499  (last_pic_structure == PICT_BOTTOM_FIELD &&
1502  "Invalid field mode combination %d/%d\n",
1503  last_pic_structure, h->picture_structure);
1504  h->picture_structure = last_pic_structure;
1505  h->droppable = last_pic_droppable;
1506  return AVERROR_INVALIDDATA;
1507  } else if (last_pic_droppable != h->droppable) {
1509  "Found reference and non-reference fields in the same frame, which");
1510  h->picture_structure = last_pic_structure;
1511  h->droppable = last_pic_droppable;
1512  return AVERROR_PATCHWELCOME;
1513  }
1514  }
1515  }
1516  }
1517 
1518  while (h->frame_num != h->prev_frame_num && !h->first_field &&
1519  h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
1520  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1521  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1522  h->frame_num, h->prev_frame_num);
1524  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1525  h->last_pocs[i] = INT_MIN;
1526  ret = h264_frame_start(h);
1527  if (ret < 0) {
1528  h->first_field = 0;
1529  return ret;
1530  }
1531 
1532  h->prev_frame_num++;
1533  h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
1536  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1537  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1539  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1540  return ret;
1542  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1543  return ret;
1544  /* Error concealment: If a ref is missing, copy the previous ref
1545  * in its place.
1546  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1547  * many assumptions about there being no actual duplicates.
1548  * FIXME: This does not copy padding for out-of-frame motion
1549  * vectors. Given we are concealing a lost frame, this probably
1550  * is not noticeable by comparison, but it should be fixed. */
1551  if (h->short_ref_count) {
1552  if (prev) {
1553  av_image_copy(h->short_ref[0]->f->data,
1554  h->short_ref[0]->f->linesize,
1555  (const uint8_t **)prev->f->data,
1556  prev->f->linesize,
1557  h->avctx->pix_fmt,
1558  h->mb_width * 16,
1559  h->mb_height * 16);
1560  h->short_ref[0]->poc = prev->poc + 2;
1561  }
1562  h->short_ref[0]->frame_num = h->prev_frame_num;
1563  }
1564  }
1565 
1566  /* See if we have a decoded first field looking for a pair...
1567  * We're using that to see whether to continue decoding in that
1568  * frame, or to allocate a new one. */
1569  if (h->first_field) {
1570  av_assert0(h->cur_pic_ptr);
1571  av_assert0(h->cur_pic_ptr->f->buf[0]);
1572  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1573 
1574  /* figure out if we have a complementary field pair */
1575  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1576  /* Previous field is unmatched. Don't display it, but let it
1577  * remain for reference if marked as such. */
1578  h->missing_fields ++;
1579  h->cur_pic_ptr = NULL;
1580  h->first_field = FIELD_PICTURE(h);
1581  } else {
1582  h->missing_fields = 0;
1583  if (h->cur_pic_ptr->frame_num != h->frame_num) {
1586  /* This and the previous field had different frame_nums.
1587  * Consider this field first in pair. Throw away previous
1588  * one except for reference purposes. */
1589  h->first_field = 1;
1590  h->cur_pic_ptr = NULL;
1591  } else {
1592  /* Second field in complementary pair */
1593  h->first_field = 0;
1594  }
1595  }
1596  } else {
1597  /* Frame or first field in a potentially complementary pair */
1598  h->first_field = FIELD_PICTURE(h);
1599  }
1600 
1601  if (!FIELD_PICTURE(h) || h->first_field) {
1602  if (h264_frame_start(h) < 0) {
1603  h->first_field = 0;
1604  return AVERROR_INVALIDDATA;
1605  }
1606  } else {
1608  }
1609  /* Some macroblocks can be accessed before they're available in case
1610  * of lost slices, MBAFF or threading. */
1611  if (FIELD_PICTURE(h)) {
1612  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1613  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1614  } else {
1615  memset(h->slice_table, -1,
1616  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1617  }
1618  h->last_slice_type = -1;
1619  }
1620 
1621 
1622  h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
1623 
1624  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1625  if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1626  first_mb_in_slice >= h->mb_num) {
1627  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1628  return AVERROR_INVALIDDATA;
1629  }
1630  sl->resync_mb_x = sl->mb_x = first_mb_in_slice % h->mb_width;
1631  sl->resync_mb_y = sl->mb_y = (first_mb_in_slice / h->mb_width) <<
1634  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1635  av_assert1(sl->mb_y < h->mb_height);
1636 
1637  if (h->picture_structure == PICT_FRAME) {
1638  h->curr_pic_num = h->frame_num;
1639  h->max_pic_num = 1 << h->sps.log2_max_frame_num;
1640  } else {
1641  h->curr_pic_num = 2 * h->frame_num + 1;
1642  h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
1643  }
1644 
1645  if (h->nal_unit_type == NAL_IDR_SLICE)
1646  get_ue_golomb(&sl->gb); /* idr_pic_id */
1647 
1648  if (h->sps.poc_type == 0) {
1649  h->poc_lsb = get_bits(&sl->gb, h->sps.log2_max_poc_lsb);
1650 
1651  if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
1652  h->delta_poc_bottom = get_se_golomb(&sl->gb);
1653  }
1654 
1655  if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
1656  h->delta_poc[0] = get_se_golomb(&sl->gb);
1657 
1658  if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
1659  h->delta_poc[1] = get_se_golomb(&sl->gb);
1660  }
1661 
1663 
1665  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1666 
1667  ret = ff_set_ref_count(h, sl);
1668  if (ret < 0)
1669  return ret;
1670 
1671  if (slice_type != AV_PICTURE_TYPE_I &&
1672  (h->current_slice == 0 ||
1673  slice_type != h->last_slice_type ||
1674  memcmp(h->last_ref_count, sl->ref_count, sizeof(sl->ref_count)))) {
1675 
1677  }
1678 
1679  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1681  if (ret < 0) {
1682  sl->ref_count[1] = sl->ref_count[0] = 0;
1683  return ret;
1684  }
1685  }
1686 
1687  if ((h->pps.weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1688  (h->pps.weighted_bipred_idc == 1 &&
1690  ff_pred_weight_table(h, sl);
1691  else if (h->pps.weighted_bipred_idc == 2 &&
1693  implicit_weight_table(h, sl, -1);
1694  } else {
1695  sl->use_weight = 0;
1696  for (i = 0; i < 2; i++) {
1697  sl->luma_weight_flag[i] = 0;
1698  sl->chroma_weight_flag[i] = 0;
1699  }
1700  }
1701 
1702  // If frame-mt is enabled, only update mmco tables for the first slice
1703  // in a field. Subsequent slices can temporarily clobber h->mmco_index
1704  // or h->mmco, which will cause ref list mix-ups and decoding errors
1705  // further down the line. This may break decoding if the first slice is
1706  // corrupt, thus we only do this if frame-mt is enabled.
