FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevc_mvs.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Anand Meher Kotra
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "hevc.h"
25 
26 static const uint8_t l0_l1_cand_idx[12][2] = {
27  { 0, 1, },
28  { 1, 0, },
29  { 0, 2, },
30  { 2, 0, },
31  { 1, 2, },
32  { 2, 1, },
33  { 0, 3, },
34  { 3, 0, },
35  { 1, 3, },
36  { 3, 1, },
37  { 2, 3, },
38  { 3, 2, },
39 };
40 
42  int nPbW, int nPbH)
43 {
44  HEVCLocalContext *lc = s->HEVClc;
45  int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
46  int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
47 
48  lc->na.cand_up = (lc->ctb_up_flag || y0b);
49  lc->na.cand_left = (lc->ctb_left_flag || x0b);
50  lc->na.cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up;
51  lc->na.cand_up_right_sap =
52  ((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ?
53  lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
54  lc->na.cand_up_right =
56  && (x0 + nPbW) < lc->end_of_tiles_x;
57  lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
58 }
59 
60 /*
61  * 6.4.1 Derivation process for z-scan order block availability
62  */
63 static av_always_inline int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
64  int xN, int yN)
65 {
66 #define MIN_TB_ADDR_ZS(x, y) \
67  s->pps->min_tb_addr_zs[(y) * (s->sps->tb_mask+2) + (x)]
68 
69  int xCurr_ctb = xCurr >> s->sps->log2_ctb_size;
70  int yCurr_ctb = yCurr >> s->sps->log2_ctb_size;
71  int xN_ctb = xN >> s->sps->log2_ctb_size;
72  int yN_ctb = yN >> s->sps->log2_ctb_size;
73  if( yN_ctb < yCurr_ctb || xN_ctb < xCurr_ctb )
74  return 1;
75  else {
76  int Curr = MIN_TB_ADDR_ZS((xCurr >> s->sps->log2_min_tb_size) & s->sps->tb_mask,
77  (yCurr >> s->sps->log2_min_tb_size) & s->sps->tb_mask);
78  int N = MIN_TB_ADDR_ZS((xN >> s->sps->log2_min_tb_size) & s->sps->tb_mask,
79  (yN >> s->sps->log2_min_tb_size) & s->sps->tb_mask);
80  return N <= Curr;
81  }
82 }
83 
84 //check if the two luma locations belong to the same mostion estimation region
85 static av_always_inline int is_diff_mer(HEVCContext *s, int xN, int yN, int xP, int yP)
86 {
88 
89  return xN >> plevel == xP >> plevel &&
90  yN >> plevel == yP >> plevel;
91 }
92 
93 #define MATCH_MV(x) (AV_RN32A(&A.x) == AV_RN32A(&B.x))
94 #define MATCH(x) (A.x == B.x)
95 
96 // check if the mv's and refidx are the same between A and B
98 {
99  int a_pf = A.pred_flag;
100  int b_pf = B.pred_flag;
101  if (a_pf == b_pf) {
102  if (a_pf == PF_BI) {
103  return MATCH(ref_idx[0]) && MATCH_MV(mv[0]) &&
104  MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
105  } else if (a_pf == PF_L0) {
106  return MATCH(ref_idx[0]) && MATCH_MV(mv[0]);
107  } else if (a_pf == PF_L1) {
108  return MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
109  }
110  }
111  return 0;
112 }
113 
114 static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb)
115 {
116  int tx, scale_factor;
117 
118  td = av_clip_int8(td);
119  tb = av_clip_int8(tb);
120  tx = (0x4000 + abs(td / 2)) / td;
121  scale_factor = av_clip((tb * tx + 32) >> 6, -4096, 4095);
122  dst->x = av_clip_int16((scale_factor * src->x + 127 +
123  (scale_factor * src->x < 0)) >> 8);
124  dst->y = av_clip_int16((scale_factor * src->y + 127 +
125  (scale_factor * src->y < 0)) >> 8);
126 }
127 
128 static int check_mvset(Mv *mvLXCol, Mv *mvCol,
129  int colPic, int poc,
130  RefPicList *refPicList, int X, int refIdxLx,
131  RefPicList *refPicList_col, int listCol, int refidxCol)
132 {
133  int cur_lt = refPicList[X].isLongTerm[refIdxLx];
134  int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
135  int col_poc_diff, cur_poc_diff;
136 
137  if (cur_lt != col_lt) {
138  mvLXCol->x = 0;
139  mvLXCol->y = 0;
140  return 0;
141  }
142 
143  col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
