FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
matroskadec.c
Go to the documentation of this file.
1 /*
2  * Matroska file demuxer
3  * Copyright (c) 2003-2008 The FFmpeg Project
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Matroska file demuxer
25  * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
26  * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
27  * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
28  * @see specs available on the Matroska project page: http://www.matroska.org/
29  */
30 
31 #include "config.h"
32 
33 #include <inttypes.h>
34 #include <stdio.h>
35 
36 #include "libavutil/avstring.h"
37 #include "libavutil/base64.h"
38 #include "libavutil/dict.h"
39 #include "libavutil/intfloat.h"
40 #include "libavutil/intreadwrite.h"
41 #include "libavutil/lzo.h"
42 #include "libavutil/mathematics.h"
44 
45 #include "libavcodec/bytestream.h"
46 #include "libavcodec/flac.h"
47 #include "libavcodec/mpeg4audio.h"
48 
49 #include "avformat.h"
50 #include "avio_internal.h"
51 #include "internal.h"
52 #include "isom.h"
53 #include "matroska.h"
54 #include "oggdec.h"
55 /* For ff_codec_get_id(). */
56 #include "riff.h"
57 #include "rmsipr.h"
58 
59 #if CONFIG_BZLIB
60 #include <bzlib.h>
61 #endif
62 #if CONFIG_ZLIB
63 #include <zlib.h>
64 #endif
65 
66 typedef enum {
79 } EbmlType;
80 
81 typedef const struct EbmlSyntax {
82  uint32_t id;
86  union {
87  uint64_t u;
88  double f;
89  const char *s;
90  const struct EbmlSyntax *n;
91  } def;
92 } EbmlSyntax;
93 
94 typedef struct EbmlList {
95  int nb_elem;
96  void *elem;
97 } EbmlList;
98 
99 typedef struct EbmlBin {
100  int size;
102  int64_t pos;
103 } EbmlBin;
104 
105 typedef struct Ebml {
106  uint64_t version;
107  uint64_t max_size;
108  uint64_t id_length;
109  char *doctype;
110  uint64_t doctype_version;
111 } Ebml;
112 
113 typedef struct MatroskaTrackCompression {
114  uint64_t algo;
117 
118 typedef struct MatroskaTrackEncryption {
119  uint64_t algo;
122 
123 typedef struct MatroskaTrackEncoding {
124  uint64_t scope;
125  uint64_t type;
129 
130 typedef struct MatroskaTrackVideo {
131  double frame_rate;
132  uint64_t display_width;
133  uint64_t display_height;
134  uint64_t pixel_width;
135  uint64_t pixel_height;
137  uint64_t stereo_mode;
138  uint64_t alpha_mode;
140 
141 typedef struct MatroskaTrackAudio {
142  double samplerate;
144  uint64_t bitdepth;
145  uint64_t channels;
146 
147  /* real audio header (extracted from extradata) */
153  int pkt_cnt;
154  uint64_t buf_timecode;
157 
158 typedef struct MatroskaTrackPlane {
159  uint64_t uid;
160  uint64_t type;
162 
163 typedef struct MatroskaTrackOperation {
166 
167 typedef struct MatroskaTrack {
168  uint64_t num;
169  uint64_t uid;
170  uint64_t type;
171  char *name;
172  char *codec_id;
174  char *language;
175  double time_scale;
177  uint64_t flag_default;
178  uint64_t flag_forced;
179  uint64_t seek_preroll;
184  uint64_t codec_delay;
185 
187  int64_t end_timecode;
190 } MatroskaTrack;
191 
192 typedef struct MatroskaAttachment {
193  uint64_t uid;
194  char *filename;
195  char *mime;
197 
200 
201 typedef struct MatroskaChapter {
202  uint64_t start;
203  uint64_t end;
204  uint64_t uid;
205  char *title;
206 
209 
210 typedef struct MatroskaIndexPos {
211  uint64_t track;
212  uint64_t pos;
214 
215 typedef struct MatroskaIndex {
216  uint64_t time;
218 } MatroskaIndex;
219 
220 typedef struct MatroskaTag {
221  char *name;
222  char *string;
223  char *lang;
224  uint64_t def;
226 } MatroskaTag;
227 
228 typedef struct MatroskaTagTarget {
229  char *type;
230  uint64_t typevalue;
231  uint64_t trackuid;
232  uint64_t chapteruid;
233  uint64_t attachuid;
235 
236 typedef struct MatroskaTags {
239 } MatroskaTags;
240 
241 typedef struct MatroskaSeekhead {
242  uint64_t id;
243  uint64_t pos;
245 
246 typedef struct MatroskaLevel {
247  uint64_t start;
248  uint64_t length;
249 } MatroskaLevel;
250 
251 typedef struct MatroskaCluster {
252  uint64_t timecode;
255 
256 typedef struct MatroskaLevel1Element {
257  uint64_t id;
258  uint64_t pos;
259  int parsed;
261 
262 typedef struct MatroskaDemuxContext {
264 
265  /* EBML stuff */
268  int level_up;
269  uint32_t current_id;
270 
271  uint64_t time_scale;
272  double duration;
273  char *title;
274  char *muxingapp;
282 
283  /* byte position of the segment inside the stream */
284  int64_t segment_start;
285 
286  /* the packet queue */
290 
291  int done;
292 
293  /* What to skip before effectively reading a packet. */
296 
297  /* File has a CUES element, but we defer parsing until it is needed. */
299 
300  /* Level1 elements and whether they were read yet */
303 
307 
308  /* File has SSA subtitles which prevent incremental cluster parsing. */
311 
312 typedef struct MatroskaBlock {
313  uint64_t duration;
314  int64_t reference;
315  uint64_t non_simple;
317  uint64_t additional_id;
320 } MatroskaBlock;
321 
323  { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml, version), { .u = EBML_VERSION } },
324  { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml, max_size), { .u = 8 } },
325  { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml, id_length), { .u = 4 } },
326  { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml, doctype), { .s = "(none)" } },
327  { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml, doctype_version), { .u = 1 } },
330  { 0 }
331 };
332 
334  { EBML_ID_HEADER, EBML_NEST, 0, 0, { .n = ebml_header } },
335  { 0 }
336 };
337 
339  { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext, time_scale), { .u = 1000000 } },
341  { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, title) },
343  { MATROSKA_ID_MUXINGAPP, EBML_UTF8, 0, offsetof(MatroskaDemuxContext, muxingapp) },
344  { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext, date_utc) },
346  { 0 }
347 };
348 
350  { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT, 0, offsetof(MatroskaTrackVideo, frame_rate) },
351  { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_width), { .u=-1 } },
352  { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, display_height), { .u=-1 } },
353  { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_width) },
354  { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo, pixel_height) },
355  { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo, color_space) },
356  { MATROSKA_ID_VIDEOALPHAMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo, alpha_mode) },
365  { 0 }
366 };
367 
369  { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, samplerate), { .f = 8000.0 } },
370  { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ, EBML_FLOAT, 0, offsetof(MatroskaTrackAudio, out_samplerate) },
372  { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio, channels), { .u = 1 } },
373  { 0 }
374 };
375 
379  { 0 }
380 };
381 
390  { 0 }
391 };
393  { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, scope), { .u = 1 } },
394  { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding, type), { .u = 0 } },
395  { MATROSKA_ID_ENCODINGCOMPRESSION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, compression), { .n = matroska_track_encoding_compression } },
396  { MATROSKA_ID_ENCODINGENCRYPTION, EBML_NEST, 0, offsetof(MatroskaTrackEncoding, encryption), { .n = matroska_track_encoding_encryption } },
398  { 0 }
399 };
400 
402  { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack, encodings), { .n = matroska_track_encoding } },
403  { 0 }
404 };
405 
409  { 0 }
410 };
411 
413  { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n = matroska_track_plane} },
414  { 0 }
415 };
416 
418  { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n = matroska_track_combine_planes} },
419  { 0 }
420 };
421 
423  { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack, num) },
425  { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack, uid) },
428  { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack, codec_priv) },
429  { MATROSKA_ID_CODECDELAY, EBML_UINT, 0, offsetof(MatroskaTrack, codec_delay) },
430  { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack, language), { .s = "eng" } },
431  { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack, default_duration) },
432  { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT, 0, offsetof(MatroskaTrack, time_scale), { .f = 1.0 } },
433  { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack, flag_default), { .u = 1 } },
434  { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack, flag_forced), { .u = 0 } },
435  { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack, video), { .n = matroska_track_video } },
436  { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack, audio), { .n = matroska_track_audio } },
437  { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack, operation), { .n = matroska_track_operation } },
438  { MATROSKA_ID_TRACKCONTENTENCODINGS, EBML_NEST, 0, 0, { .n = matroska_track_encodings } },
439  { MATROSKA_ID_TRACKMAXBLKADDID, EBML_UINT, 0, offsetof(MatroskaTrack, max_block_additional_id) },
440  { MATROSKA_ID_SEEKPREROLL, EBML_UINT, 0, offsetof(MatroskaTrack, seek_preroll) },
449  { 0 }
450 };
451 
453  { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext, tracks), { .n = matroska_track } },
454  { 0 }
455 };
456 
459  { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachment, filename) },
460  { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachment, mime) },
461  { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachment, bin) },
463  { 0 }
464 };
465 
467  { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachment), offsetof(MatroskaDemuxContext, attachments), { .n = matroska_attachment } },
468  { 0 }
469 };
470 
472  { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter, title) },
474  { 0 }
475 };
476 
481  { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, { .n = matroska_chapter_display } },
486  { 0 }
487 };
488 
490  { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext, chapters), { .n = matroska_chapter_entry } },
495  { 0 }
496 };
497 
499  { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, { .n = matroska_chapter } },
500  { 0 }
501 };
502 
504  { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos, track) },
509  { 0 }
510 };
511 
513  { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex, time) },
514  { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex, pos), { .n = matroska_index_pos } },
515  { 0 }
516 };
517 
519  { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext, index), { .n = matroska_index_entry } },
520  { 0 }
521 };
522 
524  { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag, name) },
525  { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag, string) },
526  { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag, lang), { .s = "und" } },
527  { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag, def) },
528  { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag, def) },
529  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag, sub), { .n = matroska_simpletag } },
530  { 0 }
531 };
532 
535  { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget, typevalue), { .u = 50 } },
536  { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, trackuid) },
537  { MATROSKA_ID_TAGTARGETS_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, chapteruid) },
538  { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget, attachuid) },
539  { 0 }
540 };
541 
543  { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags, tag), { .n = matroska_simpletag } },
544  { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags, target), { .n = matroska_tagtargets } },
545  { 0 }
546 };
547 
549  { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext, tags), { .n = matroska_tag } },
550  { 0 }
551 };
552 
554  { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead, id) },
555  { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead, pos), { .u = -1 } },
556  { 0 }
557 };
558 
560  { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext, seekhead), { .n = matroska_seekhead_entry } },
561  { 0 }
562 };
563 
565  { MATROSKA_ID_INFO, EBML_LEVEL1, 0, 0, { .n = matroska_info } },
566  { MATROSKA_ID_TRACKS, EBML_LEVEL1, 0, 0, { .n = matroska_tracks } },
567  { MATROSKA_ID_ATTACHMENTS, EBML_LEVEL1, 0, 0, { .n = matroska_attachments } },
568  { MATROSKA_ID_CHAPTERS, EBML_LEVEL1, 0, 0, { .n = matroska_chapters } },
569  { MATROSKA_ID_CUES, EBML_LEVEL1, 0, 0, { .n = matroska_index } },
570  { MATROSKA_ID_TAGS, EBML_LEVEL1, 0, 0, { .n = matroska_tags } },
571  { MATROSKA_ID_SEEKHEAD, EBML_LEVEL1, 0, 0, { .n = matroska_seekhead } },
573  { 0 }
574 };
575 
577  { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, { .n = matroska_segment } },
578  { 0 }
579 };
580 
582  { MATROSKA_ID_BLOCKADDID, EBML_UINT, 0, offsetof(MatroskaBlock,additional_id) },
583  { MATROSKA_ID_BLOCKADDITIONAL, EBML_BIN, 0, offsetof(MatroskaBlock,additional) },
584  { 0 }
585 };
586 
588  { MATROSKA_ID_BLOCKMORE, EBML_NEST, 0, 0, {.n = matroska_blockmore} },
589  { 0 }
590 };
591 
593  { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
594  { MATROSKA_ID_BLOCKADDITIONS, EBML_NEST, 0, 0, { .n = matroska_blockadditions} },
595  { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock, bin) },
597  { MATROSKA_ID_DISCARDPADDING, EBML_SINT, 0, offsetof(MatroskaBlock, discard_padding) },
598  { MATROSKA_ID_BLOCKREFERENCE, EBML_SINT, 0, offsetof(MatroskaBlock, reference) },
600  { 1, EBML_UINT, 0, offsetof(MatroskaBlock, non_simple), { .u = 1 } },
601  { 0 }
602 };
603 
605  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
606  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
607  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
610  { 0 }
611 };
612 
614  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster } },
619  { 0 }
620 };
621 
623  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
624  { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
625  { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster, blocks), { .n = matroska_blockgroup } },
633  { 0 }
634 };
635 
637  { MATROSKA_ID_CLUSTERTIMECODE, EBML_UINT, 0, offsetof(MatroskaCluster, timecode) },
642  { 0 }
643 };
644 
646  { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, { .n = matroska_cluster_incremental } },
651  { 0 }
652 };
653 
654 static const char *const matroska_doctypes[] = { "matroska", "webm" };
655 
656 static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
657 {
658  AVIOContext *pb = matroska->ctx->pb;
659  uint32_t id;
660  matroska->current_id = 0;
661  matroska->num_levels = 0;
662 
663  /* seek to next position to resync from */
664  if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0)
665  goto eof;
666 
667  id = avio_rb32(pb);
668 
669  // try to find a toplevel element
670  while (!avio_feof(pb)) {
671  if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
672  id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
674  id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS) {
675  matroska->current_id = id;
676  return 0;
677  }
678  id = (id << 8) | avio_r8(pb);
679  }
680 
681 eof:
682  matroska->done = 1;
683  return AVERROR_EOF;
684 }
685 
686 /*
687  * Return: Whether we reached the end of a level in the hierarchy or not.