1707  if (h->nal_ref_idc) {
1708  ret = ff_h264_decode_ref_pic_marking(h, &sl->gb,
1710  h->current_slice == 0);
1711  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1712  return AVERROR_INVALIDDATA;
1713  }
1714 
1715  if (FRAME_MBAFF(h)) {
1717 
1718  if (h->pps.weighted_bipred_idc == 2 && sl->slice_type_nos == AV_PICTURE_TYPE_B) {
1719  implicit_weight_table(h, sl, 0);
1720  implicit_weight_table(h, sl, 1);
1721  }
1722  }
1723 
1727 
1728  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
1729  tmp = get_ue_golomb_31(&sl->gb);
1730  if (tmp > 2) {
1731  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1732  return AVERROR_INVALIDDATA;
1733  }
1734  sl->cabac_init_idc = tmp;
1735  }
1736 
1737  sl->last_qscale_diff = 0;
1738  tmp = h->pps.init_qp + get_se_golomb(&sl->gb);
1739  if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
1740  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1741  return AVERROR_INVALIDDATA;
1742  }
1743  sl->qscale = tmp;
1744  sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
1745  sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
1746  // FIXME qscale / qp ... stuff
1747  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1748  get_bits1(&sl->gb); /* sp_for_switch_flag */
1749  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1751  get_se_golomb(&sl->gb); /* slice_qs_delta */
1752 
1753  sl->deblocking_filter = 1;
1754  sl->slice_alpha_c0_offset = 0;
1755  sl->slice_beta_offset = 0;
1757  tmp = get_ue_golomb_31(&sl->gb);
1758  if (tmp > 2) {
1760  "deblocking_filter_idc %u out of range\n", tmp);
1761  return AVERROR_INVALIDDATA;
1762  }
1763  sl->deblocking_filter = tmp;
1764  if (sl->deblocking_filter < 2)
1765  sl->deblocking_filter ^= 1; // 1<->0
1766 
1767  if (sl->deblocking_filter) {
1768  sl->slice_alpha_c0_offset = get_se_golomb(&sl->gb) * 2;
1769  sl->slice_beta_offset = get_se_golomb(&sl->gb) * 2;
1770  if (sl->slice_alpha_c0_offset > 12 ||
1771  sl->slice_alpha_c0_offset < -12 ||
1772  sl->slice_beta_offset > 12 ||
1773  sl->slice_beta_offset < -12) {
1775  "deblocking filter parameters %d %d out of range\n",
1777  return AVERROR_INVALIDDATA;
1778  }
1779  }
1780  }
1781 
1782  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1784  h->nal_unit_type != NAL_IDR_SLICE) ||
1790  h->nal_ref_idc == 0))
1791  sl->deblocking_filter = 0;
1792 
1793  if (sl->deblocking_filter == 1 && h->max_contexts > 1) {
1794  if (h->avctx->flags2 & CODEC_FLAG2_FAST) {
1795  /* Cheat slightly for speed:
1796  * Do not bother to deblock across slices. */
1797  sl->deblocking_filter = 2;
1798  } else {
1799  h->max_contexts = 1;
1800  if (!h->single_decode_warning) {
1801  av_log(h->avctx, AV_LOG_INFO,
1802  "Cannot parallelize slice decoding with deblocking filter type 1, decoding such frames in sequential order\n"
1803  "To parallelize slice decoding you need video encoded with disable_deblocking_filter_idc set to 2 (deblock only edges that do not cross slices).\n"
1804  "Setting the flags2 libavcodec option to +fast (-flags2 +fast) will disable deblocking across slices and enable parallel slice decoding "
1805  "but will generate non-standard-compliant output.\n");
1806  h->single_decode_warning = 1;
1807  }
1808  if (sl != h->slice_ctx) {
1810  "Deblocking switched inside frame.\n");
1811  return SLICE_SINGLETHREAD;
1812  }
1813  }
1814  }
1815  sl->qp_thresh = 15 -
1817  FFMAX3(0,
1819  h->pps.chroma_qp_index_offset[1]) +
1820  6 * (h->sps.bit_depth_luma - 8);
1821 
1822  h->last_slice_type = slice_type;
1823  memcpy(h->last_ref_count, sl->ref_count, sizeof(h->last_ref_count));
1824  sl->slice_num = ++h->current_slice;
1825 
1826  if (sl->slice_num)
1827  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
1828  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
1829  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
1830  && sl->slice_num >= MAX_SLICES) {
1831  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
1832  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
1833  }
1834 
1835  for (j = 0; j < 2; j++) {
1836  int id_list[16];
1837  int *ref2frm = sl->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
1838  for (i = 0; i < 16; i++) {
1839  id_list[i] = 60;
1840  if (j < sl->list_count && i < sl->ref_count[j] &&
1841  sl->ref_list[j][i].parent->f->buf[0]) {
1842  int k;
1843  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
1844  for (k = 0; k < h->short_ref_count; k++)
1845  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
1846  id_list[i] = k;
1847  break;
1848  }
1849  for (k = 0; k < h->long_ref_count; k++)
1850  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
1851  id_list[i] = h->short_ref_count + k;
1852  break;
1853  }
1854  }
1855  }
1856 
1857  ref2frm[0] =
1858  ref2frm[1] = -1;
1859  for (i = 0; i < 16; i++)
1860  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
1861  ref2frm[18 + 0] =
1862  ref2frm[18 + 1] = -1;
1863  for (i = 16; i < 48; i++)
1864  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
1865  (sl->ref_list[j][i].reference & 3);
1866  }
1867 
1868  h->au_pps_id = pps_id;
1869  h->sps.new =
1870  h->sps_buffers[h->pps.sps_id]->new = 0;
1871  h->current_sps_id = h->pps.sps_id;
1872 
1873  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
1875  "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
1876  sl->slice_num,
1877  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
1878  first_mb_in_slice,
1880  sl->slice_type_fixed ? " fix" : "",
1881  h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
1882  pps_id, h->frame_num,
1883  h->cur_pic_ptr->field_poc[0],
1884  h->cur_pic_ptr->field_poc[1],
1885  sl->ref_count[0], sl->ref_count[1],
1886  sl->qscale,
1887  sl->deblocking_filter,
1889  sl->use_weight,
1890  sl->use_weight == 1 && sl->use_weight_chroma ? "c" : "",
1891  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
1892  }
1893 
1894  return 0;
1895 }
1896 
1898 {
1899  switch (sl->slice_type) {
1900  case AV_PICTURE_TYPE_P:
1901  return 0;
1902  case AV_PICTURE_TYPE_B:
1903  return 1;
1904  case AV_PICTURE_TYPE_I:
1905  return 2;
1906  case AV_PICTURE_TYPE_SP:
1907  return 3;
1908  case AV_PICTURE_TYPE_SI:
1909  return 4;
1910  default:
1911  return AVERROR_INVALIDDATA;
1912  }
1913 }
1914 
1916  H264SliceContext *sl,
1917  int mb_type, int top_xy,
1918  int left_xy[LEFT_MBS],
1919  int top_type,
1920  int left_type[LEFT_MBS],
1921  int mb_xy, int list)
1922 {
1923  int b_stride = h->b_stride;
1924  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
1925  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
1926  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
1927  if (USES_LIST(top_type, list)) {
1928  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
1929  const int b8_xy = 4 * top_xy + 2;
1930  int (*ref2frm)[64] = (void*)(sl->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(sl) ? 20 : 2));
1931  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
1932  ref_cache[0 - 1 * 8] =
1933  ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]];
1934  ref_cache[2 - 1 * 8] =
1935  ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]];
1936  } else {
1937  AV_ZERO128(mv_dst - 1 * 8);
1938  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1939  }
1940 
1941  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
1942  if (USES_LIST(left_type[LTOP], list)) {
1943  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
1944  const int b8_xy = 4 * left_xy[LTOP] + 1;
1945  int (*ref2frm)[64] =(void*)( sl->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(sl) ? 20 : 2));
1946  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
1947  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
1948  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
1949  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
1950  ref_cache[-1 + 0] =
1951  ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
1952  ref_cache[-1 + 16] =
1953  ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
1954  } else {
1955  AV_ZERO32(mv_dst - 1 + 0);
1956  AV_ZERO32(mv_dst - 1 + 8);
