FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vc1_pred.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 block decoding routines
27  */
28 
29 #include "mathops.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "vc1.h"
33 #include "vc1_pred.h"
34 #include "vc1data.h"
35 
36 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
37 {
38  int scaledvalue, refdist;
39  int scalesame1, scalesame2;
40  int scalezone1_x, zone1offset_x;
41  int table_index = dir ^ v->second_field;
42 
43  if (v->s.pict_type != AV_PICTURE_TYPE_B)
44  refdist = v->refdist;
45  else
46  refdist = dir ? v->brfd : v->frfd;
47  if (refdist > 3)
48  refdist = 3;
49  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
50  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
51  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
52  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
53 
54  if (FFABS(n) > 255)
55  scaledvalue = n;
56  else {
57  if (FFABS(n) < scalezone1_x)
58  scaledvalue = (n * scalesame1) >> 8;
59  else {
60  if (n < 0)
61  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
62  else
63  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
64  }
65  }
66  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
67 }
68 
69 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
70 {
71  int scaledvalue, refdist;
72  int scalesame1, scalesame2;
73  int scalezone1_y, zone1offset_y;
74  int table_index = dir ^ v->second_field;
75 
76  if (v->s.pict_type != AV_PICTURE_TYPE_B)
77  refdist = v->refdist;
78  else
79  refdist = dir ? v->brfd : v->frfd;
80  if (refdist > 3)
81  refdist = 3;
82  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
83  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
84  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
85  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
86 
87  if (FFABS(n) > 63)
88  scaledvalue = n;
89  else {
90  if (FFABS(n) < scalezone1_y)
91  scaledvalue = (n * scalesame1) >> 8;
92  else {
93  if (n < 0)
94  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
95  else
96  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
97  }
98  }
99 
100  if (v->cur_field_type && !v->ref_field_type[dir])
101  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
102  else
103  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
104 }
105 
106 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
107 {
108  int scalezone1_x, zone1offset_x;
109  int scaleopp1, scaleopp2, brfd;
110  int scaledvalue;
111 
112  brfd = FFMIN(v->brfd, 3);
113  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
114  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
115  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
116  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
117 
118  if (FFABS(n) > 255)
119  scaledvalue = n;
120  else {
121  if (FFABS(n) < scalezone1_x)
122  scaledvalue = (n * scaleopp1) >> 8;
123  else {
124  if (n < 0)
125  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
126  else
127  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
128  }
129  }
130  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
131 }
132 
133 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
134 {
135  int scalezone1_y, zone1offset_y;
136  int scaleopp1, scaleopp2, brfd;
137  int scaledvalue;
138 
139  brfd = FFMIN(v->brfd, 3);
140  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
141  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
142  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
143  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
144 
145  if (FFABS(n) > 63)
146  scaledvalue = n;
147  else {
148  if (FFABS(n) < scalezone1_y)
149  scaledvalue = (n * scaleopp1) >> 8;
150  else {
151  if (n < 0)
152  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
153  else
154  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
155  }
156  }
157  if (v->cur_field_type && !v->ref_field_type[dir]) {
158  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
159  } else {
160  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
161  }
162 }
163 
164 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
165  int dim, int dir)
166 {
167  int brfd, scalesame;
168  int hpel = 1 - v->s.quarter_sample;
169 
170  n >>= hpel;
171  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
172  if (dim)
173  n = scaleforsame_y(v, i, n, dir) << hpel;
174  else
175  n = scaleforsame_x(v, n, dir) << hpel;
176  return n;
177  }
178  brfd = FFMIN(v->brfd, 3);
179  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
180 
181  n = (n * scalesame >> 8) << hpel;
182  return n;
183 }
184 
185 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
186  int dim, int dir)
187 {
188  int refdist, scaleopp;
189  int hpel = 1 - v->s.quarter_sample;
190 
191  n >>= hpel;
192  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
193  if (dim)