144  cur_poc_diff = poc - refPicList[X].list[refIdxLx];
145 
146  if (cur_lt || col_poc_diff == cur_poc_diff || !col_poc_diff) {
147  mvLXCol->x = mvCol->x;
148  mvLXCol->y = mvCol->y;
149  } else {
150  mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
151  }
152  return 1;
153 }
154 
155 #define CHECK_MVSET(l) \
156  check_mvset(mvLXCol, temp_col.mv + l, \
157  colPic, s->poc, \
158  refPicList, X, refIdxLx, \
159  refPicList_col, L ## l, temp_col.ref_idx[l])
160 
161 // derive the motion vectors section 8.5.3.1.8
163  int refIdxLx, Mv *mvLXCol, int X,
164  int colPic, RefPicList *refPicList_col)
165 {
166  RefPicList *refPicList = s->ref->refPicList;
167 
168  if (temp_col.pred_flag == PF_INTRA)
169  return 0;
170 
171  if (!(temp_col.pred_flag & PF_L0))
172  return CHECK_MVSET(1);
173  else if (temp_col.pred_flag == PF_L0)
174  return CHECK_MVSET(0);
175  else if (temp_col.pred_flag == PF_BI) {
176  int check_diffpicount = 0;
177  int i, j;
178  for (j = 0; j < 2; j++) {
179  for (i = 0; i < refPicList[j].nb_refs; i++) {
180  if (refPicList[j].list[i] > s->poc) {
181  check_diffpicount++;
182  break;
183  }
184  }
185  }
186  if (!check_diffpicount) {
187  if (X==0)
188  return CHECK_MVSET(0);
189  else
190  return CHECK_MVSET(1);
191  } else {
192  if (s->sh.collocated_list == L1)
193  return CHECK_MVSET(0);
194  else
195  return CHECK_MVSET(1);
196  }
197  }
198 
199  return 0;
200 }
201 
202 #define TAB_MVF(x, y) \
203  tab_mvf[(y) * min_pu_width + x]
204 
205 #define TAB_MVF_PU(v) \
206  TAB_MVF(((x ## v) >> s->sps->log2_min_pu_size), \
207  ((y ## v) >> s->sps->log2_min_pu_size))
208 
209 #define DERIVE_TEMPORAL_COLOCATED_MVS \
210  derive_temporal_colocated_mvs(s, temp_col, \
211  refIdxLx, mvLXCol, X, colPic, \
212  ff_hevc_get_ref_list(s, ref, x, y))
213 
214 /*
215  * 8.5.3.1.7 temporal luma motion vector prediction
216  */
217 static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
218  int nPbW, int nPbH, int refIdxLx,
219  Mv *mvLXCol, int X)
220 {
221  MvField *tab_mvf;
222  MvField temp_col;
223  int x, y, x_pu, y_pu;
224  int min_pu_width = s->sps->min_pu_width;
225  int availableFlagLXCol = 0;
226  int colPic;
227 
228  HEVCFrame *ref = s->ref->collocated_ref;
229 
230  if (!ref)
231  return 0;
232 
233  tab_mvf = ref->tab_mvf;
234  colPic = ref->poc;
235 
236  //bottom right collocated motion vector
237  x = x0 + nPbW;
238  y = y0 + nPbH;
239 
240  if (tab_mvf &&
241  (y0 >> s->sps->log2_ctb_size) == (y >> s->sps->log2_ctb_size) &&
242  y < s->sps->height &&
243  x < s->sps->width) {
244  x &= ~15;
245  y &= ~15;
246  if (s->threads_type == FF_THREAD_FRAME)
247  ff_thread_await_progress(&ref->tf, y, 0);
248  x_pu = x >> s->sps->log2_min_pu_size;
249  y_pu = y >> s->sps->log2_min_pu_size;
250  temp_col = TAB_MVF(x_pu, y_pu);
251  availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
252  }
253 
254  // derive center collocated motion vector
255  if (tab_mvf && !availableFlagLXCol) {
256  x = x0 + (nPbW >> 1);
257  y = y0 + (nPbH >> 1);
258  x &= ~15;
259  y &= ~15;
260  if (s->threads_type == FF_THREAD_FRAME)
261  ff_thread_await_progress(&ref->tf, y, 0);
262  x_pu = x >> s->sps->log2_min_pu_size;
263  y_pu = y >> s->sps->log2_min_pu_size;
264  temp_col = TAB_MVF(x_pu, y_pu);
265  availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
266  }
267  return availableFlagLXCol;
268 }
269 
270 #define AVAILABLE(cand, v) \
271  (cand && !(TAB_MVF_PU(v).pred_flag == PF_INTRA))
272 
273 #define PRED_BLOCK_AVAILABLE(v) \
274  z_scan_block_avail(s, x0, y0, x ## v, y ## v)
275 
276 #define COMPARE_MV_REFIDX(a, b) \
277  compare_mv_ref_idx(TAB_MVF_PU(a), TAB_MVF_PU(b))
278 
279 /*
280  * 8.5.3.1.2 Derivation process for spatial merging candidates
281  */
282 static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