1957  AV_ZERO32(mv_dst - 1 + 16);
1958  AV_ZERO32(mv_dst - 1 + 24);
1959  ref_cache[-1 + 0] =
1960  ref_cache[-1 + 8] =
1961  ref_cache[-1 + 16] =
1962  ref_cache[-1 + 24] = LIST_NOT_USED;
1963  }
1964  }
1965  }
1966 
1967  if (!USES_LIST(mb_type, list)) {
1968  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
1969  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1970  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1971  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1972  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1973  return;
1974  }
1975 
1976  {
1977  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
1978  int (*ref2frm)[64] = (void*)(sl->ref2frm[sl->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(sl) ? 20 : 2));
1979  uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
1980  uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
1981  AV_WN32A(&ref_cache[0 * 8], ref01);
1982  AV_WN32A(&ref_cache[1 * 8], ref01);
1983  AV_WN32A(&ref_cache[2 * 8], ref23);
1984  AV_WN32A(&ref_cache[3 * 8], ref23);
1985  }
1986 
1987  {
1988  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
1989  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
1990  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
1991  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
1992  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
1993  }
1994 }
1995 
1996 /**
1997  *
1998  * @return non zero if the loop filter can be skipped
1999  */
2000 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2001 {
2002  const int mb_xy = sl->mb_xy;
2003  int top_xy, left_xy[LEFT_MBS];
2004  int top_type, left_type[LEFT_MBS];
2005  uint8_t *nnz;
2006  uint8_t *nnz_cache;
2007 
2008  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2009 
2010  /* Wow, what a mess, why didn't they simplify the interlacing & intra
2011  * stuff, I can't imagine that these complex rules are worth it. */
2012 
2013  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2014  if (FRAME_MBAFF(h)) {
2015  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2016  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2017  if (sl->mb_y & 1) {
2018  if (left_mb_field_flag != curr_mb_field_flag)
2019  left_xy[LTOP] -= h->mb_stride;
2020  } else {
2021  if (curr_mb_field_flag)
2022  top_xy += h->mb_stride &
2023  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2024  if (left_mb_field_flag != curr_mb_field_flag)
2025  left_xy[LBOT] += h->mb_stride;
2026  }
2027  }
2028 
2029  sl->top_mb_xy = top_xy;
2030  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2031  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2032  {
2033  /* For sufficiently low qp, filtering wouldn't do anything.
2034  * This is a conservative estimate: could also check beta_offset
2035  * and more accurate chroma_qp. */
2036  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2037  int qp = h->cur_pic.qscale_table[mb_xy];
2038  if (qp <= qp_thresh &&
2039  (left_xy[LTOP] < 0 ||
2040  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2041  (top_xy < 0 ||
2042  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2043  if (!FRAME_MBAFF(h))
2044  return 1;
2045  if ((left_xy[LTOP] < 0 ||
2046  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2047  (top_xy < h->mb_stride ||
2048  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2049  return 1;
2050  }
2051  }
2052 
2053  top_type = h->cur_pic.mb_type[top_xy];
2054  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2055  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2056  if (sl->deblocking_filter == 2) {
2057  if (h->slice_table[top_xy] != sl->slice_num)
2058  top_type = 0;
2059  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2060  left_type[LTOP] = left_type[LBOT] = 0;
2061  } else {
2062  if (h->slice_table[top_xy] == 0xFFFF)
2063  top_type = 0;
2064  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2065  left_type[LTOP] = left_type[LBOT] = 0;
2066  }
2067  sl->top_type = top_type;
2068  sl->left_type[LTOP] = left_type[LTOP];
2069  sl->left_type[LBOT] = left_type[LBOT];
2070 
2071  if (IS_INTRA(mb_type))
2072  return 0;
2073 
2074  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2075  top_type, left_type, mb_xy, 0);
2076  if (sl->list_count == 2)
2077  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2078  top_type, left_type, mb_xy, 1);
2079 
2080  nnz = h->non_zero_count[mb_xy];
2081  nnz_cache = sl->non_zero_count_cache;
2082  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2083  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2084  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2085  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2086  sl->cbp = h->cbp_table[mb_xy];
2087 
2088  if (top_type) {
2089  nnz = h->non_zero_count[top_xy];
2090  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2091  }
2092 
2093  if (left_type[LTOP]) {
2094  nnz = h->non_zero_count[left_xy[LTOP]];
2095  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2096  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2097  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2098  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2099  }
2100 
2101  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2102  * from what the loop filter needs */
2103  if (!CABAC(h) && h->pps.transform_8x8_mode) {
2104  if (IS_8x8DCT(top_type)) {
2105  nnz_cache[4 + 8 * 0] =
2106  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2107  nnz_cache[6 + 8 * 0] =
2108  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2109  }
2110  if (IS_8x8DCT(left_type[LTOP])) {
2111  nnz_cache[3 + 8 * 1] =
2112  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2113  }
2114  if (IS_8x8DCT(left_type[LBOT])) {
2115  nnz_cache[3 + 8 * 3] =
2116  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2117  }
2118 
2119  if (IS_8x8DCT(mb_type)) {
2120  nnz_cache[scan8[0]] =
2121  nnz_cache[scan8[1]] =
2122  nnz_cache[scan8[2]] =
2123  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2124 
2125  nnz_cache[scan8[0 + 4]] =
2126  nnz_cache[scan8[1 + 4]] =
2127  nnz_cache[scan8[2 + 4]] =
2128  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2129 
2130  nnz_cache[scan8[0 + 8]] =
2131  nnz_cache[scan8[1 + 8]] =
2132  nnz_cache[scan8[2 + 8]] =
2133  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2134 
2135  nnz_cache[scan8[0 + 12]] =
2136  nnz_cache[scan8[1 + 12]] =
2137  nnz_cache[scan8[2 + 12]] =
2138  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2139  }
2140  }
2141 
2142  return 0;
2143 }
2144 
2145 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2146 {
2147  uint8_t *dest_y, *dest_cb, *dest_cr;
2148  int linesize, uvlinesize, mb_x, mb_y;
2149  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2150  const int old_slice_type = sl->slice_type;
2151  const int pixel_shift = h->pixel_shift;
2152  const int block_h = 16 >> h->chroma_y_shift;
2153 
2154  if (sl->deblocking_filter) {
2155  for (mb_x = start_x; mb_x < end_x; mb_x++)
2156  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2157  int mb_xy, mb_type;
2158  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2159  sl->slice_num = h->slice_table[mb_xy];
2160  mb_type = h->cur_pic.mb_type[mb_xy];
2161  sl->list_count = h->list_counts[mb_xy];
2162 
2163  if (FRAME_MBAFF(h))
2164  sl->mb_mbaff =
2165  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2166 
2167  sl->mb_x = mb_x;
2168  sl->mb_y = mb_y;
2169  dest_y = h->cur_pic.f->data[0] +
2170  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2171  dest_cb = h->cur_pic.f->data[1] +
2172  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2173  mb_y * sl->uvlinesize * block_h;
2174  dest_cr = h->cur_pic.f->data[2] +
2175  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2176  mb_y * sl->uvlinesize * block_h;
2177  // FIXME simplify above
2178 
2179  if (MB_FIELD(sl)) {
2180  linesize = sl->mb_linesize = sl->linesize * 2;
2181  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2182  if (mb_y & 1) { // FIXME move out of this function?