194  n = scaleforopp_y(v, n, dir) << hpel;
195  else
196  n = scaleforopp_x(v, n) << hpel;
197  return n;
198  }
199  if (v->s.pict_type != AV_PICTURE_TYPE_B)
200  refdist = FFMIN(v->refdist, 3);
201  else
202  refdist = dir ? v->brfd : v->frfd;
203  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
204 
205  n = (n * scaleopp >> 8) << hpel;
206  return n;
207 }
208 
209 /** Predict and set motion vector
210  */
211 void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
212  int mv1, int r_x, int r_y, uint8_t* is_intra,
213  int pred_flag, int dir)
214 {
215  MpegEncContext *s = &v->s;
216  int xy, wrap, off = 0;
217  int16_t *A, *B, *C;
218  int px, py;
219  int sum;
220  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
221  int opposite, a_f, b_f, c_f;
222  int16_t field_predA[2];
223  int16_t field_predB[2];
224  int16_t field_predC[2];
225  int a_valid, b_valid, c_valid;
226  int hybridmv_thresh, y_bias = 0;
227 
228  if (v->mv_mode == MV_PMODE_MIXED_MV ||
230  mixedmv_pic = 1;
231  else
232  mixedmv_pic = 0;
233  /* scale MV difference to be quad-pel */
234  dmv_x <<= 1 - s->quarter_sample;
235  dmv_y <<= 1 - s->quarter_sample;
236 
237  wrap = s->b8_stride;
238  xy = s->block_index[n];
239 
240  if (s->mb_intra) {
241  s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
242  s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
243  s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
244  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
245  if (mv1) { /* duplicate motion data for 1-MV block */
246  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
247  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
248  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
249  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
250  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
251  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
252  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
253  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
254  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
255  s->current_picture.motion_val[1][xy + wrap][0] = 0;
256  s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
257  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
258  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
259  }
260  return;
261  }
262 
263  C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
264  A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
265  if (mv1) {
266  if (v->field_mode && mixedmv_pic)
267  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
268  else
269  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
270  } else {
271  //in 4-MV mode different blocks have different B predictor position
272  switch (n) {
273  case 0:
274  off = (s->mb_x > 0) ? -1 : 1;
275  break;
276  case 1:
277  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
278  break;
279  case 2:
280  off = 1;
281  break;
282  case 3:
283  off = -1;
284  }
285  }
286  B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
287 
288  a_valid = !s->first_slice_line || (n == 2 || n == 3);
289  b_valid = a_valid && (s->mb_width > 1);
290  c_valid = s->mb_x || (n == 1 || n == 3);
291  if (v->field_mode) {
292  a_valid = a_valid && !is_intra[xy - wrap];
293  b_valid = b_valid && !is_intra[xy - wrap + off];
294  c_valid = c_valid && !is_intra[xy - 1];
295  }
296 
297  if (a_valid) {
298  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
299  num_oppfield += a_f;
300  num_samefield += 1 - a_f;
301  field_predA[0] = A[0];
302  field_predA[1] = A[1];
303  } else {
304  field_predA[0] = field_predA[1] = 0;
305  a_f = 0;
306  }
307  if (b_valid) {
308  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
309  num_oppfield += b_f;
310  num_samefield += 1 - b_f;
311  field_predB[0] = B[0];
312  field_predB[1] = B[1];
313  } else {
314  field_predB[0] = field_predB[1] = 0;
315  b_f = 0;
316  }
317  if (c_valid) {
318  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
319  num_oppfield += c_f;
320  num_samefield += 1 - c_f;
321  field_predC[0] = C[0];
322  field_predC[1] = C[1];
323  } else {
324  field_predC[0] = field_predC[1] = 0;
325  c_f = 0;
326  }
327 
328  if (v->field_mode) {
329  if (!v->numref)
330  // REFFIELD determines if the last field or the second-last field is
331  // to be used as reference
332  opposite = 1 - v->reffield;
333  else {
334  if (num_samefield <= num_oppfield)
335  opposite = 1 - pred_flag;
336  else
337  opposite = pred_flag;
338  }
339  } else
340  opposite = 0;
341  if (opposite) {
342  if (a_valid && !a_f) {
343  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
344  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
345  }
346  if (b_valid && !b_f) {
347  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
348  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
349  }
350  if (c_valid && !c_f) {
351  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