688  */
690 {
691  AVIOContext *pb = matroska->ctx->pb;
692  int64_t pos = avio_tell(pb);
693 
694  if (matroska->num_levels > 0) {
695  MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
696  if (pos - level->start >= level->length || matroska->current_id) {
697  matroska->num_levels--;
698  return 1;
699  }
700  }
701  return 0;
702 }
703 
704 /*
705  * Read: an "EBML number", which is defined as a variable-length
706  * array of bytes. The first byte indicates the length by giving a
707  * number of 0-bits followed by a one. The position of the first
708  * "one" bit inside the first byte indicates the length of this
709  * number.
710  * Returns: number of bytes read, < 0 on error
711  */
713  int max_size, uint64_t *number)
714 {
715  int read = 1, n = 1;
716  uint64_t total = 0;
717 
718  /* The first byte tells us the length in bytes - avio_r8() can normally
719  * return 0, but since that's not a valid first ebmlID byte, we can
720  * use it safely here to catch EOS. */
721  if (!(total = avio_r8(pb))) {
722  /* we might encounter EOS here */
723  if (!avio_feof(pb)) {
724  int64_t pos = avio_tell(pb);
725  av_log(matroska->ctx, AV_LOG_ERROR,
726  "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
727  pos, pos);
728  return pb->error ? pb->error : AVERROR(EIO);
729  }
730  return AVERROR_EOF;
731  }
732 
733  /* get the length of the EBML number */
734  read = 8 - ff_log2_tab[total];
735  if (read > max_size) {
736  int64_t pos = avio_tell(pb) - 1;
737  av_log(matroska->ctx, AV_LOG_ERROR,
738  "Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
739  (uint8_t) total, pos, pos);
740  return AVERROR_INVALIDDATA;
741  }
742 
743  /* read out length */
744  total ^= 1 << ff_log2_tab[total];
745  while (n++ < read)
746  total = (total << 8) | avio_r8(pb);
747 
748  *number = total;
749 
750  return read;
751 }
752 
753 /**
754  * Read a EBML length value.
755  * This needs special handling for the "unknown length" case which has multiple
756  * encodings.
757  */
759  uint64_t *number)
760 {
761  int res = ebml_read_num(matroska, pb, 8, number);
762  if (res > 0 && *number + 1 == 1ULL << (7 * res))
763  *number = 0xffffffffffffffULL;
764  return res;
765 }
766 
767 /*
768  * Read the next element as an unsigned int.
769  * 0 is success, < 0 is failure.
770  */
771 static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
772 {
773  int n = 0;
774 
775  if (size > 8)
776  return AVERROR_INVALIDDATA;
777 
778  /* big-endian ordering; build up number */
779  *num = 0;
780  while (n++ < size)
781  *num = (*num << 8) | avio_r8(pb);
782 
783  return 0;
784 }
785 
786 /*
787  * Read the next element as a signed int.
788  * 0 is success, < 0 is failure.
789  */
790 static int ebml_read_sint(AVIOContext *pb, int size, int64_t *num)
791 {
792  int n = 1;
793 
794  if (size > 8)
795  return AVERROR_INVALIDDATA;
796 
797  if (size == 0) {
798  *num = 0;
799  } else {
800  *num = sign_extend(avio_r8(pb), 8);
801 
802  /* big-endian ordering; build up number */
803  while (n++ < size)
804  *num = (*num << 8) | avio_r8(pb);
805  }
806 
807  return 0;
808 }
809 
810 /*
811  * Read the next element as a float.
812  * 0 is success, < 0 is failure.
813  */
814 static int ebml_read_float(AVIOContext *pb, int size, double *num)
815 {
816  if (size == 0)
817  *num = 0;
818  else if (size == 4)
819  *num = av_int2float(avio_rb32(pb));
820  else if (size == 8)
821  *num = av_int2double(avio_rb64(pb));
822  else
823  return AVERROR_INVALIDDATA;
824 
825  return 0;
826 }
827 
828 /*
829  * Read the next element as an ASCII string.
830  * 0 is success, < 0 is failure.
831  */
832 static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
833 {
834  char *res;
835 
836  /* EBML strings are usually not 0-terminated, so we allocate one
837  * byte more, read the string and NULL-terminate it ourselves. */
838  if (!(res = av_malloc(size + 1)))
839  return AVERROR(ENOMEM);
840  if (avio_read(pb, (uint8_t *) res, size) != size) {
841  av_free(res);
842  return AVERROR(EIO);
843  }
844  (res)[size] = '\0';
845  av_free(*str);
846  *str = res;
847 
848  return 0;
849 }
850 
851 /*
852  * Read the next element as binary data.
853  * 0 is success, < 0 is failure.
854  */
855 static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
856 {
857  av_fast_padded_malloc(&bin->data, &bin->size, length);
858  if (!bin->data)
859  return AVERROR(ENOMEM);
860 
861  bin->size = length;
862  bin->pos = avio_tell(pb);
863  if (avio_read(pb, bin->data, length) != length) {
864  av_freep(&bin->data);
865  bin->size = 0;
866  return AVERROR(EIO);
867  }
868 
869  return 0;
870 }
871 
872 /*
873  * Read the next element, but only the header. The contents
874  * are supposed to be sub-elements which can be read separately.
875  * 0 is success, < 0 is failure.
876  */
877 static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
878 {
879  AVIOContext *pb = matroska->ctx->pb;
881 
882  if (matroska->num_levels >= EBML_MAX_DEPTH) {
883  av_log(matroska->ctx, AV_LOG_ERROR,
884  "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
885  return AVERROR(ENOSYS);
886  }
887 
888  level = &matroska->levels[matroska->num_levels++];
889  level->start = avio_tell(pb);
890  level->length = length;
891 
892  return 0;
893 }
894 
895 /*
896  * Read signed/unsigned "EBML" numbers.
897  * Return: number of bytes processed, < 0 on error
898  */
900  uint8_t *data, uint32_t size, uint64_t *num)
901 {
902  AVIOContext pb;
903  ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
904  return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
905 }
906 
907 /*
908  * Same as above, but signed.
909  */
911  uint8_t *data, uint32_t size, int64_t *num)
912 {
913  uint64_t unum;
914  int res;
915 
916  /* read as unsigned number first */
917  if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
918  return res;
919 
920  /* make signed (weird way) */
921  *num = unum - ((1LL << (7 * res - 1)) - 1);
922 
923  return res;
924 }
925 
926 static int ebml_parse_elem(MatroskaDemuxContext *matroska,
927  EbmlSyntax *syntax, void *data);
928 
929 static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
930  uint32_t id, void *data)
931 {
932  int i;
933  for (i = 0; syntax[i].id; i++)
934  if (id == syntax[i].id)
935  break;
936  if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
937  matroska->num_levels > 0 &&
938  matroska->levels[matroska->num_levels - 1].length == 0xffffffffffffff)
939  return 0; // we reached the end of an unknown size cluster
940  if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
941  av_log(matroska->ctx, AV_LOG_DEBUG, "Unknown entry 0x%"PRIX32"\n", id);
942  }
943  return ebml_parse_elem(matroska, &syntax[i], data);
944 }
945 
946 static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
947  void *data)
948 {
949  if (!matroska->current_id) {
950  uint64_t id;
951  int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
952  if (res < 0)
953  return res;
954  matroska->current_id = id | 1 << 7 * res;
955  }
956  return ebml_parse_id(matroska, syntax, matroska->current_id, data);
957 }
958 
959 static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
960  void *data)
961 {
962  int i, res = 0;
963 
964  for (i = 0; syntax[i].id; i++)
965  switch (syntax[i].type) {
966  case EBML_UINT:
967  *(uint64_t *) ((char *) data + syntax[i].data_offset) = syntax[i].def.u;
968  break;
969  case EBML_FLOAT:
970  *(double *) ((char *) data + syntax[i].data_offset) = syntax[i].def.f;
971  break;
972  case EBML_STR:
973  case EBML_UTF8:
974  // the default may be NULL
975  if (syntax[i].def.s) {
976  uint8_t **dst = (uint8_t **) ((uint8_t *) data + syntax[i].data_offset);
977  *dst = av_strdup(syntax[i].def.s);
978  if (!*dst)
979  return AVERROR(ENOMEM);
980  }
981  break;
982  }
983 
984  while (!res && !ebml_level_end(matroska))
985  res = ebml_parse(matroska, syntax, data);
986 
987  return res;
988 }
989 
990 /*
991  * Allocate and return the entry for the level1 element with the given ID. If
992  * an entry already exists, return the existing entry.
993  */
995  uint32_t id)
996 {
997  int i;
998  MatroskaLevel1Element *elem;
999 
1000  // Some files link to all clusters; useless.
1001  if (id == MATROSKA_ID_CLUSTER)
1002  return NULL;
1003 
1004  // There can be multiple seekheads.
1005  if (id != MATROSKA_ID_SEEKHEAD) {
1006  for (i = 0; i < matroska->num_level1_elems; i++) {
1007  if (matroska->level1_elems[i].id == id)
1008  return &matroska->level1_elems[i];
1009  }
1010  }
1011 
1012  // Only a completely broken file would have more elements.
1013  // It also provides a low-effort way to escape from circular seekheads
1014  // (every iteration will add a level1 entry).
1015  if (matroska->num_level1_elems >= FF_ARRAY_ELEMS(matroska->level1_elems)) {
1016  av_log(matroska->ctx, AV_LOG_ERROR, "Too many level1 elements or circular seekheads.\n");
1017  return NULL;
1018  }
1019 
1020  elem = &matroska->level1_elems[matroska->num_level1_elems++];
1021  *elem = (MatroskaLevel1Element){.id = id};
1022 
1023  return elem;
1024 }
1025 
1027  EbmlSyntax *syntax, void *data)
1028 {
1029  static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
1030  [EBML_UINT] = 8,
1031  [EBML_FLOAT] = 8,
1032  // max. 16 MB for strings
1033  [EBML_STR] = 0x1000000,
1034  [EBML_UTF8] = 0x1000000,
1035  // max. 256 MB for binary data
1036  [EBML_BIN] = 0x10000000,
1037  // no limits for anything else
1038  };
1039  AVIOContext *pb = matroska->ctx->pb;
1040  uint32_t id = syntax->id;
1041  uint64_t length;
1042  int res;
1043  void *newelem;
1044  MatroskaLevel1Element *level1_elem;
1045 
1046  data = (char *) data + syntax->data_offset;
1047  if (syntax->list_elem_size) {
1048  EbmlList *list = data;
1049  newelem = av_realloc_array(list->elem, list->nb_elem + 1, syntax->list_elem_size);
1050  if (!newelem)
1051  return AVERROR(ENOMEM);
1052  list->elem = newelem;
1053  data = (char *) list->elem + list->nb_elem * syntax->list_elem_size;
1054  memset(data, 0, syntax->list_elem_size);
1055  list->nb_elem++;
1056  }
1057 
1058  if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
1059  matroska->current_id = 0;
1060  if ((res = ebml_read_length(matroska, pb, &length)) < 0)
1061  return res;
1062  if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
1063  av_log(matroska->ctx, AV_LOG_ERROR,
1064  "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
1065  length, max_lengths[syntax->type], syntax->type);
1066  return AVERROR_INVALIDDATA;
1067  }
1068  }
1069 
1070  switch (syntax->type) {
1071  case EBML_UINT:
1072  res = ebml_read_uint(pb, length, data);
1073  break;
1074  case EBML_SINT:
1075  res = ebml_read_sint(pb, length, data);
1076  break;
1077  case EBML_FLOAT:
1078  res = ebml_read_float(pb, length, data);
1079  break;
1080  case EBML_STR:
1081  case EBML_UTF8:
1082  res = ebml_read_ascii(pb, length, data);
1083  break;
1084  case EBML_BIN:
1085  res = ebml_read_binary(pb, length, data);
1086  break;
1087  case EBML_LEVEL1:
1088  case EBML_NEST:
1089  if ((res = ebml_read_master(matroska, length)) < 0)
1090  return res;
1091  if (id == MATROSKA_ID_SEGMENT)
1092  matroska->segment_start = avio_tell(matroska->ctx->pb);
1093  if (id == MATROSKA_ID_CUES)
1094  matroska->cues_parsing_deferred = 0;
1095  if (syntax->type == EBML_LEVEL1 &&
1096  (level1_elem = matroska_find_level1_elem(matroska, syntax->id))) {
1097  if (level1_elem->parsed)
1098  av_log(matroska->ctx, AV_LOG_ERROR, "Duplicate element\n");
1099  level1_elem->parsed = 1;
1100  }
1101  return ebml_parse_nest(matroska, syntax->def.n, data);
1102  case EBML_PASS:
1103  return ebml_parse_id(matroska, syntax->def.n, id, data);
1104  case EBML_STOP:
1105  return 1;
1106  default:
1107  if (ffio_limit(pb, length) != length)
1108  return AVERROR(EIO);
1109  return avio_skip(pb, length) < 0 ? AVERROR(EIO) : 0;
1110  }
1111  if (res == AVERROR_INVALIDDATA)
1112  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
1113  else if (res == AVERROR(EIO))
1114  av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
1115  return res;
1116 }
1117 
1118 static void ebml_free(EbmlSyntax *syntax, void *data)
1119 {
1120  int i, j;
1121  for (i = 0; syntax[i].id; i++) {
1122  void *data_off = (char *) data + syntax[i].data_offset;
1123  switch (syntax[i].type) {
1124  case EBML_STR:
1125  case EBML_UTF8:
1126  av_freep(data_off);
1127  break;
1128  case EBML_BIN:
1129  av_freep(&((EbmlBin *) data_off)->data);
1130  break;
1131  case EBML_LEVEL1:
1132  case EBML_NEST:
1133  if (syntax[i].list_elem_size) {
1134  EbmlList *list = data_off;
1135  char *ptr = list->elem;
1136  for (j = 0; j < list->nb_elem;
1137  j++, ptr += syntax[i].list_elem_size)
1138  ebml_free(syntax[i].def.n, ptr);
1139  av_freep(&list->elem);
1140  } else
1141  ebml_free(syntax[i].def.n, data_off);
1142  default:
1143  break;
1144  }
1145  }
1146 }
1147 
1148 /*
1149  * Autodetecting...