2183  dest_y -= sl->linesize * 15;
2184  dest_cb -= sl->uvlinesize * (block_h - 1);
2185  dest_cr -= sl->uvlinesize * (block_h - 1);
2186  }
2187  } else {
2188  linesize = sl->mb_linesize = sl->linesize;
2189  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2190  }
2191  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2192  uvlinesize, 0);
2193  if (fill_filter_caches(h, sl, mb_type))
2194  continue;
2195  sl->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
2196  sl->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
2197 
2198  if (FRAME_MBAFF(h)) {
2199  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2200  linesize, uvlinesize);
2201  } else {
2202  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2203  dest_cr, linesize, uvlinesize);
2204  }
2205  }
2206  }
2207  sl->slice_type = old_slice_type;
2208  sl->mb_x = end_x;
2209  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2210  sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
2211  sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
2212 }
2213 
2215 {
2216  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2217  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2218  h->cur_pic.mb_type[mb_xy - 1] :
2219  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2220  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2221  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2222 }
2223 
2224 /**
2225  * Draw edges and report progress for the last MB row.
2226  */
2228 {
2229  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2230  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2231  int height = 16 << FRAME_MBAFF(h);
2232  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2233 
2234  if (sl->deblocking_filter) {
2235  if ((top + height) >= pic_height)
2236  height += deblock_border;
2237  top -= deblock_border;
2238  }
2239 
2240  if (top >= pic_height || (top + height) < 0)
2241  return;
2242 
2243  height = FFMIN(height, pic_height - top);
2244  if (top < 0) {
2245  height = top + height;
2246  top = 0;
2247  }
2248 
2249  ff_h264_draw_horiz_band(h, sl, top, height);
2250 
2251  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2252  return;
2253 
2254  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2256 }
2257 
2259  int startx, int starty,
2260  int endx, int endy, int status)
2261 {
2262  if (!sl->h264->enable_er)
2263  return;
2264 
2265  if (CONFIG_ERROR_RESILIENCE) {
2266  ERContext *er = &sl->h264->slice_ctx[0].er;
2267 
2268  ff_er_add_slice(er, startx, starty, endx, endy, status);
2269  }
2270 }
2271 
2272 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2273 {
2274  H264SliceContext *sl = arg;
2275  const H264Context *h = sl->h264;
2276  int lf_x_start = sl->mb_x;
2277  int ret;
2278 
2279  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2280  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2281 
2282  ret = alloc_scratch_buffers(sl, sl->linesize);
2283  if (ret < 0)
2284  return ret;
2285 
2286  sl->mb_skip_run = -1;
2287 
2288  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2289 
2290  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2291  avctx->codec_id != AV_CODEC_ID_H264 ||
2292  (CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY));
2293 
2295  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2296  if (start_i) {
2297  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2298  prev_status &= ~ VP_START;
2299  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2300  h->slice_ctx[0].er.error_occurred = 1;
2301  }
2302  }
2303 
2304  if (h->pps.cabac) {
2305  /* realign */
2306  align_get_bits(&sl->gb);
2307 
2308  /* init cabac */
2310  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2311  (get_bits_left(&sl->gb) + 7) / 8);
2312 
2314 
2315  for (;;) {
2316  // START_TIMER
2317  int ret, eos;
2318 
2319  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->mb_index_end) {
2320  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps next at %d\n",
2321  sl->mb_index_end);
2322  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2323  sl->mb_y, ER_MB_ERROR);
2324  return AVERROR_INVALIDDATA;
2325  }
2326 
2327  ret = ff_h264_decode_mb_cabac(h, sl);
2328  // STOP_TIMER("decode_mb_cabac")
2329 
2330  if (ret >= 0)
2331  ff_h264_hl_decode_mb(h, sl);
2332 
2333  // FIXME optimal? or let mb_decode decode 16x32 ?
2334  if (ret >= 0 && FRAME_MBAFF(h)) {
2335  sl->mb_y++;
2336 
2337  ret = ff_h264_decode_mb_cabac(h, sl);
2338 
2339  if (ret >= 0)
2340  ff_h264_hl_decode_mb(h, sl);
2341  sl->mb_y--;
2342  }
2343  eos = get_cabac_terminate(&sl->cabac);
2344 
2345  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2346  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2347  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2348  sl->mb_y, ER_MB_END);
2349  if (sl->mb_x >= lf_x_start)
2350  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2351  return 0;
2352  }
2353  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2354  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2355  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2357  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2358  sl->mb_x, sl->mb_y,
2359  sl->cabac.bytestream_end - sl->cabac.bytestream);
2360  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2361  sl->mb_y, ER_MB_ERROR);
2362  return AVERROR_INVALIDDATA;
2363  }
2364 
2365  if (++sl->mb_x >= h->mb_width) {
2366  loop_filter(h, sl, lf_x_start, sl->mb_x);
2367  sl->mb_x = lf_x_start = 0;
2368  decode_finish_row(h, sl);
2369  ++sl->mb_y;
2370  if (FIELD_OR_MBAFF_PICTURE(h)) {
2371  ++sl->mb_y;
2372  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2374  }
2375  }
2376 
2377  if (eos || sl->mb_y >= h->mb_height) {
2378  ff_tlog(h->avctx, "slice end %d %d\n",
2379  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2380  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2381  sl->mb_y, ER_MB_END);
2382  if (sl->mb_x > lf_x_start)
2383  loop_filter(h, sl, lf_x_start, sl->mb_x);
2384  return 0;
2385  }
2386  }
2387  } else {
2388  for (;;) {
2389  int ret;
2390 
2391  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->mb_index_end) {
2392  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps next at %d\n",
2393  sl->mb_index_end);
2394  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2395  sl->mb_y, ER_MB_ERROR);
2396  return AVERROR_INVALIDDATA;
2397  }
2398 
2399  ret = ff_h264_decode_mb_cavlc(h, sl);
2400 
2401  if (ret >= 0)
2402  ff_h264_hl_decode_mb(h, sl);
2403 
2404  // FIXME optimal? or let mb_decode decode 16x32 ?