352  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
353  }
354  v->mv_f[dir][xy + v->blocks_off] = 1;
355  v->ref_field_type[dir] = !v->cur_field_type;
356  } else {
357  if (a_valid && a_f) {
358  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
359  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
360  }
361  if (b_valid && b_f) {
362  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
363  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
364  }
365  if (c_valid && c_f) {
366  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
367  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
368  }
369  v->mv_f[dir][xy + v->blocks_off] = 0;
370  v->ref_field_type[dir] = v->cur_field_type;
371  }
372 
373  if (a_valid) {
374  px = field_predA[0];
375  py = field_predA[1];
376  } else if (c_valid) {
377  px = field_predC[0];
378  py = field_predC[1];
379  } else if (b_valid) {
380  px = field_predB[0];
381  py = field_predB[1];
382  } else {
383  px = 0;
384  py = 0;
385  }
386 
387  if (num_samefield + num_oppfield > 1) {
388  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
389  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
390  }
391 
392  /* Pullback MV as specified in 8.3.5.3.4 */
393  if (!v->field_mode) {
394  int qx, qy, X, Y;
395  int MV = mv1 ? -60 : -28;
396  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
397  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
398  X = (s->mb_width << 6) - 4;
399  Y = (s->mb_height << 6) - 4;
400  if (qx + px < MV) px = MV - qx;
401  if (qy + py < MV) py = MV - qy;
402  if (qx + px > X) px = X - qx;
403  if (qy + py > Y) py = Y - qy;
404  }
405 
406  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
407  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
408  hybridmv_thresh = 32;
409  if (a_valid && c_valid) {
410  if (is_intra[xy - wrap])
411  sum = FFABS(px) + FFABS(py);
412  else
413  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
414  if (sum > hybridmv_thresh) {
415  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
416  px = field_predA[0];
417  py = field_predA[1];
418  } else {
419  px = field_predC[0];
420  py = field_predC[1];
421  }
422  } else {
423  if (is_intra[xy - 1])
424  sum = FFABS(px) + FFABS(py);
425  else
426  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
427  if (sum > hybridmv_thresh) {
428  if (get_bits1(&s->gb)) {
429  px = field_predA[0];
430  py = field_predA[1];
431  } else {
432  px = field_predC[0];
433  py = field_predC[1];
434  }
435  }
436  }
437  }
438  }
439 
440  if (v->field_mode && v->numref)
441  r_y >>= 1;
442  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
443  y_bias = 1;
444  /* store MV using signed modulus of MV range defined in 4.11 */
445  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
446  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
447  if (mv1) { /* duplicate motion data for 1-MV block */
448  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
449  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
450  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
451  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
452  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
453  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
454  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
455  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
456  }
457 }
458 
459 /** Predict and set motion vector for interlaced frame picture MBs
460  */
461 void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
462  int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
463 {
464  MpegEncContext *s = &v->s;
465  int xy, wrap, off = 0;
466  int A[2], B[2], C[2];
467  int px = 0, py = 0;
468  int a_valid = 0, b_valid = 0, c_valid = 0;
469  int field_a, field_b, field_c; // 0: same, 1: opposit
470  int total_valid, num_samefield, num_oppfield;
471  int pos_c, pos_b, n_adj;
472 
473  wrap = s->b8_stride;
474  xy = s->block_index[n];
475 
476  if (s->mb_intra) {
477  s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
478  s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
479  s->current_picture.motion_val[1][xy][0] = 0;
480  s->current_picture.motion_val[1][xy][1] = 0;
481  if (mvn == 1) { /* duplicate motion data for 1-MV block */
482  s->current_picture.motion_val[0][xy + 1][0] = 0;
483  s->current_picture.motion_val[0][xy + 1][1] = 0;
484  s->current_picture.motion_val[0][xy + wrap][0] = 0;
485  s->current_picture.motion_val[0][xy + wrap][1] = 0;
486  s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
487  s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
488  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
489  s->current_picture.motion_val[1][xy + 1][0] = 0;
490  s->current_picture.motion_val[1][xy + 1][1] = 0;
491  s->current_picture.motion_val[1][xy + wrap][0] = 0;