1150  */
1152 {
1153  uint64_t total = 0;
1154  int len_mask = 0x80, size = 1, n = 1, i;
1155 
1156  /* EBML header? */
1157  if (AV_RB32(p->buf) != EBML_ID_HEADER)
1158  return 0;
1159 
1160  /* length of header */
1161  total = p->buf[4];
1162  while (size <= 8 && !(total & len_mask)) {
1163  size++;
1164  len_mask >>= 1;
1165  }
1166  if (size > 8)
1167  return 0;
1168  total &= (len_mask - 1);
1169  while (n < size)
1170  total = (total << 8) | p->buf[4 + n++];
1171 
1172  /* Does the probe data contain the whole header? */
1173  if (p->buf_size < 4 + size + total)
1174  return 0;
1175 
1176  /* The header should contain a known document type. For now,
1177  * we don't parse the whole header but simply check for the
1178  * availability of that array of characters inside the header.
1179  * Not fully fool-proof, but good enough. */
1180  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
1181  int probelen = strlen(matroska_doctypes[i]);
1182  if (total < probelen)
1183  continue;
1184  for (n = 4 + size; n <= 4 + size + total - probelen; n++)
1185  if (!memcmp(p->buf + n, matroska_doctypes[i], probelen))
1186  return AVPROBE_SCORE_MAX;
1187  }
1188 
1189  // probably valid EBML header but no recognized doctype
1190  return AVPROBE_SCORE_EXTENSION;
1191 }
1192 
1194  int num)
1195 {
1196  MatroskaTrack *tracks = matroska->tracks.elem;
1197  int i;
1198 
1199  for (i = 0; i < matroska->tracks.nb_elem; i++)
1200  if (tracks[i].num == num)
1201  return &tracks[i];
1202 
1203  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
1204  return NULL;
1205 }
1206 
1207 static int matroska_decode_buffer(uint8_t **buf, int *buf_size,
1208  MatroskaTrack *track)
1209 {
1210  MatroskaTrackEncoding *encodings = track->encodings.elem;
1211  uint8_t *data = *buf;
1212  int isize = *buf_size;
1213  uint8_t *pkt_data = NULL;
1214  uint8_t av_unused *newpktdata;
1215  int pkt_size = isize;
1216  int result = 0;
1217  int olen;
1218 
1219  if (pkt_size >= 10000000U)
1220  return AVERROR_INVALIDDATA;
1221 
1222  switch (encodings[0].compression.algo) {
1224  {
1225  int header_size = encodings[0].compression.settings.size;
1226  uint8_t *header = encodings[0].compression.settings.data;
1227 
1228  if (header_size && !header) {
1229  av_log(NULL, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
1230  return -1;
1231  }
1232 
1233  if (!header_size)
1234  return 0;
1235 
1236  pkt_size = isize + header_size;
1237  pkt_data = av_malloc(pkt_size);
1238  if (!pkt_data)
1239  return AVERROR(ENOMEM);
1240 
1241  memcpy(pkt_data, header, header_size);
1242  memcpy(pkt_data + header_size, data, isize);
1243  break;
1244  }
1245 #if CONFIG_LZO
1247  do {
1248  olen = pkt_size *= 3;
1249  newpktdata = av_realloc(pkt_data, pkt_size + AV_LZO_OUTPUT_PADDING);
1250  if (!newpktdata) {
1251  result = AVERROR(ENOMEM);
1252  goto failed;
1253  }
1254  pkt_data = newpktdata;
1255  result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
1256  } while (result == AV_LZO_OUTPUT_FULL && pkt_size < 10000000);
1257  if (result) {
1258  result = AVERROR_INVALIDDATA;
1259  goto failed;
1260  }
1261  pkt_size -= olen;
1262  break;
1263 #endif
1264 #if CONFIG_ZLIB
1266  {
1267  z_stream zstream = { 0 };
1268  if (inflateInit(&zstream) != Z_OK)
1269  return -1;
1270  zstream.next_in = data;
1271  zstream.avail_in = isize;
1272  do {
1273  pkt_size *= 3;
1274  newpktdata = av_realloc(pkt_data, pkt_size);
1275  if (!newpktdata) {
1276  inflateEnd(&zstream);
1277  goto failed;
1278  }
1279  pkt_data = newpktdata;
1280  zstream.avail_out = pkt_size - zstream.total_out;
1281  zstream.next_out = pkt_data + zstream.total_out;
1282  if (pkt_data) {
1283  result = inflate(&zstream, Z_NO_FLUSH);
1284  } else
1285  result = Z_MEM_ERROR;
1286  } while (result == Z_OK && pkt_size < 10000000);
1287  pkt_size = zstream.total_out;
1288  inflateEnd(&zstream);
1289  if (result != Z_STREAM_END) {
1290  if (result == Z_MEM_ERROR)
1291  result = AVERROR(ENOMEM);
1292  else
1293  result = AVERROR_INVALIDDATA;
1294  goto failed;
1295  }
1296  break;
1297  }
1298 #endif
1299 #if CONFIG_BZLIB
1301  {
1302  bz_stream bzstream = { 0 };
1303  if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
1304  return -1;
1305  bzstream.next_in = data;
1306  bzstream.avail_in = isize;
1307  do {
1308  pkt_size *= 3;
1309  newpktdata = av_realloc(pkt_data, pkt_size);
1310  if (!newpktdata) {
1311  BZ2_bzDecompressEnd(&bzstream);
1312  goto failed;
1313  }
1314  pkt_data = newpktdata;
1315  bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
1316  bzstream.next_out = pkt_data + bzstream.total_out_lo32;
1317  if (pkt_data) {
1318  result = BZ2_bzDecompress(&bzstream);
1319  } else
1320  result = BZ_MEM_ERROR;
1321  } while (result == BZ_OK && pkt_size < 10000000);
1322  pkt_size = bzstream.total_out_lo32;
1323  BZ2_bzDecompressEnd(&bzstream);
1324  if (result != BZ_STREAM_END) {
1325  if (result == BZ_MEM_ERROR)
1326  result = AVERROR(ENOMEM);
1327  else
1328  result = AVERROR_INVALIDDATA;
1329  goto failed;
1330  }
1331  break;
1332  }
1333 #endif
1334  default:
1335  return AVERROR_INVALIDDATA;
1336  }
1337 
1338  *buf = pkt_data;
1339  *buf_size = pkt_size;
1340  return 0;
1341 
1342 failed:
1343  av_free(pkt_data);
1344  return result;
1345 }
1346 
1348  AVDictionary **metadata, char *prefix)
1349 {
1350  MatroskaTag *tags = list->elem;
1351  char key[1024];
1352  int i;
1353 
1354  for (i = 0; i < list->nb_elem; i++) {
1355  const char *lang = tags[i].lang &&
1356  strcmp(tags[i].lang, "und") ? tags[i].lang : NULL;
1357 
1358  if (!tags[i].name) {
1359  av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
1360  continue;
1361  }
1362  if (prefix)
1363  snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
1364  else
1365  av_strlcpy(key, tags[i].name, sizeof(key));
1366  if (tags[i].def || !lang) {
1367  av_dict_set(metadata, key, tags[i].string, 0);
1368  if (tags[i].sub.nb_elem)
1369  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1370  }
1371  if (lang) {
1372  av_strlcat(key, "-", sizeof(key));
1373  av_strlcat(key, lang, sizeof(key));
1374  av_dict_set(metadata, key, tags[i].string, 0);
1375  if (tags[i].sub.nb_elem)
1376  matroska_convert_tag(s, &tags[i].sub, metadata, key);
1377  }
1378  }
1380 }
1381 
1383 {
1384  MatroskaDemuxContext *matroska = s->priv_data;
1385  MatroskaTags *tags = matroska->tags.elem;
1386  int i, j;
1387 
1388  for (i = 0; i < matroska->tags.nb_elem; i++) {
1389  if (tags[i].target.attachuid) {
1390  MatroskaAttachment *attachment = matroska->attachments.elem;
1391  for (j = 0; j < matroska->attachments.nb_elem; j++)
1392  if (attachment[j].uid == tags[i].target.attachuid &&
1393  attachment[j].stream)
1394  matroska_convert_tag(s, &tags[i].tag,
1395  &attachment[j].stream->metadata, NULL);
1396  } else if (tags[i].target.chapteruid) {
1397  MatroskaChapter *chapter = matroska->chapters.elem;
1398  for (j = 0; j < matroska->chapters.nb_elem; j++)
1399  if (chapter[j].uid == tags[i].target.chapteruid &&
1400  chapter[j].chapter)
1401  matroska_convert_tag(s, &tags[i].tag,
1402  &chapter[j].chapter->metadata, NULL);
1403  } else if (tags[i].target.trackuid) {
1404  MatroskaTrack *track = matroska->tracks.elem;
1405  for (j = 0; j < matroska->tracks.nb_elem; j++)
1406  if (track[j].uid == tags[i].target.trackuid && track[j].stream)
1407  matroska_convert_tag(s, &tags[i].tag,
1408  &track[j].stream->metadata, NULL);
1409  } else {
1410  matroska_convert_tag(s, &tags[i].tag, &s->metadata,
1411  tags[i].target.type);
1412  }
1413  }
1414 }
1415 
1417  uint64_t pos)
1418 {
1419  uint32_t level_up = matroska->level_up;
1420  uint32_t saved_id = matroska->current_id;
1421  int64_t before_pos = avio_tell(matroska->ctx->pb);
1423  int64_t offset;
1424  int ret = 0;
1425 
1426  /* seek */
1427  offset = pos + matroska->segment_start;
1428  if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
1429  /* We don't want to lose our seekhead level, so we add
1430  * a dummy. This is a crude hack. */
1431  if (matroska->num_levels == EBML_MAX_DEPTH) {
1432  av_log(matroska->ctx, AV_LOG_INFO,
1433  "Max EBML element depth (%d) reached, "
1434  "cannot parse further.\n", EBML_MAX_DEPTH);
1435  ret = AVERROR_INVALIDDATA;
1436  } else {
1437  level.start = 0;
1438  level.length = (uint64_t) -1;
1439  matroska->levels[matroska->num_levels] = level;
1440  matroska->num_levels++;
1441  matroska->current_id = 0;
1442 
1443  ret = ebml_parse(matroska, matroska_segment, matroska);
1444 
1445  /* remove dummy level */
1446  while (matroska->num_levels) {
1447  uint64_t length = matroska->levels[--matroska->num_levels].length;
1448  if (length == (uint64_t) -1)
1449  break;
1450  }
1451  }
1452  }
1453  /* seek back */
1454  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
1455  matroska->level_up = level_up;
1456  matroska->current_id = saved_id;
1457 
1458  return ret;
1459 }
1460 
1462 {
1463  EbmlList *seekhead_list = &matroska->seekhead;
1464  int i;
1465 
1466  // we should not do any seeking in the streaming case
1467  if (!matroska->ctx->pb->seekable)
1468  return;
1469 
1470  for (i = 0; i < seekhead_list->nb_elem; i++) {
1471  MatroskaSeekhead *seekheads = seekhead_list->elem;
1472  uint32_t id = seekheads[i].id;
1473  uint64_t pos = seekheads[i].pos;
1474 
1475  MatroskaLevel1Element *elem = matroska_find_level1_elem(matroska, id);
1476  if (!elem || elem->parsed)
1477  continue;
1478 
1479  elem->pos = pos;
1480 
1481  // defer cues parsing until we actually need cue data.