2405  if (ret >= 0 && FRAME_MBAFF(h)) {
2406  sl->mb_y++;
2407  ret = ff_h264_decode_mb_cavlc(h, sl);
2408 
2409  if (ret >= 0)
2410  ff_h264_hl_decode_mb(h, sl);
2411  sl->mb_y--;
2412  }
2413 
2414  if (ret < 0) {
2416  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2417  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2418  sl->mb_y, ER_MB_ERROR);
2419  return ret;
2420  }
2421 
2422  if (++sl->mb_x >= h->mb_width) {
2423  loop_filter(h, sl, lf_x_start, sl->mb_x);
2424  sl->mb_x = lf_x_start = 0;
2425  decode_finish_row(h, sl);
2426  ++sl->mb_y;
2427  if (FIELD_OR_MBAFF_PICTURE(h)) {
2428  ++sl->mb_y;
2429  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2431  }
2432  if (sl->mb_y >= h->mb_height) {
2433  ff_tlog(h->avctx, "slice end %d %d\n",
2434  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2435 
2436  if ( get_bits_left(&sl->gb) == 0
2437  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2438  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2439  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2440 
2441  return 0;
2442  } else {
2443  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2444  sl->mb_x, sl->mb_y, ER_MB_END);
2445 
2446  return AVERROR_INVALIDDATA;
2447  }
2448  }
2449  }
2450 
2451  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2452  ff_tlog(h->avctx, "slice end %d %d\n",
2453  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2454 
2455  if (get_bits_left(&sl->gb) == 0) {
2456  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2457  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2458  if (sl->mb_x > lf_x_start)
2459  loop_filter(h, sl, lf_x_start, sl->mb_x);
2460 
2461  return 0;
2462  } else {
2463  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2464  sl->mb_y, ER_MB_ERROR);
2465 
2466  return AVERROR_INVALIDDATA;
2467  }
2468  }
2469  }
2470  }
2471 }
2472 
2473 /**
2474  * Call decode_slice() for each context.
2475  *
2476  * @param h h264 master context
2477  * @param context_count number of contexts to execute
2478  */
2479 int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
2480 {
2481  AVCodecContext *const avctx = h->avctx;
2482  H264SliceContext *sl;
2483  int i;
2484 
2485  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2486 
2487  h->slice_ctx[0].mb_index_end = INT_MAX;
2488 
2489  if (h->avctx->hwaccel ||
2491  return 0;
2492  if (context_count == 1) {
2493  int ret = decode_slice(avctx, &h->slice_ctx[0]);
2494  h->mb_y = h->slice_ctx[0].mb_y;
2495  return ret;
2496  } else {
2497  int j, mb_index;
2498  av_assert0(context_count > 0);
2499  for (i = 0; i < context_count; i++) {
2500  int mb_index_end = h->mb_width * h->mb_height;
2501  sl = &h->slice_ctx[i];
2502  mb_index = sl->resync_mb_x + sl->resync_mb_y * h->mb_width;
2503  if (CONFIG_ERROR_RESILIENCE) {
2504  sl->er.error_count = 0;
2505  }
2506  for (j = 0; j < context_count; j++) {
2507  H264SliceContext *sl2 = &h->slice_ctx[j];
2508  int mb_index2 = sl2->resync_mb_x + sl2->resync_mb_y * h->mb_width;
2509 
2510  if (i==j || mb_index > mb_index2)
2511  continue;
2512  mb_index_end = FFMIN(mb_index_end, mb_index2);
2513  }
2514  sl->mb_index_end = mb_index_end;
2515  }
2516 
2517  avctx->execute(avctx, decode_slice, h->slice_ctx,
2518  NULL, context_count, sizeof(h->slice_ctx[0]));
2519 
2520  /* pull back stuff from slices to master context */
2521  sl = &h->slice_ctx[context_count - 1];
2522  h->mb_y = sl->mb_y;
2523  if (CONFIG_ERROR_RESILIENCE) {
2524  for (i = 1; i < context_count; i++)
2526  }
2527  }
2528 
2529  return 0;
2530 }
int chroma_format_idc
Definition: h264.h:177
int video_signal_type_present_flag
Definition: h264.h:202
struct H264Context * h264
Definition: h264.h:346
int last_slice_type
Definition: h264.h:686
#define ff_tlog(ctx,...)
Definition: internal.h:60
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:47
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:1250
AVRational framerate
Definition: avcodec.h:3023
discard all frames except keyframes
Definition: avcodec.h:668
void ff_h264_flush_change(H264Context *h)
Definition: h264.c:1056
static const uint8_t dequant8_coeff_init[6][6]
Definition: h264_slice.c:141
int workaround_bugs
Definition: h264.h:528
int long_ref
1->long term reference 0->short term reference
Definition: h264.h:318
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int single_decode_warning
1 if the single thread fallback warning has already been displayed, 0 otherwise.
Definition: h264.h:682
#define CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:765
int sei_recovery_frame_cnt
Definition: h264.h:327
static int shift(int a, int b)
Definition: sonic.c:82
int low_delay
Definition: h264.h:524
int mb_num
Definition: h264.h:595
int ff_h264_decode_ref_pic_list_reordering(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:220
int mb_aff_frame
Definition: h264.h:563
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264.h:468
int delta_poc[2]
Definition: h264.h:623
int mb_index_end
Definition: h264.h:412
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:374
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:183
#define CHROMA444(h)
Definition: h264.h:99
#define LEFT_MBS
Definition: h264.h:75
int edge_emu_buffer_allocated
Definition: h264.h:456
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1424
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2227
const char * fmt
Definition: avisynth_c.h:632
#define H264_MAX_PICTURE_COUNT
Definition: h264.h:46
int first_field
Definition: h264.h:565
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:709
uint8_t field_scan8x8_q0[64]
Definition: h264.h:587
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:68
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:36
int weighted_bipred_idc
Definition: h264.h:244
int left_mb_xy[LEFT_MBS]
Definition: h264.h:389
int chroma_qp_index_offset[2]
Definition: h264.h:247
const uint8_t * bytestream_end
Definition: cabac.h:54
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:441
H264ChromaContext h264chroma
Definition: h264.h:504
uint16_t * cbp_table
Definition: h264.h:570
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264.h:652
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:765
#define MAX_PPS_COUNT
Definition: h264.h:50
Sequence parameter set.