492  s->current_picture.motion_val[1][xy + wrap][1] = 0;
493  s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
494  s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
495  }
496  return;
497  }
498 
499  off = ((n == 0) || (n == 1)) ? 1 : -1;
500  /* predict A */
501  if (s->mb_x || (n == 1) || (n == 3)) {
502  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
503  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
504  A[0] = s->current_picture.motion_val[dir][xy - 1][0];
505  A[1] = s->current_picture.motion_val[dir][xy - 1][1];
506  a_valid = 1;
507  } else { // current block has frame mv and cand. has field MV (so average)
508  A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
509  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
510  A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
511  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
512  a_valid = 1;
513  }
514  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
515  a_valid = 0;
516  A[0] = A[1] = 0;
517  }
518  } else
519  A[0] = A[1] = 0;
520  /* Predict B and C */
521  B[0] = B[1] = C[0] = C[1] = 0;
522  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
523  if (!s->first_slice_line) {
524  if (!v->is_intra[s->mb_x - s->mb_stride]) {
525  b_valid = 1;
526  n_adj = n | 2;
527  pos_b = s->block_index[n_adj] - 2 * wrap;
528  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
529  n_adj = (n & 2) | (n & 1);
530  }
531  B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
532  B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
533  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
534  B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
535  B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
536  }
537  }
538  if (s->mb_width > 1) {
539  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
540  c_valid = 1;
541  n_adj = 2;
542  pos_c = s->block_index[2] - 2 * wrap + 2;
543  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
544  n_adj = n & 2;
545  }
546  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
547  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
548  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
549  C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
550  C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
551  }
552  if (s->mb_x == s->mb_width - 1) {
553  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
554  c_valid = 1;
555  n_adj = 3;
556  pos_c = s->block_index[3] - 2 * wrap - 2;
557  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
558  n_adj = n | 1;
559  }
560  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
561  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
562  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
563  C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
564  C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
565  }
566  } else
567  c_valid = 0;
568  }
569  }
570  }
571  }
572  } else {
573  pos_b = s->block_index[1];
574  b_valid = 1;
575  B[0] = s->current_picture.motion_val[dir][pos_b][0];
576  B[1] = s->current_picture.motion_val[dir][pos_b][1];
577  pos_c = s->block_index[0];
578  c_valid = 1;
579  C[0] = s->current_picture.motion_val[dir][pos_c][0];
580  C[1] = s->current_picture.motion_val[dir][pos_c][1];
581  }
582 
583  total_valid = a_valid + b_valid + c_valid;
584  // check if predictor A is out of bounds
585  if (!s->mb_x && !(n == 1 || n == 3)) {
586  A[0] = A[1] = 0;
587  }
588  // check if predictor B is out of bounds
589  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
590  B[0] = B[1] = C[0] = C[1] = 0;
591  }
592  if (!v->blk_mv_type[xy]) {
593  if (s->mb_width == 1) {
594  px = B[0];
595  py = B[1];
596  } else {
597  if (total_valid >= 2) {
598  px = mid_pred(A[0], B[0], C[0]);
599  py = mid_pred(A[1], B[1], C[1]);
600  } else if (total_valid) {
601  if (a_valid) { px = A[0]; py = A[1]; }
602  else if (b_valid) { px = B[0]; py = B[1]; }
603  else { px = C[0]; py = C[1]; }
604  }
605  }
606  } else {
607  if (a_valid)
608  field_a = (A[1] & 4) ? 1 : 0;
609  else
610  field_a = 0;
611  if (b_valid)
612  field_b = (B[1] & 4) ? 1 : 0;
613  else
614  field_b = 0;
615  if (c_valid)
616  field_c = (C[1] & 4) ? 1 : 0;
617  else
618  field_c = 0;
619 
620  num_oppfield = field_a + field_b + field_c;
621  num_samefield = total_valid - num_oppfield;
622  if (total_valid == 3) {
623  if ((num_samefield == 3) || (num_oppfield == 3)) {
624  px = mid_pred(A[0], B[0], C[0]);
625  py = mid_pred(A[1], B[1], C[1]);
626  } else if (num_samefield >= num_oppfield) {
627  /* take one MV from same field set depending on priority
628  the check for B may not be necessary */
629  px = !field_a ? A[0] : B[0];
630  py = !field_a ? A[1] : B[1];
631  } else {
632  px = field_a ? A[0] : B[0];
633  py = field_a ? A[1] : B[1];
634  }
635  } else if (total_valid == 2) {
636  if (num_samefield >= num_oppfield) {