283  int nPbW, int nPbH,
284  int log2_cb_size,
285  int singleMCLFlag, int part_idx,
286  int merge_idx,
287  struct MvField mergecandlist[])
288 {
289  HEVCLocalContext *lc = s->HEVClc;
290  RefPicList *refPicList = s->ref->refPicList;
291  MvField *tab_mvf = s->ref->tab_mvf;
292 
293  const int min_pu_width = s->sps->min_pu_width;
294 
295  const int cand_bottom_left = lc->na.cand_bottom_left;
296  const int cand_left = lc->na.cand_left;
297  const int cand_up_left = lc->na.cand_up_left;
298  const int cand_up = lc->na.cand_up;
299  const int cand_up_right = lc->na.cand_up_right_sap;
300 
301  const int xA1 = x0 - 1;
302  const int yA1 = y0 + nPbH - 1;
303 
304  const int xB1 = x0 + nPbW - 1;
305  const int yB1 = y0 - 1;
306 
307  const int xB0 = x0 + nPbW;
308  const int yB0 = y0 - 1;
309 
310  const int xA0 = x0 - 1;
311  const int yA0 = y0 + nPbH;
312 
313  const int xB2 = x0 - 1;
314  const int yB2 = y0 - 1;
315 
316  const int nb_refs = (s->sh.slice_type == P_SLICE) ?
317  s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]);
318 
319  int zero_idx = 0;
320 
321  int nb_merge_cand = 0;
322  int nb_orig_merge_cand = 0;
323 
324  int is_available_a0;
325  int is_available_a1;
326  int is_available_b0;
327  int is_available_b1;
328  int is_available_b2;
329 
330 
331  if (!singleMCLFlag && part_idx == 1 &&
332  (lc->cu.part_mode == PART_Nx2N ||
333  lc->cu.part_mode == PART_nLx2N ||
334  lc->cu.part_mode == PART_nRx2N) ||
335  is_diff_mer(s, xA1, yA1, x0, y0)) {
336  is_available_a1 = 0;
337  } else {
338  is_available_a1 = AVAILABLE(cand_left, A1);
339  if (is_available_a1) {
340  mergecandlist[nb_merge_cand] = TAB_MVF_PU(A1);
341  if (merge_idx == 0)
342  return;
343  nb_merge_cand++;
344  }
345  }
346 
347  if (!singleMCLFlag && part_idx == 1 &&
348  (lc->cu.part_mode == PART_2NxN ||
349  lc->cu.part_mode == PART_2NxnU ||
350  lc->cu.part_mode == PART_2NxnD) ||
351  is_diff_mer(s, xB1, yB1, x0, y0)) {
352  is_available_b1 = 0;
353  } else {
354  is_available_b1 = AVAILABLE(cand_up, B1);
355  if (is_available_b1 &&
356  !(is_available_a1 && COMPARE_MV_REFIDX(B1, A1))) {
357  mergecandlist[nb_merge_cand] = TAB_MVF_PU(B1);
358  if (merge_idx == nb_merge_cand)
359  return;
360  nb_merge_cand++;
361  }
362  }
363 
364  // above right spatial merge candidate
365  is_available_b0 = AVAILABLE(cand_up_right, B0) &&
366  xB0 < s->sps->width &&
368  !is_diff_mer(s, xB0, yB0, x0, y0);
369 
370  if (is_available_b0 &&
371  !(is_available_b1 && COMPARE_MV_REFIDX(B0, B1))) {
372  mergecandlist[nb_merge_cand] = TAB_MVF_PU(B0);
373  if (merge_idx == nb_merge_cand)
374  return;
375  nb_merge_cand++;
376  }
377 
378  // left bottom spatial merge candidate
379  is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
380  yA0 < s->sps->height &&
381  PRED_BLOCK_AVAILABLE(A0) &&
382  !is_diff_mer(s, xA0, yA0, x0, y0);
383 
384  if (is_available_a0 &&
385  !(is_available_a1 && COMPARE_MV_REFIDX(A0, A1))) {
386  mergecandlist[nb_merge_cand] = TAB_MVF_PU(A0);
387  if (merge_idx == nb_merge_cand)
388  return;
389  nb_merge_cand++;
390  }
391 
392  // above left spatial merge candidate
393  is_available_b2 = AVAILABLE(cand_up_left, B2) &&
394  !is_diff_mer(s, xB2, yB2, x0, y0);
395 
396  if (is_available_b2 &&
397  !(is_available_a1 && COMPARE_MV_REFIDX(B2, A1)) &&
398  !(is_available_b1 && COMPARE_MV_REFIDX(B2, B1)) &&
399  nb_merge_cand != 4) {
400  mergecandlist[nb_merge_cand] = TAB_MVF_PU(B2);
401  if (merge_idx == nb_merge_cand)
402  return;
403  nb_merge_cand++;
404  }
405 
406  // temporal motion vector candidate
408  nb_merge_cand < s->sh.max_num_merge_cand) {
409  Mv mv_l0_col, mv_l1_col;
410  int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
411  0, &mv_l0_col, 0);
412  int available_l1 = (s->sh.slice_type == B_SLICE) ?