Definition: h264.h:173
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:1960
int mb_y
Definition: h264.h:592
int coded_picture_number
Definition: h264.h:523
int bitstream_restriction_flag
Definition: h264.h:213
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:176
int num
numerator
Definition: rational.h:44
AVBufferRef * mb_type_buf
Definition: h264.h:302
int bipred_scratchpad_allocated
Definition: h264.h:455
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:74
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:110
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:380
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264.h:792
int chroma_x_shift
Definition: h264.h:520
HW decoding through VA API, Picture.data[3] contains a vaapi_render_state struct which contains the b...
Definition: pixfmt.h:126
qpel_mc_func(* qpel_put)[16]
Definition: h264.h:797
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:2628
const uint8_t * buffer
Definition: get_bits.h:55
Picture parameter set.
Definition: h264.h:236
int crop
Definition: h264.h:329
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264.c:98
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1623
int16_t(*[2] motion_val)[2]
Definition: h264.h:300
int flags
Definition: h264.h:527
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1444
int frame_mbs_only_flag
Definition: h264.h:190
int mb_height
Definition: h264.h:593
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264.h:644
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:66
int is_avc
Used to parse AVC variant of h264.
Definition: h264.h:606
int mmco_index
Definition: h264.h:653
AVBufferPool * ref_index_pool
Definition: h264.h:794
static const uint8_t dequant4_coeff_init[6][3]
Definition: h264_slice.c:128
void ff_h264_free_tables(H264Context *h)
Definition: h264.c:355
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264.h:579
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:368
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
int ff_h264_get_profile(SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264.c:1190
#define FF_ARRAY_ELEMS(a)
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:109
uint32_t dequant8_buffer[6][QP_MAX_NUM+1][64]
Definition: h264.h:556
H264Context.
Definition: h264.h:499
discard all non intra frames
Definition: avcodec.h:667
discard all
Definition: avcodec.h:669
AVFrame * f
Definition: h264.h:293
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264.h:625
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2727
uint32_t num_units_in_tick
Definition: h264.h:209
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:63
H264Picture * long_ref[32]
Definition: h264.h:643
int profile
profile
Definition: avcodec.h:2835
int picture_structure
Definition: h264.h:564
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:501
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_COPY32(d, s)
Definition: intreadwrite.h:586
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264.h:370
unsigned current_sps_id
id of the current SPS
Definition: h264.h:549
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264.h:442
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:386
int ff_set_ref_count(H264Context *h, H264SliceContext *sl)
Definition: h264.c:1210
#define FFALIGN(x, a)
Definition: common.h:71
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:388
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:434
Switching Intra.
Definition: avutil.h:271
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2947
static const uint8_t golomb_to_pict_type[5]
Definition: h264data.h:37
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:2644
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264.h:198
#define USES_LIST(a, list)
Definition: mpegutils.h:95
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int is_complex
Definition: h264.h:414
#define IS_8x8DCT(a)
Definition: h264.h:106
uint8_t scaling_matrix4[6][16]
Definition: h264.h:252
const uint8_t * bytestream
Definition: cabac.h:53
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264.h:248
#define MB_FIELD(sl)
Definition: h264.h:72
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int copy_parameter_set(void **to, void **from, int count, int size)
Definition: h264_slice.c:408
uint32_t(*[6] dequant4_coeff)[16]
Definition: h264.h:557
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
if()
Definition: avfilter.c:975
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1121
uint8_t
int prev_frame_num_offset
for POC type 2
Definition: h264.h:628
#define av_malloc(s)
int full_range
Definition: h264.h:203
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264.h:196
int gaps_in_frame_num_allowed_flag
Definition: h264.h:187
int slice_alpha_c0_offset
Definition: h264.h:362
int poc
Definition: h264.h:339
int field_picture
whether or not picture was encoded in separate fields
Definition: h264.h:322
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264.h:227
static void init_dequant4_coeff_table(H264Context *h)
Definition: h264_slice.c:341
enum AVColorPrimaries color_primaries
Definition: h264.h:205
int poc
frame POC
Definition: h264.h:312
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:51
int slice_type
Definition: h264.h:351
Multithreading support functions.
#define CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:834
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264.h:238
static const uint8_t dequant8_coeff_init_scan[16]
Definition: h264_slice.c:137
static void init_dequant8_coeff_table(H264Context *h)
Definition: h264_slice.c:314
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264.h:197
unsigned int last_ref_count[2]
Definition: h264.h:687
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:379
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264.h:454
int invalid_gap
Definition: h264.h:326
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264.h:770
int height
Definition: h264.h:519
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:34
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264.h:178
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:84
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:76
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:244
qpel_mc_func(* qpel_avg)[16]
Definition: h264.h:798
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264.h:250
int chroma_y_shift
Definition: h264.h:520
#define MAX_DELAYED_PIC_COUNT
Definition: h264.h:54
static void fill_rectangle(SDL_Surface *screen, int x, int y, int w, int h, int color, int update)
Definition: ffplay.c:780
ptrdiff_t size
Definition: opengl_enc.c:101
AVBufferRef * qscale_table_buf
Definition: h264.h:296
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:369
H264Picture * parent
Definition: h264.h:342
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a CABAC coded macroblock.
Definition: h264_cabac.c:1911
high precision timer, useful to profile code
int recovered
picture at IDR or recovery point + recovery count
Definition: h264.h:325
#define AV_COPY64(d, s)
Definition: intreadwrite.h:590
int ff_h264_fill_default_ref_list(H264Context *h, H264SliceContext *sl)
Fill the default_ref_list.
Definition: h264_refs.c:125
int chroma_qp[2]
Definition: h264.h:356
qpel_mc_func avg_h264_qpel_pixels_tab[4][16]
Definition: h264qpel.h:29
#define av_log(a,...)
AVCodecContext * owner
Definition: thread.h:37
int resync_mb_x
Definition: h264.h:410
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264.h:645
const char * to
Definition: webvttdec.c:34
int width
Definition: h264.h:519
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:569
H.264 / AVC / MPEG4 part10 codec.
int slice_num
Definition: h264.h:350
#define U(x)
Definition: vp56_arith.h:37
int frame_num
Definition: h264.h:624
#define HWACCEL_MAX
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:818
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:588
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264.h:508
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264.h:191
enum AVColorTransferCharacteristic color_trc
Definition: h264.h:206
H264PredContext hpc
Definition: h264.h:531
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:1533
#define td
Definition: regdef.h:70
static int get_ue_golomb(GetBitContext *gb)
read unsigned exp golomb code.
Definition: golomb.h:53
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:164
int poc_type
pic_order_cnt_type
Definition: h264.h:180
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264.h:526
#define PTRDIFF_SPECIFIER
Definition: internal.h:249
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2623
ERContext er
Definition: h264.h:348
int nal_unit_type
Definition: h264.h:601
int num_reorder_frames
Definition: h264.h:214
discard all bidirectional frames
Definition: avcodec.h:666
#define AVERROR(e)
Definition: error.h:43
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264.h:306
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2118
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2772
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:70
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
Definition: h264.c:1105
int capabilities
Codec capabilities.