1482  if (id == MATROSKA_ID_CUES)
1483  continue;
1484 
1485  if (matroska_parse_seekhead_entry(matroska, pos) < 0) {
1486  // mark index as broken
1487  matroska->cues_parsing_deferred = -1;
1488  break;
1489  }
1490 
1491  elem->parsed = 1;
1492  }
1493 }
1494 
1496 {
1497  EbmlList *index_list;
1499  int index_scale = 1;
1500  int i, j;
1501 
1502  if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX)
1503  return;
1504 
1505  index_list = &matroska->index;
1506  index = index_list->elem;
1507  if (index_list->nb_elem &&
1508  index[0].time > 1E14 / matroska->time_scale) {
1509  av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
1510  index_scale = matroska->time_scale;
1511  }
1512  for (i = 0; i < index_list->nb_elem; i++) {
1513  EbmlList *pos_list = &index[i].pos;
1514  MatroskaIndexPos *pos = pos_list->elem;
1515  for (j = 0; j < pos_list->nb_elem; j++) {
1516  MatroskaTrack *track = matroska_find_track_by_num(matroska,
1517  pos[j].track);
1518  if (track && track->stream)
1519  av_add_index_entry(track->stream,
1520  pos[j].pos + matroska->segment_start,
1521  index[i].time / index_scale, 0, 0,
1523  }
1524  }
1525 }
1526 
1528  int i;
1529 
1530  if (matroska->ctx->flags & AVFMT_FLAG_IGNIDX)
1531  return;
1532 
1533  for (i = 0; i < matroska->num_level1_elems; i++) {
1534  MatroskaLevel1Element *elem = &matroska->level1_elems[i];
1535  if (elem->id == MATROSKA_ID_CUES && !elem->parsed) {
1536  if (matroska_parse_seekhead_entry(matroska, elem->pos) < 0)
1537  matroska->cues_parsing_deferred = -1;
1538  elem->parsed = 1;
1539  break;
1540  }
1541  }
1542 
1543  matroska_add_index_entries(matroska);
1544 }
1545 
1547 {
1548  static const char *const aac_profiles[] = { "MAIN", "LC", "SSR" };
1549  int profile;
1550 
1551  for (profile = 0; profile < FF_ARRAY_ELEMS(aac_profiles); profile++)
1552  if (strstr(codec_id, aac_profiles[profile]))
1553  break;
1554  return profile + 1;
1555 }
1556 
1557 static int matroska_aac_sri(int samplerate)
1558 {
1559  int sri;
1560 
1561  for (sri = 0; sri < FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
1562  if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
1563  break;
1564  return sri;
1565 }
1566 
1567 static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
1568 {
1569  char buffer[32];
1570  /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
1571  time_t creation_time = date_utc / 1000000000 + 978307200;
1572  struct tm tmpbuf, *ptm = gmtime_r(&creation_time, &tmpbuf);
1573  if (!ptm) return;
1574  if (strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm))
1575  av_dict_set(metadata, "creation_time", buffer, 0);
1576 }
1577 
1579  MatroskaTrack *track,
1580  int *offset)
1581 {
1582  AVStream *st = track->stream;
1583  uint8_t *p = track->codec_priv.data;
1584  int size = track->codec_priv.size;
1585 
1586  if (size < 8 + FLAC_STREAMINFO_SIZE || p[4] & 0x7f) {
1587  av_log(s, AV_LOG_WARNING, "Invalid FLAC private data\n");
1588  track->codec_priv.size = 0;
1589  return 0;
1590  }
1591  *offset = 8;
1592  track->codec_priv.size = 8 + FLAC_STREAMINFO_SIZE;
1593 
1594  p += track->codec_priv.size;
1595  size -= track->codec_priv.size;
1596 
1597  /* parse the remaining metadata blocks if present */
1598  while (size >= 4) {
1599  int block_last, block_type, block_size;
1600 
1601  flac_parse_block_header(p, &block_last, &block_type, &block_size);
1602 
1603  p += 4;
1604  size -= 4;
1605  if (block_size > size)
1606  return 0;
1607 
1608  /* check for the channel mask */
1609  if (block_type == FLAC_METADATA_TYPE_VORBIS_COMMENT) {
1610  AVDictionary *dict = NULL;
1611  AVDictionaryEntry *chmask;
1612 
1613  ff_vorbis_comment(s, &dict, p, block_size, 0);
1614  chmask = av_dict_get(dict, "WAVEFORMATEXTENSIBLE_CHANNEL_MASK", NULL, 0);
1615  if (chmask) {
1616  uint64_t mask = strtol(chmask->value, NULL, 0);
1617  if (!mask || mask & ~0x3ffffULL) {
1619  "Invalid value of WAVEFORMATEXTENSIBLE_CHANNEL_MASK\n");
1620  } else
1621  st->codec->channel_layout = mask;
1622  }
1623  av_dict_free(&dict);
1624  }
1625 
1626  p += block_size;
1627  size -= block_size;
1628  }
1629 
1630  return 0;
1631 }
1632 
1634 {
1635  MatroskaDemuxContext *matroska = s->priv_data;
1636  MatroskaTrack *tracks = matroska->tracks.elem;
1637  AVStream *st;
1638  int i, j, ret;
1639  int k;
1640 
1641  for (i = 0; i < matroska->tracks.nb_elem; i++) {
1642  MatroskaTrack *track = &tracks[i];
1644  EbmlList *encodings_list = &track->encodings;
1645  MatroskaTrackEncoding *encodings = encodings_list->elem;
1646  uint8_t *extradata = NULL;
1647  int extradata_size = 0;
1648  int extradata_offset = 0;
1649  uint32_t fourcc = 0;
1650  AVIOContext b;
1651  char* key_id_base64 = NULL;
1652  int bit_depth = -1;
1653 
1654  /* Apply some sanity checks. */
1655  if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
1656  track->type != MATROSKA_TRACK_TYPE_AUDIO &&
1657  track->type != MATROSKA_TRACK_TYPE_SUBTITLE &&
1658  track->type != MATROSKA_TRACK_TYPE_METADATA) {
1659  av_log(matroska->ctx, AV_LOG_INFO,
1660  "Unknown or unsupported track type %"PRIu64"\n",
1661  track->type);
1662  continue;
1663  }
1664  if (!track->codec_id)
1665  continue;
1666 
1667  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1668  if (!track->default_duration && track->video.frame_rate > 0)
1669  track->default_duration = 1000000000 / track->video.frame_rate;
1670  if (track->video.display_width == -1)
1671  track->video.display_width = track->video.pixel_width;
1672  if (track->video.display_height == -1)
1673  track->video.display_height = track->video.pixel_height;
1674  if (track->video.color_space.size == 4)
1675  fourcc = AV_RL32(track->video.color_space.data);
1676  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
1677  if (!track->audio.out_samplerate)
1678  track->audio.out_samplerate = track->audio.samplerate;
1679  }
1680  if (encodings_list->nb_elem > 1) {
1681  av_log(matroska->ctx, AV_LOG_ERROR,
1682  "Multiple combined encodings not supported");
1683  } else if (encodings_list->nb_elem == 1) {
1684  if (encodings[0].type) {
1685  if (encodings[0].encryption.key_id.size > 0) {
1686  /* Save the encryption key id to be stored later as a
1687  metadata tag. */
1688  const int b64_size = AV_BASE64_SIZE(encodings[0].encryption.key_id.size);
1689  key_id_base64 = av_malloc(b64_size);
1690  if (key_id_base64 == NULL)
1691  return AVERROR(ENOMEM);
1692 
1693  av_base64_encode(key_id_base64, b64_size,
1694  encodings[0].encryption.key_id.data,
1695  encodings[0].encryption.key_id.size);
1696  } else {
1697  encodings[0].scope = 0;
1698  av_log(matroska->ctx, AV_LOG_ERROR,
1699  "Unsupported encoding type");
1700  }
1701  } else if (
1702 #if CONFIG_ZLIB
1703  encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
1704 #endif
1705 #if CONFIG_BZLIB
1707 #endif
1708 #if CONFIG_LZO
1710 #endif
1712  encodings[0].scope = 0;
1713  av_log(matroska->ctx, AV_LOG_ERROR,
1714  "Unsupported encoding type");
1715  } else if (track->codec_priv.size && encodings[0].scope & 2) {
1716  uint8_t *codec_priv = track->codec_priv.data;
1717  int ret = matroska_decode_buffer(&track->codec_priv.data,
1718  &track->codec_priv.size,
1719  track);
1720  if (ret < 0) {
1721  track->codec_priv.data = NULL;
1722  track->codec_priv.size = 0;
1723  av_log(matroska->ctx, AV_LOG_ERROR,
1724  "Failed to decode codec private data\n");
1725  }
1726 
1727  if (codec_priv != track->codec_priv.data)
1728  av_free(codec_priv);
1729  }
1730  }
1731 
1732  for (j = 0; ff_mkv_codec_tags[j].id != AV_CODEC_ID_NONE; j++) {
1733  if (!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
1734  strlen(ff_mkv_codec_tags[j].str))) {
1735  codec_id = ff_mkv_codec_tags[j].id;
1736  break;
1737  }
1738  }
1739 
1740  st = track->stream = avformat_new_stream(s, NULL);
1741  if (!st) {
1742  av_free(key_id_base64);
1743  return AVERROR(ENOMEM);
1744  }
1745 
1746  if (key_id_base64) {
1747  /* export encryption key id as base64 metadata tag */
1748  av_dict_set(&st->metadata, "enc_key_id", key_id_base64, 0);
1749  av_freep(&key_id_base64);
1750  }
1751 
1752  if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC") &&
1753  track->codec_priv.size >= 40 &&
1754  track->codec_priv.data) {
1755  track->ms_compat = 1;
1756  bit_depth = AV_RL16(track->codec_priv.data + 14);
1757  fourcc = AV_RL32(track->codec_priv.data + 16);
1759  fourcc);
1760  if (!codec_id)
1762  fourcc);
1763  extradata_offset = 40;
1764  } else if (!strcmp(track->codec_id, "A_MS/ACM") &&
1765  track->codec_priv.size >= 14 &&
1766  track->codec_priv.data) {
1767  int ret;
1768  ffio_init_context(&b, track->codec_priv.data,
1769  track->codec_priv.size,
1770  0, NULL, NULL, NULL, NULL);
1771  ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size, 0);
1772  if (ret < 0)
1773  return ret;
1774  codec_id = st->codec->codec_id;
1775  extradata_offset = FFMIN(track->codec_priv.size, 18);
1776  } else if (!strcmp(track->codec_id, "A_QUICKTIME")
1777  && (track->codec_priv.size >= 86)
1778  && (track->codec_priv.data)) {
1779  fourcc = AV_RL32(track->codec_priv.data + 4);
1780  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1782  fourcc = AV_RL32(track->codec_priv.data);
1783  codec_id = ff_codec_get_id(ff_codec_movaudio_tags, fourcc);
1784  }
1785  } else if (!strcmp(track->codec_id, "V_QUICKTIME") &&
1786  (track->codec_priv.size >= 21) &&
1787  (track->codec_priv.data)) {
1788  fourcc = AV_RL32(track->codec_priv.data + 4);
1789  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1791  fourcc = AV_RL32(track->codec_priv.data);
1792  codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
1793  }
1794  if (codec_id == AV_CODEC_ID_NONE && AV_RL32(track->codec_priv.data+4) == AV_RL32("SMI "))
1795  codec_id = AV_CODEC_ID_SVQ3;
1796  } else if (codec_id == AV_CODEC_ID_PCM_S16BE) {
1797  switch (track->audio.bitdepth) {
1798  case 8:
1799  codec_id = AV_CODEC_ID_PCM_U8;
1800  break;
1801  case 24:
1802  codec_id = AV_CODEC_ID_PCM_S24BE;
1803  break;
1804  case 32:
1805  codec_id = AV_CODEC_ID_PCM_S32BE;
1806  break;
1807  }
1808  } else if (codec_id == AV_CODEC_ID_PCM_S16LE) {
1809  switch (track->audio.bitdepth) {
1810  case 8:
1811  codec_id = AV_CODEC_ID_PCM_U8;
1812  break;
1813  case 24:
1814  codec_id = AV_CODEC_ID_PCM_S24LE;
1815  break;
1816  case 32:
1817  codec_id = AV_CODEC_ID_PCM_S32LE;
1818  break;
1819  }
1820  } else if (codec_id == AV_CODEC_ID_PCM_F32LE &&
1821  track->audio.bitdepth == 64) {
1822  codec_id = AV_CODEC_ID_PCM_F64LE;
1823  } else if (codec_id == AV_CODEC_ID_AAC && !track->codec_priv.size) {
1824  int profile = matroska_aac_profile(track->codec_id);
1825  int sri = matroska_aac_sri(track->audio.samplerate);
1826  extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
1827  if (!extradata)
1828  return AVERROR(ENOMEM);
1829  extradata[0] = (profile << 3) | ((sri & 0x0E) >> 1);
1830  extradata[1] = ((sri & 0x01) << 7) | (track->audio.channels << 3);
1831  if (strstr(track->codec_id, "SBR")) {
1832  sri = matroska_aac_sri(track->audio.out_samplerate);
1833  extradata[2] = 0x56;
1834  extradata[3] = 0xE5;
1835  extradata[4] = 0x80 | (sri << 3);
1836  extradata_size = 5;
1837  } else
1838  extradata_size = 2;
1839  } else if (codec_id == AV_CODEC_ID_ALAC && track->codec_priv.size && track->codec_priv.size < INT_MAX - 12 - FF_INPUT_BUFFER_PADDING_SIZE) {
1840  /* Only ALAC's magic cookie is stored in Matroska's track headers.