637  if (!field_a && a_valid) {
638  px = A[0];
639  py = A[1];
640  } else if (!field_b && b_valid) {
641  px = B[0];
642  py = B[1];
643  } else /*if (c_valid)*/ {
644  av_assert1(c_valid);
645  px = C[0];
646  py = C[1];
647  }
648  } else {
649  if (field_a && a_valid) {
650  px = A[0];
651  py = A[1];
652  } else /*if (field_b && b_valid)*/ {
653  av_assert1(field_b && b_valid);
654  px = B[0];
655  py = B[1];
656  }
657  }
658  } else if (total_valid == 1) {
659  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
660  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
661  }
662  }
663 
664  /* store MV using signed modulus of MV range defined in 4.11 */
665  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
666  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
667  if (mvn == 1) { /* duplicate motion data for 1-MV block */
668  s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
669  s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
670  s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
671  s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
672  s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
673  s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
674  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
675  s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
676  s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
677  s->mv[dir][n + 1][0] = s->mv[dir][n][0];
678  s->mv[dir][n + 1][1] = s->mv[dir][n][1];
679  }
680 }
681 
682 void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
683  int direct, int mvtype)
684 {
685  MpegEncContext *s = &v->s;
686  int xy, wrap, off = 0;
687  int16_t *A, *B, *C;
688  int px, py;
689  int sum;
690  int r_x, r_y;
691  const uint8_t *is_intra = v->mb_type[0];
692 
693  av_assert0(!v->field_mode);
694 
695  r_x = v->range_x;
696  r_y = v->range_y;
697  /* scale MV difference to be quad-pel */
698  dmv_x[0] <<= 1 - s->quarter_sample;
699  dmv_y[0] <<= 1 - s->quarter_sample;
700  dmv_x[1] <<= 1 - s->quarter_sample;
701  dmv_y[1] <<= 1 - s->quarter_sample;
702 
703  wrap = s->b8_stride;
704  xy = s->block_index[0];
705 
706  if (s->mb_intra) {
707  s->current_picture.motion_val[0][xy][0] =
708  s->current_picture.motion_val[0][xy][1] =
709  s->current_picture.motion_val[1][xy][0] =
710  s->current_picture.motion_val[1][xy][1] = 0;
711  return;
712  }
713  if (direct && s->next_picture_ptr->field_picture)
714  av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
715 
716  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
717  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
718  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
719  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
720 
721  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
722  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
723  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
724  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
725  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
726  if (direct) {
727  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
728  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
729  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
730  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
731  return;
732  }
733 
734  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
735  C = s->current_picture.motion_val[0][xy - 2];
736  A = s->current_picture.motion_val[0][xy - wrap * 2];
737  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
738  B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
739 
740  if (!s->mb_x) C[0] = C[1] = 0;
741  if (!s->first_slice_line) { // predictor A is not out of bounds
742  if (s->mb_width == 1) {
743  px = A[0];
744  py = A[1];
745  } else {
746  px = mid_pred(A[0], B[0], C[0]);
747  py = mid_pred(A[1], B[1], C[1]);
748  }
749  } else if (s->mb_x) { // predictor C is not out of bounds
750  px = C[0];
751  py = C[1];
752  } else {
753  px = py = 0;
754  }
755  /* Pullback MV as specified in 8.3.5.3.4 */
756  {
757  int qx, qy, X, Y;
758  int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
759  int MV = 4 - (1 << sh);
760  qx = (s->mb_x << sh);
761  qy = (s->mb_y << sh);
762  X = (s->mb_width << sh) - 4;
763  Y = (s->mb_height << sh) - 4;
764  if (qx + px < MV) px = MV - qx;
765  if (qy + py < MV) py = MV - qy;
766  if (qx + px > X) px = X - qx;
767  if (qy + py > Y) py = Y - qy;
768  }
769  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
770  if (0 && !s->first_slice_line && s->mb_x) {
771  if (is_intra[xy - wrap])
772  sum = FFABS(px) + FFABS(py);
773  else
774  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
775  if (sum > 32) {
776  if (get_bits1(&s->gb)) {
777  px = A[0];
778  py = A[1];
779  } else {
780  px = C[0];
781  py = C[1];
782  }
783  } else {
784  if (is_intra[xy - 2])
785  sum = FFABS(px) + FFABS(py);