Definition: avcodec.h:3200
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
int ff_pred_weight_table(H264Context *h, H264SliceContext *sl)
Definition: h264.c:968
PPS pps
current pps
Definition: h264.h:551
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:972
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2529
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264.h:361
uint8_t(*[2] mvd_table)[2]
Definition: h264.h:574
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264.h:701
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2000
ThreadFrame tf
Definition: h264.h:294
simple assert() macros that are a bit more flexible than ISO C assert().
int weighted_pred
weighted_pred_flag
Definition: h264.h:243
#define PICT_TOP_FIELD
Definition: mpegutils.h:33
H264QpelContext h264qpel
Definition: h264.h:505
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:367
int direct_spatial_mv_pred
Definition: h264.h:426
#define CABAC(h)
Definition: h264.h:94
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
HW acceleration through VDA, data[3] contains a CVPixelBufferRef.
Definition: pixfmt.h:232
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264.h:313
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264.h:980
#define MAX_SLICES
Definition: dxva2_hevc.c:28
GLsizei count
Definition: opengl_enc.c:109
uint8_t * list_counts
Array of list_count per MB specifying the slice type.
Definition: h264.h:567
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:1897
Libavcodec external API header.
qpel_mc_func put_h264_qpel_pixels_tab[4][16]
Definition: h264qpel.h:28
int delta_pic_order_always_zero_flag
Definition: h264.h:182
#define CODEC_FLAG_LOW_DELAY
Force low delay.
Definition: avcodec.h:757
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:288
int new
flag to keep track if the decoder context needs re-init due to changed SPS
Definition: h264.h:230
int * mb_index2xy
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264.h:91
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264.h:352
int mb_skip_run
Definition: h264.h:413
uint8_t zigzag_scan8x8[64]
Definition: h264.h:578
AVBufferRef * hwaccel_priv_buf
Definition: h264.h:305
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:67
static const uint8_t scan8[16 *3+3]
Definition: h264.h:964
int crop_left
Definition: h264.h:330
int crop
frame_cropping_flag
Definition: h264.h:193
uint8_t * error_status_table
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
int use_weight
Definition: h264.h:366
uint8_t scaling_matrix8[6][64]
Definition: h264.h:253
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264.h:607
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:362
int refs
number of reference frames
Definition: avcodec.h:1901
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
AVBufferRef * motion_val_buf[2]
Definition: h264.h:299
int ref_frame_count
num_ref_frames
Definition: h264.h:186
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:3202
int frame_num_offset
for POC type 2
Definition: h264.h:627
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2612
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int x264_build
Definition: h264.h:590
#define FFMIN(a, b)
Definition: common.h:66
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264.h:560
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:393
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
uint8_t field_scan8x8_cavlc[64]
Definition: h264.h:582
#define H264_MAX_THREADS
Definition: h264.h:47
#define IS_DIRECT(a)
Definition: mpegutils.h:80
CABACContext cabac
Cabac.
Definition: h264.h:487
int colour_description_present_flag
Definition: h264.h:204
int reference
Definition: h264.h:324
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2258
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:75
AVRational sar
Definition: h264.h:201
#define FIELD_PICTURE(h)
Definition: h264.h:74
ret
Definition: avfilter.c:974
int width
picture width / height.
Definition: avcodec.h:1414
int redundant_pic_count
Definition: h264.h:419
int nb_slice_ctx
Definition: h264.h:514
int long_ref_count
number of actual long term references
Definition: h264.h:656
#define ER_DC_END
#define FF_CEIL_RSHIFT(a, b)
Definition: common.h:57
uint32_t * mb_type
Definition: h264.h:303
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:68
int top_mb_xy
Definition: h264.h:387
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
int size_in_bits
Definition: get_bits.h:57
SPS sps
current sps
Definition: h264.h:550
PPS * pps_buffers[MAX_PPS_COUNT]
Definition: h264.h:613
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1939
#define MAX_SPS_COUNT
Definition: h264.h:49
#define FFABS(a)
Definition: common.h:61
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:2925
int init_qp
pic_init_qp_minus26 + 26
Definition: h264.h:245
H264SliceContext * slice_ctx
Definition: h264.h:513
int direct_8x8_inference_flag
Definition: h264.h:192
int poc_lsb
Definition: h264.h:620
int reference
Definition: h264.h:338
int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl)
Decode a slice header.
Definition: h264_slice.c:1140
int max_pic_num
max_frame_num or 2 * max_frame_num for field pics.
Definition: h264.h:639
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:1378
int top_borders_allocated[2]
Definition: h264.h:457
int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice)
Definition: h264_refs.c:568
static int pic_is_unused(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:292
int curr_pic_num
frame_num for frames or 2 * frame_num + 1 for field pics.
Definition: h264.h:634
int chroma_log2_weight_denom
Definition: h264.h:369
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:829
static int av_unused get_cabac_terminate(CABACContext *c)
#define MB_MBAFF(h)
Definition: h264.h:71
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:363
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:382
uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]
Definition: h264.h:555
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1264
unsigned int sps_id
Definition: h264.h:174
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:2753
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:523
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:196
uint8_t * edge_emu_buffer
Definition: h264.h:453
int top_type
Definition: h264.h:392
int dequant_coeff_pps
reinit tables when pps changes
Definition: h264.h:615
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:85
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264.h:239
SPS * sps_buffers[MAX_SPS_COUNT]
Definition: h264.h:612
uint8_t zigzag_scan_q0[16]
Definition: h264.h:583
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:232
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264.h:609
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264.h:610
VideoDSPContext vdsp
Definition: h264.h:502
int timing_info_present_flag
Definition: h264.h:208
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:600
int coded_picture_number
picture number in bitstream order
Definition: frame.h:274
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264.c:459
int mb_stride
Definition: h264.h:594
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
#define IS_INTERLACED(a)
Definition: mpegutils.h:79
AVCodecContext * avctx
Definition: h264.h:501
uint8_t zigzag_scan8x8_q0[64]
Definition: h264.h:584
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:372
AVS_Value src
Definition: avisynth_c.h:482
H264 / AVC / MPEG4 part10 codec data table
int last_qscale_diff
Definition: h264.h:358
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:2765
enum AVCodecID codec_id
Definition: avcodec.h:1258
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:100
static const uint8_t zigzag_scan[16+1]
Definition: h264data.h:54
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264.h:629
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:199
H264Picture * short_ref[32]
Definition: h264.h:642
#define LTOP
Definition: h264.h:76
void avpriv_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:696
int poc_msb
Definition: h264.h:621
int field_poc[2]
top/bottom POC
Definition: h264.h:311
int debug
debug
Definition: avcodec.h:2565
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int max_contexts
Max number of threads / contexts.
Definition: h264.h:674
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264.h:757
main external API structure.