1841  * Create the "atom size", "tag", and "tag version" fields the
1842  * decoder expects manually. */
1843  extradata_size = 12 + track->codec_priv.size;
1844  extradata = av_mallocz(extradata_size +
1846  if (!extradata)
1847  return AVERROR(ENOMEM);
1848  AV_WB32(extradata, extradata_size);
1849  memcpy(&extradata[4], "alac", 4);
1850  AV_WB32(&extradata[8], 0);
1851  memcpy(&extradata[12], track->codec_priv.data,
1852  track->codec_priv.size);
1853  } else if (codec_id == AV_CODEC_ID_TTA) {
1854  extradata_size = 30;
1855  extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
1856  if (!extradata)
1857  return AVERROR(ENOMEM);
1858  ffio_init_context(&b, extradata, extradata_size, 1,
1859  NULL, NULL, NULL, NULL);
1860  avio_write(&b, "TTA1", 4);
1861  avio_wl16(&b, 1);
1862  avio_wl16(&b, track->audio.channels);
1863  avio_wl16(&b, track->audio.bitdepth);
1864  if (track->audio.out_samplerate < 0 || track->audio.out_samplerate > INT_MAX)
1865  return AVERROR_INVALIDDATA;
1866  avio_wl32(&b, track->audio.out_samplerate);
1867  avio_wl32(&b, av_rescale((matroska->duration * matroska->time_scale),
1868  track->audio.out_samplerate,
1869  AV_TIME_BASE * 1000));
1870  } else if (codec_id == AV_CODEC_ID_RV10 ||
1871  codec_id == AV_CODEC_ID_RV20 ||
1872  codec_id == AV_CODEC_ID_RV30 ||
1873  codec_id == AV_CODEC_ID_RV40) {
1874  extradata_offset = 26;
1875  } else if (codec_id == AV_CODEC_ID_RA_144) {
1876  track->audio.out_samplerate = 8000;
1877  track->audio.channels = 1;
1878  } else if ((codec_id == AV_CODEC_ID_RA_288 ||
1879  codec_id == AV_CODEC_ID_COOK ||
1880  codec_id == AV_CODEC_ID_ATRAC3 ||
1881  codec_id == AV_CODEC_ID_SIPR)
1882  && track->codec_priv.data) {
1883  int flavor;
1884 
1885  ffio_init_context(&b, track->codec_priv.data,
1886  track->codec_priv.size,
1887  0, NULL, NULL, NULL, NULL);
1888  avio_skip(&b, 22);
1889  flavor = avio_rb16(&b);
1890  track->audio.coded_framesize = avio_rb32(&b);
1891  avio_skip(&b, 12);
1892  track->audio.sub_packet_h = avio_rb16(&b);
1893  track->audio.frame_size = avio_rb16(&b);
1894  track->audio.sub_packet_size = avio_rb16(&b);
1895  if (flavor < 0 ||
1896  track->audio.coded_framesize <= 0 ||
1897  track->audio.sub_packet_h <= 0 ||
1898  track->audio.frame_size <= 0 ||
1899  track->audio.sub_packet_size <= 0)
1900  return AVERROR_INVALIDDATA;
1901  track->audio.buf = av_malloc_array(track->audio.sub_packet_h,
1902  track->audio.frame_size);
1903  if (!track->audio.buf)
1904  return AVERROR(ENOMEM);
1905  if (codec_id == AV_CODEC_ID_RA_288) {
1906  st->codec->block_align = track->audio.coded_framesize;
1907  track->codec_priv.size = 0;
1908  } else {
1909  if (codec_id == AV_CODEC_ID_SIPR && flavor < 4) {
1910  static const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
1911  track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
1912  st->codec->bit_rate = sipr_bit_rate[flavor];
1913  }
1914  st->codec->block_align = track->audio.sub_packet_size;
1915  extradata_offset = 78;
1916  }
1917  } else if (codec_id == AV_CODEC_ID_FLAC && track->codec_priv.size) {
1918  ret = matroska_parse_flac(s, track, &extradata_offset);
1919  if (ret < 0)
1920  return ret;
1921  } else if (codec_id == AV_CODEC_ID_PRORES && track->codec_priv.size == 4) {
1922  fourcc = AV_RL32(track->codec_priv.data);
1923  }
1924  track->codec_priv.size -= extradata_offset;
1925 
1926  if (codec_id == AV_CODEC_ID_NONE)
1927  av_log(matroska->ctx, AV_LOG_INFO,
1928  "Unknown/unsupported AVCodecID %s.\n", track->codec_id);
1929 
1930  if (track->time_scale < 0.01)
1931  track->time_scale = 1.0;
1932  avpriv_set_pts_info(st, 64, matroska->time_scale * track->time_scale,
1933  1000 * 1000 * 1000); /* 64 bit pts in ns */
1934 
1935  /* convert the delay from ns to the track timebase */
1936  track->codec_delay = av_rescale_q(track->codec_delay,
1937  (AVRational){ 1, 1000000000 },
1938  st->time_base);
1939 
1940  st->codec->codec_id = codec_id;
1941 
1942  if (strcmp(track->language, "und"))
1943  av_dict_set(&st->metadata, "language", track->language, 0);
1944  av_dict_set(&st->metadata, "title", track->name, 0);
1945 
1946  if (track->flag_default)
1948  if (track->flag_forced)
1950 
1951  if (!st->codec->extradata) {
1952  if (extradata) {
1953  st->codec->extradata = extradata;
1954  st->codec->extradata_size = extradata_size;
1955  } else if (track->codec_priv.data && track->codec_priv.size > 0) {
1956  if (ff_alloc_extradata(st->codec, track->codec_priv.size))
1957  return AVERROR(ENOMEM);
1958  memcpy(st->codec->extradata,
1959  track->codec_priv.data + extradata_offset,
1960  track->codec_priv.size);
1961  }
1962  }
1963 
1964  if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
1965  MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
1966 
1968  st->codec->codec_tag = fourcc;
1969  if (bit_depth >= 0)
1970  st->codec->bits_per_coded_sample = bit_depth;
1971  st->codec->width = track->video.pixel_width;
1972  st->codec->height = track->video.pixel_height;
1974  &st->sample_aspect_ratio.den,
1975  st->codec->height * track->video.display_width,
1976  st->codec->width * track->video.display_height,
1977  255);
1978  if (st->codec->codec_id != AV_CODEC_ID_HEVC)
1980 
1981  if (track->default_duration) {
1983  1000000000, track->default_duration, 30000);
1984 #if FF_API_R_FRAME_RATE
1985  if ( st->avg_frame_rate.num < st->avg_frame_rate.den * 1000LL
1986  && st->avg_frame_rate.num > st->avg_frame_rate.den * 5LL)
1987  st->r_frame_rate = st->avg_frame_rate;
1988 #endif
1989  }
1990 
1991  /* export stereo mode flag as metadata tag */
1992  if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB)
1993  av_dict_set(&st->metadata, "stereo_mode", ff_matroska_video_stereo_mode[track->video.stereo_mode], 0);
1994 
1995  /* export alpha mode flag as metadata tag */
1996  if (track->video.alpha_mode)
1997  av_dict_set(&st->metadata, "alpha_mode", "1", 0);
1998 
1999  /* if we have virtual track, mark the real tracks */
2000  for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
2001  char buf[32];
2002  if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
2003  continue;
2004  snprintf(buf, sizeof(buf), "%s_%d",
2005  ff_matroska_video_stereo_plane[planes[j].type], i);
2006  for (k=0; k < matroska->tracks.nb_elem; k++)
2007  if (planes[j].uid == tracks[k].uid) {
2008  av_dict_set(&s->streams[k]->metadata,
2009  "stereo_mode", buf, 0);
2010  break;
2011  }
2012  }
2013  // add stream level stereo3d side data if it is a supported format
2014  if (track->video.stereo_mode < MATROSKA_VIDEO_STEREOMODE_TYPE_NB &&
2015  track->video.stereo_mode != 10 && track->video.stereo_mode != 12) {
2016  int ret = ff_mkv_stereo3d_conv(st, track->video.stereo_mode);
2017  if (ret < 0)
2018  return ret;
2019  }
2020  } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
2022  st->codec->sample_rate = track->audio.out_samplerate;
2023  st->codec->channels = track->audio.channels;
2024  if (!st->codec->bits_per_coded_sample)
2025  st->codec->bits_per_coded_sample = track->audio.bitdepth;
2026  if (st->codec->codec_id != AV_CODEC_ID_AAC)
2028  if (track->codec_delay > 0) {
2029  st->codec->delay = av_rescale_q(track->codec_delay,
2030  st->time_base,
2031  (AVRational){1, st->codec->sample_rate});
2032  }
2033  if (track->seek_preroll > 0) {
2035  av_rescale_q(track->seek_preroll,
2036  (AVRational){1, 1000000000},
2037  (AVRational){1, st->codec->sample_rate}));
2038  }
2039  } else if (codec_id == AV_CODEC_ID_WEBVTT) {
2040  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
2041 
2042  if (!strcmp(track->codec_id, "D_WEBVTT/CAPTIONS")) {
2043  st->disposition |= AV_DISPOSITION_CAPTIONS;
2044  } else if (!strcmp(track->codec_id, "D_WEBVTT/DESCRIPTIONS")) {
2045  st->disposition |= AV_DISPOSITION_DESCRIPTIONS;
2046  } else if (!strcmp(track->codec_id, "D_WEBVTT/METADATA")) {
2047  st->disposition |= AV_DISPOSITION_METADATA;
2048  }
2049  } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
2050  st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
2051  if (st->codec->codec_id == AV_CODEC_ID_ASS)
2052  matroska->contains_ssa = 1;
2053  }
2054  }
2055 
2056  return 0;
2057 }
2058 
2060 {
2061  MatroskaDemuxContext *matroska = s->priv_data;
2062  EbmlList *attachments_list = &matroska->attachments;
2063  EbmlList *chapters_list = &matroska->chapters;
2064  MatroskaAttachment *attachments;
2065  MatroskaChapter *chapters;
2066  uint64_t max_start = 0;
2067  int64_t pos;
2068  Ebml ebml = { 0 };
2069  int i, j, res;
2070 
2071  matroska->ctx = s;
2072  matroska->cues_parsing_deferred = 1;
2073 
2074  /* First read the EBML header. */
2075  if (ebml_parse(matroska, ebml_syntax, &ebml) ||
2076  ebml.version > EBML_VERSION ||
2077  ebml.max_size > sizeof(uint64_t) ||
2078  ebml.id_length > sizeof(uint32_t) ||
2079  ebml.doctype_version > 3 ||
2080  !ebml.doctype) {
2081  av_log(matroska->ctx, AV_LOG_ERROR,
2082  "EBML header using unsupported features\n"
2083  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2084  ebml.version, ebml.doctype, ebml.doctype_version);
2085  ebml_free(ebml_syntax, &ebml);
2086  return AVERROR_PATCHWELCOME;
2087  } else if (ebml.doctype_version == 3) {
2088  av_log(matroska->ctx, AV_LOG_WARNING,
2089  "EBML header using unsupported features\n"
2090  "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
2091  ebml.version, ebml.doctype, ebml.doctype_version);
2092  }
2093  for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
2094  if (!strcmp(ebml.doctype, matroska_doctypes[i]))
2095  break;
2096  if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
2097  av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
2098  if (matroska->ctx->error_recognition & AV_EF_EXPLODE) {
2099  ebml_free(ebml_syntax, &ebml);
2100  return AVERROR_INVALIDDATA;
2101  }
2102  }
2103  ebml_free(ebml_syntax, &ebml);
2104 
2105  /* The next thing is a segment. */
2106  pos = avio_tell(matroska->ctx->pb);
2107  res = ebml_parse(matroska, matroska_segments, matroska);
2108  // try resyncing until we find a EBML_STOP type element.
2109  while (res != 1) {
2110  res = matroska_resync(matroska, pos);
2111  if (res < 0)
2112  return res;
2113  pos = avio_tell(matroska->ctx->pb);
2114  res = ebml_parse(matroska, matroska_segment, matroska);
2115  }
2116  matroska_execute_seekhead(matroska);
2117 
2118  if (!matroska->time_scale)
2119  matroska->time_scale = 1000000;
2120  if (matroska->duration)
2121  matroska->ctx->duration = matroska->duration * matroska->time_scale *
2122  1000 / AV_TIME_BASE;
2123  av_dict_set(&s->metadata, "title", matroska->title, 0);
2124  av_dict_set(&s->metadata, "encoder", matroska->muxingapp, 0);
2125 
2126  if (matroska->date_utc.size == 8)
2128 
2129  res = matroska_parse_tracks(s);
2130  if (res < 0)
2131  return res;
2132 
2133  attachments = attachments_list->elem;
2134  for (j = 0; j < attachments_list->nb_elem; j++) {
2135  if (!(attachments[j].filename && attachments[j].mime &&
2136  attachments[j].bin.data && attachments[j].bin.size > 0)) {
2137  av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
2138  } else {
2139  AVStream *st = avformat_new_stream(s, NULL);
2140  if (!st)
2141  break;
2142  av_dict_set(&st->metadata, "filename", attachments[j].filename, 0);
2143  av_dict_set(&st->metadata, "mimetype", attachments[j].mime, 0);
2146  if (ff_alloc_extradata(st->codec, attachments[j].bin.size))
2147  break;
2148  memcpy(st->codec->extradata, attachments[j].bin.data,
2149  attachments[j].bin.size);
2150 
2151  for (i = 0; ff_mkv_mime_tags[i].id != AV_CODEC_ID_NONE; i++) {
2152  if (!strncmp(ff_mkv_mime_tags[i].str, attachments[j].mime,
2153  strlen(ff_mkv_mime_tags[i].str))) {
2154  st->codec->codec_id = ff_mkv_mime_tags[i].id;
2155  break;
2156  }
2157  }
2158  attachments[j].stream = st;
2159  }
2160  }
2161 
2162  chapters = chapters_list->elem;
2163  for (i = 0; i < chapters_list->nb_elem; i++)
2164  if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid &&
2165  (max_start == 0 || chapters[i].start > max_start)) {
2166  chapters[i].chapter =
2167  avpriv_new_chapter(s, chapters[i].uid,
2168  (AVRational) { 1, 1000000000 },
2169  chapters[i].start, chapters[i].end,
2170  chapters[i].title);
2171  if (chapters[i].chapter) {
2172  av_dict_set(&chapters[i].chapter->metadata,
2173  "title", chapters[i].title, 0);
2174  }
2175  max_start = chapters[i].start;
2176  }
2177 
2178  matroska_add_index_entries(matroska);
2179 
2181 
2182  return 0;
2183 }
2184 
2185 /*
2186  * Put one packet in an application-supplied AVPacket struct.
2187  * Returns 0 on success or -1 on failure.
2188  */
2190  AVPacket *pkt)
2191 {
2192  if (matroska->num_packets > 0) {
2193  memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
2194  av_freep(&matroska->packets[0]);
2195  if (matroska->num_packets > 1) {
2196  void *newpackets;
2197  memmove(&matroska->packets[0], &matroska->packets[1],
2198  (matroska->num_packets - 1) * sizeof(AVPacket *));
2199  newpackets = av_realloc(matroska->packets,
2200  (matroska->num_packets - 1) *
2201  sizeof(AVPacket *));
2202  if (newpackets)
2203  matroska->packets = newpackets;
2204  } else {
2205  av_freep(&matroska->packets);
2206  matroska->prev_pkt = NULL;
2207  }
2208  matroska->num_packets--;
2209  return 0;
2210  }
2211 
2212  return -1;
2213 }
2214 
2215 /*
2216  * Free all packets in our internal queue.