786  else
787  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
788  if (sum > 32) {
789  if (get_bits1(&s->gb)) {
790  px = A[0];
791  py = A[1];
792  } else {
793  px = C[0];
794  py = C[1];
795  }
796  }
797  }
798  }
799  /* store MV using signed modulus of MV range defined in 4.11 */
800  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
801  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
802  }
803  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
804  C = s->current_picture.motion_val[1][xy - 2];
805  A = s->current_picture.motion_val[1][xy - wrap * 2];
806  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
807  B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
808 
809  if (!s->mb_x)
810  C[0] = C[1] = 0;
811  if (!s->first_slice_line) { // predictor A is not out of bounds
812  if (s->mb_width == 1) {
813  px = A[0];
814  py = A[1];
815  } else {
816  px = mid_pred(A[0], B[0], C[0]);
817  py = mid_pred(A[1], B[1], C[1]);
818  }
819  } else if (s->mb_x) { // predictor C is not out of bounds
820  px = C[0];
821  py = C[1];
822  } else {
823  px = py = 0;
824  }
825  /* Pullback MV as specified in 8.3.5.3.4 */
826  {
827  int qx, qy, X, Y;
828  int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
829  int MV = 4 - (1 << sh);
830  qx = (s->mb_x << sh);
831  qy = (s->mb_y << sh);
832  X = (s->mb_width << sh) - 4;
833  Y = (s->mb_height << sh) - 4;
834  if (qx + px < MV) px = MV - qx;
835  if (qy + py < MV) py = MV - qy;
836  if (qx + px > X) px = X - qx;
837  if (qy + py > Y) py = Y - qy;
838  }
839  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
840  if (0 && !s->first_slice_line && s->mb_x) {
841  if (is_intra[xy - wrap])
842  sum = FFABS(px) + FFABS(py);
843  else
844  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
845  if (sum > 32) {
846  if (get_bits1(&s->gb)) {
847  px = A[0];
848  py = A[1];
849  } else {
850  px = C[0];
851  py = C[1];
852  }
853  } else {
854  if (is_intra[xy - 2])
855  sum = FFABS(px) + FFABS(py);
856  else
857  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
858  if (sum > 32) {
859  if (get_bits1(&s->gb)) {
860  px = A[0];
861  py = A[1];
862  } else {
863  px = C[0];
864  py = C[1];
865  }
866  }
867  }
868  }
869  /* store MV using signed modulus of MV range defined in 4.11 */
870 
871  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
872  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
873  }
874  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
875  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
876  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
877  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
878 }
879 
880 void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y,
881  int mv1, int *pred_flag)
882 {
883  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
884  MpegEncContext *s = &v->s;
885  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
886 
887  if (v->bmvtype == BMV_TYPE_DIRECT) {
888  int total_opp, k, f;
889  if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
890  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
891  v->bfraction, 0, s->quarter_sample);
892  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
893  v->bfraction, 0, s->quarter_sample);
894  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
895  v->bfraction, 1, s->quarter_sample);
896  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
897  v->bfraction, 1, s->quarter_sample);
898 
899  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
900  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
901  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
902  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
903  f = (total_opp > 2) ? 1 : 0;
904  } else {
905  s->mv[0][0][0] = s->mv[0][0][1] = 0;
906  s->mv[1][0][0] = s->mv[1][0][1] = 0;
907  f = 0;
908  }
909  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
910  for (k = 0; k < 4; k++) {
911  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
912  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
913  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
914  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
915  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
916  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
917  }
918  return;
919  }
920  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
921  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
922  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
923  return;
924  }
925  if (dir) { // backward
926  ff_vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
927  if (n == 3 || mv1) {
928  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
929  }
930  } else { // forward
931  ff_vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
932  if (n == 3 || mv1) {
933  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
934  }
935  }
936 }