Definition: avcodec.h:1241
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264.h:357
uint8_t * data
The data buffer.
Definition: buffer.h:89
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264.c:398
#define QP_MAX_NUM
Definition: h264.h:108
void * buf
Definition: avisynth_c.h:553
int resync_mb_y
Definition: h264.h:411
int8_t * qscale_table
Definition: h264.h:297
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:82
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:89
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:304
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:364
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2764
int coded_height
Definition: avcodec.h:1424
Switching Predicted.
Definition: avutil.h:272
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264.h:463
#define CHROMA422(h)
Definition: h264.h:98
uint32_t(*[6] dequant8_coeff)[64]
Definition: h264.h:558
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:250
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1953
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1946
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:211
int8_t * ref_index[2]
Definition: h264.h:309
int use_weight_chroma
Definition: h264.h:367
A reference counted buffer type.
int pixel_shift
0 for 8-bit H264, 1 for high-bit-depth H264
Definition: h264.h:516
int mmco_reset
MMCO_RESET set this 1.
Definition: h264.h:314
static const uint8_t rem6[QP_MAX_NUM+1]
Definition: h264_slice.c:47
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb, int first_slice)
Definition: h264_refs.c:801
H264Picture * cur_pic_ptr
Definition: h264.h:509
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:117
ptrdiff_t mb_uvlinesize
Definition: h264.h:406
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:1014
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264.h:417
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264.h:789
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:361
#define IS_INTER(a)
Definition: mpegutils.h:75
unsigned int sps_id
Definition: h264.h:237
#define TRANSPOSE(x)
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264.h:181
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264.h:405
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:137
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264.h:783
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:223
ptrdiff_t linesize
Definition: h264.h:404
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264.h:542
uint32_t time_scale
Definition: h264.h:210
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:373
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:381
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264.h:251
ptrdiff_t uvlinesize
Definition: h264.h:404
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:365
unsigned int list_count
Definition: h264.h:443
uint8_t zigzag_scan[16]
Definition: h264.h:577
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:371
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2566
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:151
#define LBOT
Definition: h264.h:77
#define AV_ZERO128(d)
Definition: intreadwrite.h:622
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:522
int left_type[LEFT_MBS]
Definition: h264.h:394
#define copy_fields(to, from, start_field, end_field)
Definition: h264_slice.c:428
hardware decoding through VDA
Definition: pixfmt.h:168
discard all non reference
Definition: avcodec.h:665
AVBufferPool * qscale_table_pool
Definition: h264.h:791
H264Picture * next_output_pic
Definition: h264.h:646
volatile int error_count
int slice_context_count
Definition: h264.h:676
int mb_height
pic_height_in_map_units_minus1 + 1
Definition: h264.h:189
AVBufferPool * motion_val_pool
Definition: h264.h:793
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:513
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:63
#define SLICE_SINGLETHREAD
Definition: h264.h:1177
common internal api header.
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:217
#define AV_COPY128(d, s)
Definition: intreadwrite.h:594
#define CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:738
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:863
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264.h:179
int missing_fields
Definition: h264.h:774
static double c[64]
H.264 / AVC / MPEG4 part10 motion vector predicion.
void ff_h264_fill_mbaff_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:351
Bi-dir predicted.
Definition: avutil.h:269
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:77
int implicit_weight[48][48][2]
Definition: h264.h:375
int cur_chroma_format_idc
Definition: h264.h:781
int8_t * intra4x4_pred_mode
Definition: h264.h:384
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:2933
int den
denominator
Definition: rational.h:45
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2214
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264.h:447
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264.h:226
static av_always_inline int get_chroma_qp(const H264Context *h, int t, int qscale)
Get the chroma qp.
Definition: h264.h:1001
static const uint8_t div6[QP_MAX_NUM+1]
Definition: h264_slice.c:55
#define IS_INTRA(x, y)
void * priv_data
Definition: avcodec.h:1283
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:154
#define PICT_FRAME
Definition: mpegutils.h:35
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264.h:626
int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
Call decode_slice() for each context.
Definition: h264_slice.c:2479
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:663
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:131
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264.h:585
int8_t ref_cache[2][5 *8]
Definition: h264.h:469
void ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:54
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2793
#define SLICE_SKIPED
Definition: h264.h:1178
#define FRAME_MBAFF(h)
Definition: h264.h:73
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:3385
int luma_log2_weight_denom
Definition: h264.h:368
H264Picture cur_pic
Definition: h264.h:510
void ff_h264_init_dequant_tables(H264Context *h)
Definition: h264_slice.c:367
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:237
#define AV_ZERO32(d)
Definition: intreadwrite.h:614
int mb_width
Definition: h264.h:593
enum AVPictureType pict_type
Definition: h264.h:684
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:299
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264.h:666
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:449
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264.h:188
int flags2
CODEC_FLAG2_*.
Definition: avcodec.h:1342
uint32_t * mb2b_xy
Definition: h264.h:544
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264.h:444
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264.h:588
int cur_bit_depth_luma
Definition: h264.h:782
AVBufferRef * ref_index_buf[2]
Definition: h264.h:308
int delta_poc_bottom
Definition: h264.h:622
int au_pps_id
pps_id of current access unit
Definition: h264.h:553
H264DSPContext h264dsp
Definition: h264.h:503
void ff_er_frame_start(ERContext *s)
int crop_top
Definition: h264.h:331
uint8_t(*[2] mvd_table)[2]
Definition: h264.h:482
uint8_t field_scan8x8[64]
Definition: h264.h:581
int slice_type_fixed
Definition: h264.h:353
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:1915
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:37
HW decoding through Direct3D11, Picture.data[3] contains a ID3D11VideoDecoderOutputView pointer...
Definition: pixfmt.h:256
int slice_beta_offset
Definition: h264.h:363
int8_t * intra4x4_pred_mode
Definition: h264.h:530
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:355
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2272
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2011
uint8_t field_scan_q0[16]
Definition: h264.h:586
#define LIST_NOT_USED
Definition: h264.h:535
int mb_field_decoding_flag
Definition: h264.h:416
uint8_t(* non_zero_count)[48]
Definition: h264.h:533
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2145
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264.h:199
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264.h:452
AVPixelFormat
Pixel format.
Definition: pixfmt.h:61
int sei_recovery_frame_cnt
recovery_frame_cnt from SEI message
Definition: h264.h:742
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:969
int droppable
Definition: h264.h:522
int level_idc
Definition: h264.h:176
int nal_ref_idc
Definition: h264.h:600
GetBitContext gb
Definition: h264.h:347
uint8_t field_scan[16]
Definition: h264.h:580
int cabac_init_idc
Definition: h264.h:489
for(j=16;j >0;--j)
#define FFMAX3(a, b, c)
Definition: common.h:65
int b_stride
Definition: h264.h:546
Predicted.
Definition: avutil.h:268
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264.h:371
int short_ref_count
number of actual short term references
Definition: h264.h:657
static int width
enum AVColorSpace colorspace
Definition: h264.h:207