2217  */
2219 {
2220  matroska->prev_pkt = NULL;
2221  if (matroska->packets) {
2222  int n;
2223  for (n = 0; n < matroska->num_packets; n++) {
2224  av_free_packet(matroska->packets[n]);
2225  av_freep(&matroska->packets[n]);
2226  }
2227  av_freep(&matroska->packets);
2228  matroska->num_packets = 0;
2229  }
2230 }
2231 
2233  int *buf_size, int type,
2234  uint32_t **lace_buf, int *laces)
2235 {
2236  int res = 0, n, size = *buf_size;
2237  uint8_t *data = *buf;
2238  uint32_t *lace_size;
2239 
2240  if (!type) {
2241  *laces = 1;
2242  *lace_buf = av_mallocz(sizeof(int));
2243  if (!*lace_buf)
2244  return AVERROR(ENOMEM);
2245 
2246  *lace_buf[0] = size;
2247  return 0;
2248  }
2249 
2250  av_assert0(size > 0);
2251  *laces = *data + 1;
2252  data += 1;
2253  size -= 1;
2254  lace_size = av_mallocz(*laces * sizeof(int));
2255  if (!lace_size)
2256  return AVERROR(ENOMEM);
2257 
2258  switch (type) {
2259  case 0x1: /* Xiph lacing */
2260  {
2261  uint8_t temp;
2262  uint32_t total = 0;
2263  for (n = 0; res == 0 && n < *laces - 1; n++) {
2264  while (1) {
2265  if (size <= total) {
2266  res = AVERROR_INVALIDDATA;
2267  break;
2268  }
2269  temp = *data;
2270  total += temp;
2271  lace_size[n] += temp;
2272  data += 1;
2273  size -= 1;
2274  if (temp != 0xff)
2275  break;
2276  }
2277  }
2278  if (size <= total) {
2279  res = AVERROR_INVALIDDATA;
2280  break;
2281  }
2282 
2283  lace_size[n] = size - total;
2284  break;
2285  }
2286 
2287  case 0x2: /* fixed-size lacing */
2288  if (size % (*laces)) {
2289  res = AVERROR_INVALIDDATA;
2290  break;
2291  }
2292  for (n = 0; n < *laces; n++)
2293  lace_size[n] = size / *laces;
2294  break;
2295 
2296  case 0x3: /* EBML lacing */
2297  {
2298  uint64_t num;
2299  uint64_t total;
2300  n = matroska_ebmlnum_uint(matroska, data, size, &num);
2301  if (n < 0 || num > INT_MAX) {
2302  av_log(matroska->ctx, AV_LOG_INFO,
2303  "EBML block data error\n");
2304  res = n<0 ? n : AVERROR_INVALIDDATA;
2305  break;
2306  }
2307  data += n;
2308  size -= n;
2309  total = lace_size[0] = num;
2310  for (n = 1; res == 0 && n < *laces - 1; n++) {
2311  int64_t snum;
2312  int r;
2313  r = matroska_ebmlnum_sint(matroska, data, size, &snum);
2314  if (r < 0 || lace_size[n - 1] + snum > (uint64_t)INT_MAX) {
2315  av_log(matroska->ctx, AV_LOG_INFO,
2316  "EBML block data error\n");
2317  res = r<0 ? r : AVERROR_INVALIDDATA;
2318  break;
2319  }
2320  data += r;
2321  size -= r;
2322  lace_size[n] = lace_size[n - 1] + snum;
2323  total += lace_size[n];
2324  }
2325  if (size <= total) {
2326  res = AVERROR_INVALIDDATA;
2327  break;
2328  }
2329  lace_size[*laces - 1] = size - total;
2330  break;
2331  }
2332  }
2333 
2334  *buf = data;
2335  *lace_buf = lace_size;
2336  *buf_size = size;
2337 
2338  return res;
2339 }
2340 
2342  MatroskaTrack *track, AVStream *st,
2343  uint8_t *data, int size, uint64_t timecode,
2344  int64_t pos)
2345 {
2346  int a = st->codec->block_align;
2347  int sps = track->audio.sub_packet_size;
2348  int cfs = track->audio.coded_framesize;
2349  int h = track->audio.sub_packet_h;
2350  int y = track->audio.sub_packet_cnt;
2351  int w = track->audio.frame_size;
2352  int x;
2353 
2354  if (!track->audio.pkt_cnt) {
2355  if (track->audio.sub_packet_cnt == 0)
2356  track->audio.buf_timecode = timecode;
2357  if (st->codec->codec_id == AV_CODEC_ID_RA_288) {
2358  if (size < cfs * h / 2) {
2359  av_log(matroska->ctx, AV_LOG_ERROR,
2360  "Corrupt int4 RM-style audio packet size\n");
2361  return AVERROR_INVALIDDATA;
2362  }
2363  for (x = 0; x < h / 2; x++)
2364  memcpy(track->audio.buf + x * 2 * w + y * cfs,
2365  data + x * cfs, cfs);
2366  } else if (st->codec->codec_id == AV_CODEC_ID_SIPR) {
2367  if (size < w) {
2368  av_log(matroska->ctx, AV_LOG_ERROR,
2369  "Corrupt sipr RM-style audio packet size\n");
2370  return AVERROR_INVALIDDATA;
2371  }
2372  memcpy(track->audio.buf + y * w, data, w);
2373  } else {
2374  if (size < sps * w / sps || h<=0 || w%sps) {
2375  av_log(matroska->ctx, AV_LOG_ERROR,
2376  "Corrupt generic RM-style audio packet size\n");
2377  return AVERROR_INVALIDDATA;
2378  }
2379  for (x = 0; x < w / sps; x++)
2380  memcpy(track->audio.buf +
2381  sps * (h * x + ((h + 1) / 2) * (y & 1) + (y >> 1)),
2382  data + x * sps, sps);
2383  }
2384 
2385  if (++track->audio.sub_packet_cnt >= h) {
2386  if (st->codec->codec_id == AV_CODEC_ID_SIPR)
2387  ff_rm_reorder_sipr_data(track->audio.buf, h, w);
2388  track->audio.sub_packet_cnt = 0;
2389  track->audio.pkt_cnt = h * w / a;
2390  }
2391  }
2392 
2393  while (track->audio.pkt_cnt) {
2394  int ret;
2395  AVPacket *pkt = av_mallocz(sizeof(AVPacket));
2396  if (!pkt)
2397  return AVERROR(ENOMEM);
2398 
2399  ret = av_new_packet(pkt, a);
2400  if (ret < 0) {
2401  av_free(pkt);
2402  return ret;
2403  }
2404  memcpy(pkt->data,
2405  track->audio.buf + a * (h * w / a - track->audio.pkt_cnt--),
2406  a);
2407  pkt->pts = track->audio.buf_timecode;
2409  pkt->pos = pos;
2410  pkt->stream_index = st->index;
2411  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2412  }
2413 
2414  return 0;
2415 }
2416 
2417 /* reconstruct full wavpack blocks from mangled matroska ones */
2419  uint8_t **pdst, int *size)
2420 {
2421  uint8_t *dst = NULL;
2422  int dstlen = 0;
2423  int srclen = *size;
2424  uint32_t samples;
2425  uint16_t ver;
2426  int ret, offset = 0;
2427 
2428  if (srclen < 12 || track->stream->codec->extradata_size < 2)
2429  return AVERROR_INVALIDDATA;
2430 
2431  ver = AV_RL16(track->stream->codec->extradata);
2432 
2433  samples = AV_RL32(src);
2434  src += 4;
2435  srclen -= 4;
2436 
2437  while (srclen >= 8) {
2438  int multiblock;
2439  uint32_t blocksize;
2440  uint8_t *tmp;
2441 
2442  uint32_t flags = AV_RL32(src);
2443  uint32_t crc = AV_RL32(src + 4);
2444  src += 8;
2445  srclen -= 8;
2446 
2447  multiblock = (flags & 0x1800) != 0x1800;
2448  if (multiblock) {
2449  if (srclen < 4) {
2450  ret = AVERROR_INVALIDDATA;
2451  goto fail;
2452  }
2453  blocksize = AV_RL32(src);
2454  src += 4;
2455  srclen -= 4;
2456  } else
2457  blocksize = srclen;
2458 
2459  if (blocksize > srclen) {
2460  ret = AVERROR_INVALIDDATA;
2461  goto fail;
2462  }
2463 
2464  tmp = av_realloc(dst, dstlen + blocksize + 32);
2465  if (!tmp) {
2466  ret = AVERROR(ENOMEM);
2467  goto fail;
2468  }
2469  dst = tmp;
2470  dstlen += blocksize + 32;
2471 
2472  AV_WL32(dst + offset, MKTAG('w', 'v', 'p', 'k')); // tag
2473  AV_WL32(dst + offset + 4, blocksize + 24); // blocksize - 8
2474  AV_WL16(dst + offset + 8, ver); // version
2475  AV_WL16(dst + offset + 10, 0); // track/index_no
2476  AV_WL32(dst + offset + 12, 0); // total samples
2477  AV_WL32(dst + offset + 16, 0); // block index
2478  AV_WL32(dst + offset + 20, samples); // number of samples
2479  AV_WL32(dst + offset + 24, flags); // flags
2480  AV_WL32(dst + offset + 28, crc); // crc
2481  memcpy(dst + offset + 32, src, blocksize); // block data
2482 
2483  src += blocksize;
2484  srclen -= blocksize;
2485  offset += blocksize + 32;
2486  }
2487 
2488  *pdst = dst;
2489  *size = dstlen;
2490 
2491  return 0;
2492 
2493 fail:
2494  av_freep(&dst);
2495  return ret;
2496 }
2497 
2499  MatroskaTrack *track,
2500  AVStream *st,
2501  uint8_t *data, int data_len,
2502  uint64_t timecode,
2503  uint64_t duration,
2504  int64_t pos)
2505 {
2506  AVPacket *pkt;
2507  uint8_t *id, *settings, *text, *buf;
2508  int id_len, settings_len, text_len;
2509  uint8_t *p, *q;
2510  int err;
2511 
2512  if (data_len <= 0)
2513  return AVERROR_INVALIDDATA;
2514 
2515  p = data;
2516  q = data + data_len;
2517 
2518  id = p;
2519  id_len = -1;
2520  while (p < q) {
2521  if (*p == '\r' || *p == '\n') {
2522  id_len = p - id;
2523  if (*p == '\r')
2524  p++;
2525  break;
2526  }
2527  p++;
2528  }
2529 
2530  if (p >= q || *p != '\n')
2531  return AVERROR_INVALIDDATA;
2532  p++;
2533 
2534  settings = p;
2535  settings_len = -1;
2536  while (p < q) {
2537  if (*p == '\r' || *p == '\n') {
2538  settings_len = p - settings;
2539  if (*p == '\r')
2540  p++;
2541  break;
2542  }
2543  p++;
2544  }
2545 
2546  if (p >= q || *p != '\n')
2547  return AVERROR_INVALIDDATA;
2548  p++;
2549 
2550  text = p;
2551  text_len = q - p;
2552  while (text_len > 0) {
2553  const int len = text_len - 1;
2554  const uint8_t c = p[len];
2555  if (c != '\r' && c != '\n')
2556  break;
2557  text_len = len;
2558  }
2559 
2560  if (text_len <= 0)
2561  return AVERROR_INVALIDDATA;
2562 
2563  pkt = av_mallocz(sizeof(*pkt));
2564  if (!pkt)
2565  return AVERROR(ENOMEM);
2566  err = av_new_packet(pkt, text_len);
2567  if (err < 0) {
2568  av_free(pkt);
2569  return AVERROR(err);
2570  }
2571 
2572  memcpy(pkt->data, text, text_len);
2573 
2574  if (id_len > 0) {
2575  buf = av_packet_new_side_data(pkt,
2577  id_len);
2578  if (!buf) {
2579  av_free(pkt);
2580  return AVERROR(ENOMEM);
2581  }
2582  memcpy(buf, id, id_len);
2583  }
2584 
2585  if (settings_len > 0) {
2586  buf = av_packet_new_side_data(pkt,
2588  settings_len);
2589  if (!buf) {
2590  av_free(pkt);
2591  return AVERROR(ENOMEM);
2592  }
2593  memcpy(buf, settings, settings_len);
2594  }
2595 
2596  // Do we need this for subtitles?
2597  // pkt->flags = AV_PKT_FLAG_KEY;
2598 
2599  pkt->stream_index = st->index;
2600  pkt->pts = timecode;
2601 
2602  // Do we need this for subtitles?
2603  // pkt->dts = timecode;
2604 
2605  pkt->duration = duration;
2606  pkt->pos = pos;
2607 
2608  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2609  matroska->prev_pkt = pkt;
2610 
2611  return 0;
2612 }
2613 
2615  MatroskaTrack *track, AVStream *st,
2616  uint8_t *data, int pkt_size,
2617  uint64_t timecode, uint64_t lace_duration,
2618  int64_t pos, int is_keyframe,
2619  uint8_t *additional, uint64_t additional_id, int additional_size,
2620  int64_t discard_padding)
2621 {
2622  MatroskaTrackEncoding *encodings = track->encodings.elem;
2623  uint8_t *pkt_data = data;
2624  int offset = 0, res;
2625  AVPacket *pkt;
2626 
2627  if (encodings && !encodings->type && encodings->scope & 1) {
2628  res = matroska_decode_buffer(&pkt_data, &pkt_size, track);
2629  if (res < 0)
2630  return res;
2631  }
2632 
2633  if (st->codec->codec_id == AV_CODEC_ID_WAVPACK) {
2634  uint8_t *wv_data;
2635  res = matroska_parse_wavpack(track, pkt_data, &wv_data, &pkt_size);
2636  if (res < 0) {
2637  av_log(matroska->ctx, AV_LOG_ERROR,
2638  "Error parsing a wavpack block.\n");
2639  goto fail;
2640  }
2641  if (pkt_data != data)
2642  av_freep(&pkt_data);
2643  pkt_data = wv_data;
2644  }
2645 
2646  if (st->codec->codec_id == AV_CODEC_ID_PRORES &&
2647  AV_RB32(&data[4]) != MKBETAG('i', 'c', 'p', 'f'))
2648  offset = 8;
2649 
2650  pkt = av_mallocz(sizeof(AVPacket));
2651  if (!pkt)
2652  return AVERROR(ENOMEM);
2653  /* XXX: prevent data copy... */
2654  if (av_new_packet(pkt, pkt_size + offset) < 0) {
2655  av_free(pkt);
2656  res = AVERROR(ENOMEM);
2657  goto fail;
2658  }
2659 
2660  if (st->codec->codec_id == AV_CODEC_ID_PRORES && offset == 8) {
2661  uint8_t *buf = pkt->data;
2662  bytestream_put_be32(&buf, pkt_size);
2663  bytestream_put_be32(&buf, MKBETAG('i', 'c', 'p', 'f'));
2664  }
2665 
2666  memcpy(pkt->data + offset, pkt_data, pkt_size);
2667 
2668  if (pkt_data != data)
2669  av_freep(&pkt_data);
2670 
2671  pkt->flags = is_keyframe;
2672  pkt->stream_index = st->index;
2673 
2674  if (additional_size > 0) {
2675  uint8_t *side_data = av_packet_new_side_data(pkt,
2677  additional_size + 8);
2678  if (!side_data) {
2679  av_free_packet(pkt);
2680  av_free(pkt);
2681  return AVERROR(ENOMEM);
2682  }
2683  AV_WB64(side_data, additional_id);
2684  memcpy(side_data + 8, additional, additional_size);
2685  }
2686 
2687  if (discard_padding) {
2688  uint8_t *side_data = av_packet_new_side_data(pkt,
2690  10);
2691  if (!side_data) {
2692  av_free_packet(pkt);
2693  av_free(pkt);
2694  return AVERROR(ENOMEM);
2695  }
2696  AV_WL32(side_data, 0);
2697  AV_WL32(side_data + 4, av_rescale_q(discard_padding,
2698  (AVRational){1, 1000000000},
2699  (AVRational){1, st->codec->sample_rate}));
2700  }
2701 
2702  if (track->ms_compat)
2703  pkt->dts = timecode;
2704  else
2705  pkt->pts = timecode;
2706  pkt->pos = pos;
2707  if (st->codec->codec_id == AV_CODEC_ID_SUBRIP) {
2708  /*
2709  * For backward compatibility.
2710  * Historically, we have put subtitle duration
2711  * in convergence_duration, on the off chance
2712  * that the time_scale is less than 1us, which
2713  * could result in a 32bit overflow on the
2714  * normal duration field.
2715  */
2716  pkt->convergence_duration = lace_duration;
2717  }
2718 
2719  if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE ||
2720  lace_duration <= INT_MAX) {
2721  /*
2722  * For non subtitle tracks, just store the duration
2723  * as normal.
2724  *
2725  * If it's a subtitle track and duration value does
2726  * not overflow a uint32, then also store it normally.
2727  */
2728  pkt->duration = lace_duration;
2729  }
2730 
2731  dynarray_add(&matroska->packets, &matroska->num_packets, pkt);
2732  matroska->prev_pkt = pkt;
2733 
2734  return 0;
2735 
2736 fail:
2737  if (pkt_data != data)
2738  av_freep(&pkt_data);
2739  return res;
2740 }
2741 
2743  int size, int64_t pos, uint64_t cluster_time,
2744  uint64_t block_duration, int is_keyframe,
2745  uint8_t *additional, uint64_t additional_id, int additional_size,
2746  int64_t cluster_pos, int64_t discard_padding)
2747 {
2748  uint64_t timecode = AV_NOPTS_VALUE;
2749  MatroskaTrack *track;
2750  int res = 0;
2751  AVStream *st;
2752  int16_t block_time;
2753  uint32_t *lace_size = NULL;
2754  int n, flags, laces = 0;
2755  uint64_t num;
2756  int trust_default_duration = 1;
2757 
2758  if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
2759  av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
2760  return n;
2761  }
2762  data += n;
2763  size -= n;
2764 
2765  track = matroska_find_track_by_num(matroska, num);
2766  if (!track || !track->stream) {
2767  av_log(matroska->ctx, AV_LOG_INFO,
2768  "Invalid stream %"PRIu64" or size %u\n", num, size);
2769  return AVERROR_INVALIDDATA;
2770  } else if (size <= 3)
2771  return 0;
2772  st = track->stream;
2773  if (st->discard >= AVDISCARD_ALL)
2774  return res;
2775  av_assert1(block_duration != AV_NOPTS_VALUE);
2776 
2777  block_time = sign_extend(AV_RB16(data), 16);
2778  data += 2;
2779  flags = *data++;
2780  size -= 3;
2781  if (is_keyframe == -1)
2782  is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
2783 
2784  if (cluster_time != (uint64_t) -1 &&
2785  (block_time >= 0 || cluster_time >= -block_time)) {
2786  timecode = cluster_time + block_time - track->codec_delay;
2787  if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE &&
2788  timecode < track->end_timecode)
2789  is_keyframe = 0; /* overlapping subtitles are not key frame */
2790  if (is_keyframe)
2791  av_add_index_entry(st, cluster_pos, timecode, 0, 0,
2793  }
2794 
2795  if (matroska->skip_to_keyframe &&
2796  track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
2797  if (timecode < matroska->skip_to_timecode)
2798  return res;
2799  if (is_keyframe)
2800  matroska->skip_to_keyframe = 0;
2801  else if (!st->skip_to_keyframe) {
2802  av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
2803  matroska->skip_to_keyframe = 0;
2804  }
2805  }
2806 
2807  res = matroska_parse_laces(matroska, &data, &size, (flags & 0x06) >> 1,
2808  &lace_size, &laces);
2809 
2810  if (res)
2811  goto end;
2812 
2813  if (track->audio.samplerate == 8000) {
2814  // If this is needed for more codecs, then add them here
2815  if (st->codec->codec_id == AV_CODEC_ID_AC3) {
2816  if (track->audio.samplerate != st->codec->sample_rate || !st->codec->frame_size)
2817  trust_default_duration = 0;
2818  }
2819  }
2820 
2821  if (!block_duration && trust_default_duration)
2822  block_duration = track->default_duration * laces / matroska->time_scale;
2823 
2824  if (cluster_time != (uint64_t)-1 && (block_time >= 0 || cluster_time >= -block_time))
2825  track->end_timecode =
2826  FFMAX(track->end_timecode, timecode + block_duration);
2827 
2828  for (n = 0; n < laces; n++) {
2829  int64_t lace_duration = block_duration*(n+1) / laces - block_duration*n / laces;
2830 
2831  if (lace_size[n] > size) {
2832  av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
2833  break;
2834  }
2835 
2836  if ((st->codec->codec_id == AV_CODEC_ID_RA_288 ||
2837  st->codec->codec_id == AV_CODEC_ID_COOK ||
2838  st->codec->codec_id == AV_CODEC_ID_SIPR ||
2839  st->codec->codec_id == AV_CODEC_ID_ATRAC3) &&
2840  st->codec->block_align && track->audio.sub_packet_size) {
2841  res = matroska_parse_rm_audio(matroska, track, st, data,
2842  lace_size[n],
2843  timecode, pos);
2844  if (res)
2845  goto end;
2846 
2847  } else if (st->codec->codec_id == AV_CODEC_ID_WEBVTT) {
2848  res = matroska_parse_webvtt(matroska, track, st,
2849  data, lace_size[n],
2850  timecode, lace_duration,
2851  pos);
2852  if (res)
2853  goto end;
2854  } else {
2855  res = matroska_parse_frame(matroska, track, st, data, lace_size[n],
2856  timecode, lace_duration, pos,
2857  !n ? is_keyframe : 0,
2858  additional, additional_id, additional_size,
2859  discard_padding);
2860  if (res)
2861  goto end;
2862  }
2863 
2864  if (timecode != AV_NOPTS_VALUE)
2865  timecode = lace_duration ? timecode + lace_duration : AV_NOPTS_VALUE;
2866  data += lace_size[n];
2867  size -= lace_size[n];
2868  }
2869 
2870 end:
2871  av_free(lace_size);
2872  return res;
2873 }
2874 
2876 {
2877  EbmlList *blocks_list;
2878  MatroskaBlock *blocks;
2879  int i, res;
2880  res = ebml_parse(matroska,
2881  matroska_cluster_incremental_parsing,
2882  &matroska->current_cluster);
2883  if (res == 1) {
2884  /* New Cluster */
2885  if (matroska->current_cluster_pos)
2886  ebml_level_end(matroska);
2887  ebml_free(matroska_cluster, &matroska->current_cluster);
2888  memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
2889  matroska->current_cluster_num_blocks = 0;
2890  matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
2891  matroska->prev_pkt = NULL;
2892  /* sizeof the ID which was already read */
2893  if (matroska->current_id)
2894  matroska->current_cluster_pos -= 4;
2895  res = ebml_parse(matroska,
2896  matroska_clusters_incremental,
2897  &matroska->current_cluster);
2898  /* Try parsing the block again. */
2899  if (res == 1)
2900  res = ebml_parse(matroska,
2901  matroska_cluster_incremental_parsing,
2902  &matroska->current_cluster);
2903  }
2904 
2905  if (!res &&
2906  matroska->current_cluster_num_blocks <
2907  matroska->current_cluster.blocks.nb_elem) {
2908  blocks_list = &matroska->current_cluster.blocks;
2909  blocks = blocks_list->elem;
2910 
2911  matroska->current_cluster_num_blocks = blocks_list->nb_elem;
2912  i = blocks_list->nb_elem - 1;
2913  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2914  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2915  uint8_t* additional = blocks[i].additional.size > 0 ?
2916  blocks[i].additional.data : NULL;
2917  if (!blocks[i].non_simple)
2918  blocks[i].duration = 0;
2919  res = matroska_parse_block(matroska, blocks[i].bin.data,
2920  blocks[i].bin.size, blocks[i].bin.pos,
2921  matroska->current_cluster.timecode,
2922  blocks[i].duration, is_keyframe,
2923  additional, blocks[i].additional_id,
2924  blocks[i].additional.size,
2925  matroska->current_cluster_pos,
2926  blocks[i].discard_padding);
2927  }
2928  }
2929 
2930  return res;
2931 }
2932 
2934 {
2935  MatroskaCluster cluster = { 0 };
2936  EbmlList *blocks_list;
2937  MatroskaBlock *blocks;
2938  int i, res;
2939  int64_t pos;
2940 
2941  if (!matroska->contains_ssa)
2942  return matroska_parse_cluster_incremental(matroska);
2943  pos = avio_tell(matroska->ctx->pb);
2944  matroska->prev_pkt = NULL;
2945  if (matroska->current_id)
2946  pos -= 4; /* sizeof the ID which was already read */
2947  res = ebml_parse(matroska, matroska_clusters, &cluster);
2948  blocks_list = &cluster.blocks;
2949  blocks = blocks_list->elem;
2950  for (i = 0; i < blocks_list->nb_elem; i++)
2951  if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
2952  int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
2953  res = matroska_parse_block(matroska, blocks[i].bin.data,
2954  blocks[i].bin.size, blocks[i].bin.pos,
2955  cluster.timecode, blocks[i].duration,
2956  is_keyframe, NULL, 0, 0, pos,
2957  blocks[i].discard_padding);
2958  }
2959  ebml_free(matroska_cluster, &cluster);
2960  return res;
2961 }
2962 
2964 {
2965  MatroskaDemuxContext *matroska = s->priv_data;
2966 
2967  while (matroska_deliver_packet(matroska, pkt)) {
2968  int64_t pos = avio_tell(matroska->ctx->pb);
2969  if (matroska->done)
2970  return AVERROR_EOF;
2971  if (matroska_parse_cluster(matroska) < 0)
2972  matroska_resync(matroska, pos);
2973  }
2974 
2975  return 0;
2976 }
2977 
2978 static int matroska_read_seek(AVFormatContext *s, int stream_index,
2979  int64_t timestamp, int flags)
2980 {
2981  MatroskaDemuxContext *matroska = s->priv_data;
2982  MatroskaTrack *tracks = NULL;
2983  AVStream *st = s->streams[stream_index];
2984  int i, index, index_sub, index_min;
2985 
2986  /* Parse the CUES now since we need the index data to seek. */
2987  if (matroska->cues_parsing_deferred > 0) {
2988  matroska->cues_parsing_deferred = 0;
2989  matroska_parse_cues(matroska);
2990  }
2991 
2992  if (!st->nb_index_entries)
2993  goto err;
2994  timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
2995 
2996  if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
2997  avio_seek(s->pb, st->index_entries[st->nb_index_entries - 1].pos,
2998  SEEK_SET);
2999  matroska->current_id = 0;
3000  while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0 || index == st->nb_index_entries - 1) {
3001  matroska_clear_queue(matroska);
3002  if (matroska_parse_cluster(matroska) < 0)
3003  break;
3004  }
3005  }
3006 
3007  matroska_clear_queue(matroska);
3008  if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
3009  goto err;
3010 
3011  index_min = index;
3012  tracks = matroska->tracks.elem;
3013  for (i = 0; i < matroska->tracks.nb_elem; i++) {
3014  tracks[i].audio.pkt_cnt = 0;
3015  tracks[i].audio.sub_packet_cnt = 0;
3016  tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
3017  tracks[i].end_timecode = 0;
3018  if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE &&
3019  tracks[i].stream->discard != AVDISCARD_ALL) {
3020  index_sub = av_index_search_timestamp(
3021  tracks[i].stream, st->index_entries[index].timestamp,
3023  while (index_sub >= 0 &&
3024  index_min > 0 &&
3025  tracks[i].stream->index_entries[index_sub].pos < st->index_entries[index_min].pos &&
3026  st->index_entries[index].timestamp - tracks[i].stream->index_entries[index_sub].timestamp < 30000000000 / matroska->time_scale)
3027  index_min--;
3028  }
3029  }
3030 
3031  avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
3032  matroska->current_id = 0;
3033  if (flags & AVSEEK_FLAG_ANY) {
3034  st->skip_to_keyframe = 0;
3035  matroska->skip_to_timecode = timestamp;
3036  } else {
3037  st->skip_to_keyframe = 1;
3038  matroska->skip_to_timecode = st->index_entries[index].timestamp;
3039  }
3040  matroska->skip_to_keyframe = 1;
3041  matroska->done = 0;
3042  matroska->num_levels = 0;
3043  ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
3044  return 0;
3045 err:
3046  // slightly hackish but allows proper fallback to
3047  // the generic seeking code.
3048  matroska_clear_queue(matroska);
3049  matroska->current_id = 0;
3050  st->skip_to_keyframe =
3051  matroska->skip_to_keyframe = 0;
3052  matroska->done = 0;
3053  matroska->num_levels = 0;
3054  return -1;
3055 }
3056 
3058 {
3059  MatroskaDemuxContext *matroska = s->priv_data;
3060  MatroskaTrack *tracks = matroska->tracks.elem;
3061  int n;
3062 
3063  matroska_clear_queue(matroska);
3064 
3065  for (n = 0; n < matroska->tracks.nb_elem; n++)
3066  if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
3067  av_freep(&tracks[n].audio.buf);
3068  ebml_free(matroska_cluster, &matroska->current_cluster);
3069  ebml_free(matroska_segment, matroska);
3070 
3071  return 0;
3072 }
3073 
3074 typedef struct {
3075  int64_t start_time_ns;
3076  int64_t end_time_ns;
3077  int64_t start_offset;
3078  int64_t end_offset;
3079 } CueDesc;
3080 
3081 /* This function searches all the Cues and returns the CueDesc corresponding the
3082  * the timestamp ts. Returned CueDesc will be such that start_time_ns <= ts <
3083  * end_time_ns. All 4 fields will be set to -1 if ts >= file's duration.
3084  */
3085 static CueDesc get_cue_desc(AVFormatContext *s, int64_t ts, int64_t cues_start) {
3086  MatroskaDemuxContext *matroska = s->priv_data;
3087  CueDesc cue_desc;
3088  int i;
3089  int nb_index_entries = s->streams[0]->nb_index_entries;
3090  AVIndexEntry *index_entries = s->streams[0]->index_entries;
3091  if (ts >= matroska->duration * matroska->time_scale) return (CueDesc) {-1, -1, -1, -1};
3092  for (i = 1; i < nb_index_entries; i++) {
3093  if (index_entries[i - 1].timestamp * matroska->time_scale <= ts &&
3094  index_entries[i].timestamp * matroska->time_scale > ts) {
3095  break;
3096  }
3097  }
3098  --i;
3099  cue_desc.start_time_ns = index_entries[i].timestamp * matroska->time_scale;
3100  cue_desc.start_offset = index_entries[i].pos - matroska->segment_start;
3101  if (i != nb_index_entries - 1) {
3102  cue_desc.end_time_ns = index_entries[i + 1].timestamp * matroska->time_scale;
3103  cue_desc.end_offset = index_entries[i + 1].pos - matroska->segment_start;
3104  } else {
3105  cue_desc.end_time_ns = matroska->duration * matroska->time_scale;
3106  // FIXME: this needs special handling for files where Cues appear
3107  // before Clusters. the current logic assumes Cues appear after
3108  // Clusters.
3109  cue_desc.end_offset = cues_start - matroska->segment_start;
3110  }
3111  return cue_desc;
3112 }
3113 
3115 {
3116  MatroskaDemuxContext *matroska = s->priv_data;
3117  int64_t cluster_pos, before_pos;
3118  int index, rv = 1;
3119  if (s->streams[0]->nb_index_entries <= 0) return 0;
3120  // seek to the first cluster using cues.
3121  index = av_index_search_timestamp(s->streams[0], 0, 0);
3122  if (index < 0) return 0;
3123  cluster_pos = s->streams[0]->index_entries[index].pos;
3124  before_pos = avio_tell(s->pb);
3125  while (1) {
3126  int64_t cluster_id = 0, cluster_length = 0;
3127  AVPacket *pkt;
3128  avio_seek(s->pb, cluster_pos, SEEK_SET);
3129  // read cluster id and length
3130  ebml_read_num(matroska, matroska->ctx->pb, 4, &cluster_id);
3131  ebml_read_length(matroska, matroska->ctx->pb, &cluster_length);
3132  if (cluster_id != 0xF43B675) { // done with all clusters
3133  break;
3134  }
3135  avio_seek(s->pb, cluster_pos, SEEK_SET);
3136  matroska->current_id = 0;
3137  matroska_clear_queue(matroska);
3138  if (matroska_parse_cluster(matroska) < 0 ||
3139  matroska->num_packets <= 0) {
3140  break;
3141  }
3142  pkt = matroska->packets[0];
3143  cluster_pos += cluster_length + 12; // 12 is the offset of the cluster id and length.
3144  if (!(pkt->flags & AV_PKT_FLAG_KEY)) {
3145  rv = 0;
3146  break;
3147  }
3148  }
3149  avio_seek(s->pb, before_pos, SEEK_SET);
3150  return rv;
3151 }
3152 
3153 static int buffer_size_after_time_downloaded(int64_t time_ns, double search_sec, int64_t bps,
3154  double min_buffer, double* buffer,
3155  double* sec_to_download, AVFormatContext *s,
3156  int64_t cues_start)
3157 {
3158  double nano_seconds_per_second = 1000000000.0;
3159  double time_sec = time_ns / nano_seconds_per_second;
3160  int rv = 0;
3161  int64_t time_to_search_ns = (int64_t)(search_sec * nano_seconds_per_second);
3162  int64_t end_time_ns = time_ns + time_to_search_ns;
3163  double sec_downloaded = 0.0;
3164  CueDesc desc_curr = get_cue_desc(s, time_ns, cues_start);
3165  if (desc_curr.start_time_ns == -1)
3166  return -1;
3167  *sec_to_download = 0.0;
3168 
3169  // Check for non cue start time.
3170  if (time_ns > desc_curr.start_time_ns) {
3171  int64_t cue_nano = desc_curr.end_time_ns - time_ns;
3172  double percent = (double)(cue_nano) / (desc_curr.end_time_ns - desc_curr.start_time_ns);
3173  double cueBytes = (desc_curr.end_offset - desc_curr.start_offset) * percent;
3174  double timeToDownload = (cueBytes * 8.0) / bps;
3175 
3176  sec_downloaded += (cue_nano / nano_seconds_per_second) - timeToDownload;
3177  *sec_to_download += timeToDownload;
3178 
3179  // Check if the search ends within the first cue.
3180  if (desc_curr.end_time_ns >= end_time_ns) {
3181  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3182  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3183  sec_downloaded = percent_to_sub * sec_downloaded;
3184  *sec_to_download = percent_to_sub * *sec_to_download;
3185  }
3186 
3187  if ((sec_downloaded + *buffer) <= min_buffer) {
3188  return 1;
3189  }
3190 
3191  // Get the next Cue.
3192  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3193  }
3194 
3195  while (desc_curr.start_time_ns != -1) {
3196  int64_t desc_bytes = desc_curr.end_offset - desc_curr.start_offset;
3197  int64_t desc_ns = desc_curr.end_time_ns - desc_curr.start_time_ns;
3198  double desc_sec = desc_ns / nano_seconds_per_second;
3199  double bits = (desc_bytes * 8.0);
3200  double time_to_download = bits / bps;
3201 
3202  sec_downloaded += desc_sec - time_to_download;
3203  *sec_to_download += time_to_download;
3204 
3205  if (desc_curr.end_time_ns >= end_time_ns) {
3206  double desc_end_time_sec = desc_curr.end_time_ns / nano_seconds_per_second;
3207  double percent_to_sub = search_sec / (desc_end_time_sec - time_sec);
3208  sec_downloaded = percent_to_sub * sec_downloaded;
3209  *sec_to_download = percent_to_sub * *sec_to_download;
3210 
3211  if ((sec_downloaded + *buffer) <= min_buffer)
3212  rv = 1;
3213  break;
3214  }
3215 
3216  if ((sec_downloaded + *buffer) <= min_buffer) {
3217  rv = 1;
3218  break;
3219  }
3220 
3221  desc_curr = get_cue_desc(s, desc_curr.end_time_ns, cues_start);
3222  }
3223  *buffer = *buffer + sec_downloaded;
3224  return rv;
3225 }
3226 
3227 /* This function computes the bandwidth of the WebM file with the help of
3228  * buffer_size_after_time_downloaded() function. Both of these functions are
3229  * adapted from WebM Tools project and are adapted to work with FFmpeg's
3230  * Matroska parsing mechanism.
3231  *
3232  * Returns the bandwidth of the file on success; -1 on error.
3233  * */
3234 static int64_t webm_dash_manifest_compute_bandwidth(AVFormatContext *s, int64_t cues_start)
3235 {
3236  MatroskaDemuxContext *matroska = s->priv_data;
3237  AVStream *st = s->streams[0];
3238  double bandwidth = 0.0;
3239  int i;
3240 
3241  for (i = 0; i < st->nb_index_entries; i++) {
3242  int64_t prebuffer_ns = 1000000000;
3243  int64_t time_ns = st->index_entries[i].timestamp * matroska->time_scale;
3244  double nano_seconds_per_second = 1000000000.0;
3245  int64_t prebuffered_ns = time_ns + prebuffer_ns;
3246  double prebuffer_bytes = 0.0;
3247  int64_t temp_prebuffer_ns = prebuffer_ns;
3248  int64_t pre_bytes, pre_ns;
3249  double pre_sec, prebuffer, bits_per_second;
3250  CueDesc desc_beg = get_cue_desc(s, time_ns, cues_start);
3251 
3252  // Start with the first Cue.
3253  CueDesc desc_end = desc_beg;
3254 
3255  // Figure out how much data we have downloaded for the prebuffer. This will
3256  // be used later to adjust the bits per sample to try.
3257  while (desc_end.start_time_ns != -1 && desc_end.end_time_ns < prebuffered_ns) {
3258  // Prebuffered the entire Cue.
3259  prebuffer_bytes += desc_end.end_offset - desc_end.start_offset;
3260  temp_prebuffer_ns -= desc_end.end_time_ns - desc_end.start_time_ns;
3261  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3262  }
3263  if (desc_end.start_time_ns == -1) {
3264  // The prebuffer is larger than the duration.
3265  if (matroska->duration * matroska->time_scale >= prebuffered_ns)
3266  return -1;
3267  bits_per_second = 0.0;
3268  } else {
3269  // The prebuffer ends in the last Cue. Estimate how much data was
3270  // prebuffered.
3271  pre_bytes = desc_end.end_offset - desc_end.start_offset;
3272  pre_ns = desc_end.end_time_ns - desc_end.start_time_ns;
3273  pre_sec = pre_ns / nano_seconds_per_second;
3274  prebuffer_bytes +=
3275  pre_bytes * ((temp_prebuffer_ns / nano_seconds_per_second) / pre_sec);
3276 
3277  prebuffer = prebuffer_ns / nano_seconds_per_second;
3278 
3279  // Set this to 0.0 in case our prebuffer buffers the entire video.
3280  bits_per_second = 0.0;
3281  do {
3282  int64_t desc_bytes = desc_end.end_offset - desc_beg.start_offset;
3283  int64_t desc_ns = desc_end.end_time_ns - desc_beg.start_time_ns;
3284  double desc_sec = desc_ns / nano_seconds_per_second;
3285  double calc_bits_per_second = (desc_bytes * 8) / desc_sec;
3286 
3287  // Drop the bps by the percentage of bytes buffered.
3288  double percent = (desc_bytes - prebuffer_bytes) / desc_bytes;
3289  double mod_bits_per_second = calc_bits_per_second * percent;
3290 
3291  if (prebuffer < desc_sec) {
3292  double search_sec =
3293  (double)(matroska->duration * matroska->time_scale) / nano_seconds_per_second;
3294 
3295  // Add 1 so the bits per second should be a little bit greater than file
3296  // datarate.
3297  int64_t bps = (int64_t)(mod_bits_per_second) + 1;
3298  const double min_buffer = 0.0;
3299  double buffer = prebuffer;
3300  double sec_to_download = 0.0;
3301 
3302  int rv = buffer_size_after_time_downloaded(prebuffered_ns, search_sec, bps,
3303  min_buffer, &buffer, &sec_to_download,
3304  s, cues_start);
3305  if (rv < 0) {
3306  return -1;
3307  } else if (rv == 0) {
3308  bits_per_second = (double)(bps);
3309  break;
3310  }
3311  }
3312 
3313  desc_end = get_cue_desc(s, desc_end.end_time_ns, cues_start);
3314  } while (desc_end.start_time_ns != -1);
3315  }
3316  if (bandwidth < bits_per_second) bandwidth = bits_per_second;
3317  }
3318  return (int64_t)bandwidth;
3319 }
3320 
3322 {
3323  MatroskaDemuxContext *matroska = s->priv_data;
3324  EbmlList *seekhead_list = &matroska->seekhead;
3325  MatroskaSeekhead *seekhead = seekhead_list->elem;
3326  char *buf;
3327  int64_t cues_start = -1, cues_end = -1, before_pos, bandwidth;
3328  int i;
3329 
3330  // determine cues start and end positions
3331  for (i = 0; i < seekhead_list->nb_elem; i++)
3332  if (seekhead[i].id == MATROSKA_ID_CUES)
3333  break;
3334 
3335  if (i >= seekhead_list->nb_elem) return -1;
3336 
3337  before_pos = avio_tell(matroska->ctx->pb);
3338  cues_start = seekhead[i].pos + matroska->segment_start;
3339  if (avio_seek(matroska->ctx->pb, cues_start, SEEK_SET) == cues_start) {
3340  // cues_end is computed as cues_start + cues_length + length of the
3341  // Cues element ID + EBML length of the Cues element. cues_end is
3342  // inclusive and the above sum is reduced by 1.
3343  uint64_t cues_length = 0, cues_id = 0, bytes_read = 0;
3344  bytes_read += ebml_read_num(matroska, matroska->ctx->pb, 4, &cues_id);
3345  bytes_read += ebml_read_length(matroska, matroska->ctx->pb, &cues_length);
3346  cues_end = cues_start + cues_length + bytes_read - 1;
3347  }
3348  avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
3349  if (cues_start == -1 || cues_end == -1) return -1;
3350 
3351  // parse the cues
3352  matroska_parse_cues(matroska);
3353 
3354  // cues start
3355  av_dict_set_int(&s->streams[0]->metadata, CUES_START, cues_start, 0);
3356 
3357  // cues end
3358  av_dict_set_int(&s->streams[0]->metadata, CUES_END, cues_end, 0);
3359 
3360  // bandwidth
3361  bandwidth = webm_dash_manifest_compute_bandwidth(s, cues_start);
3362  if (bandwidth < 0) return -1;
3363  av_dict_set_int(&s->streams[0]->metadata, BANDWIDTH, bandwidth, 0);
3364 
3365  // check if all clusters start with key frames
3367 
3368  // store cue point timestamps as a comma separated list for checking subsegment alignment in
3369  // the muxer. assumes that each timestamp cannot be more than 20 characters long.
3370  buf = av_malloc_array(s->streams[0]->nb_index_entries, 20 * sizeof(char));
3371  if (!buf) return -1;
3372  strcpy(buf, "");
3373  for (i = 0; i < s->streams[0]->nb_index_entries; i++) {
3374  snprintf(buf, (i + 1) * 20 * sizeof(char),
3375  "%s%" PRId64, buf, s->streams[0]->index_entries[i].timestamp);
3376  if (i != s->streams[0]->nb_index_entries - 1)
3377  strncat(buf, ",", sizeof(char));
3378  }
3379  av_dict_set(&s->streams[0]->metadata, CUE_TIMESTAMPS, buf, 0);
3380  av_free(buf);
3381 
3382  return 0;
3383 }
3384 
3386 {
3387  char *buf;
3388  int ret = matroska_read_header(s);
3389  MatroskaTrack *tracks;
3390  MatroskaDemuxContext *matroska = s->priv_data;
3391  if (ret) {
3392  av_log(s, AV_LOG_ERROR, "Failed to read file headers\n");
3393  return -1;
3394  }
3395 
3396  // initialization range
3397  // 5 is the offset of Cluster ID.
3399 
3400  // basename of the file
3401  buf = strrchr(s->filename, '/');
3402  av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->filename, 0);
3403 
3404  // duration
3405  buf = av_asprintf("%g", matroska->duration);
3406  if (!buf) return AVERROR(ENOMEM);
3407  av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0);
3408  av_free(buf);
3409 
3410  // track number
3411  tracks = matroska->tracks.elem;
3412  av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0);
3413 
3414  // parse the cues and populate Cue related fields
3415  return webm_dash_manifest_cues(s);
3416 }
3417 
3419 {
3420  return AVERROR_EOF;
3421 }
3422 
3424  .name = "matroska,webm",
3425  .long_name = NULL_IF_CONFIG_SMALL("Matroska / WebM"),
3426  .extensions = "mkv,mk3d,mka,mks",
3427  .priv_data_size = sizeof(MatroskaDemuxContext),
3433  .mime_type = "audio/webm,audio/x-matroska,video/webm,video/x-matroska"
3434 };
3435 
3437  .name = "webm_dash_manifest",
3438  .long_name = NULL_IF_CONFIG_SMALL("WebM DASH Manifest"),
3439  .priv_data_size = sizeof(MatroskaDemuxContext),
3443 };