413  temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
414  0, &mv_l1_col, 1) : 0;
415 
416  if (available_l0 || available_l1) {
417  mergecandlist[nb_merge_cand].pred_flag = available_l0 + (available_l1 << 1);
418  if (available_l0) {
419  mergecandlist[nb_merge_cand].mv[0] = mv_l0_col;
420  mergecandlist[nb_merge_cand].ref_idx[0] = 0;
421  }
422  if (available_l1) {
423  mergecandlist[nb_merge_cand].mv[1] = mv_l1_col;
424  mergecandlist[nb_merge_cand].ref_idx[1] = 0;
425  }
426  if (merge_idx == nb_merge_cand)
427  return;
428  nb_merge_cand++;
429  }
430  }
431 
432  nb_orig_merge_cand = nb_merge_cand;
433 
434  // combined bi-predictive merge candidates (applies for B slices)
435  if (s->sh.slice_type == B_SLICE && nb_orig_merge_cand > 1 &&
436  nb_orig_merge_cand < s->sh.max_num_merge_cand) {
437  int comb_idx = 0;
438 
439  for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand &&
440  comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
441  int l0_cand_idx = l0_l1_cand_idx[comb_idx][0];
442  int l1_cand_idx = l0_l1_cand_idx[comb_idx][1];
443  MvField l0_cand = mergecandlist[l0_cand_idx];
444  MvField l1_cand = mergecandlist[l1_cand_idx];
445 
446  if ((l0_cand.pred_flag & PF_L0) && (l1_cand.pred_flag & PF_L1) &&
447  (refPicList[0].list[l0_cand.ref_idx[0]] !=
448  refPicList[1].list[l1_cand.ref_idx[1]] ||
449  AV_RN32A(&l0_cand.mv[0]) != AV_RN32A(&l1_cand.mv[1]))) {
450  mergecandlist[nb_merge_cand].ref_idx[0] = l0_cand.ref_idx[0];
451  mergecandlist[nb_merge_cand].ref_idx[1] = l1_cand.ref_idx[1];
452  mergecandlist[nb_merge_cand].pred_flag = PF_BI;
453  AV_COPY32(&mergecandlist[nb_merge_cand].mv[0], &l0_cand.mv[0]);
454  AV_COPY32(&mergecandlist[nb_merge_cand].mv[1], &l1_cand.mv[1]);
455  if (merge_idx == nb_merge_cand)
456  return;
457  nb_merge_cand++;
458  }
459  }
460  }
461 
462  // append Zero motion vector candidates
463  while (nb_merge_cand < s->sh.max_num_merge_cand) {
464  mergecandlist[nb_merge_cand].pred_flag = PF_L0 + ((s->sh.slice_type == B_SLICE) << 1);
465  AV_ZERO32(mergecandlist[nb_merge_cand].mv + 0);
466  AV_ZERO32(mergecandlist[nb_merge_cand].mv + 1);
467  mergecandlist[nb_merge_cand].ref_idx[0] = zero_idx < nb_refs ? zero_idx : 0;
468  mergecandlist[nb_merge_cand].ref_idx[1] = zero_idx < nb_refs ? zero_idx : 0;
469 
470  if (merge_idx == nb_merge_cand)
471  return;
472  nb_merge_cand++;
473  zero_idx++;
474  }
475 }
476 
477 /*
478  * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
479  */
480 void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
481  int nPbH, int log2_cb_size, int part_idx,
482  int merge_idx, MvField *mv)
483 {
484  int singleMCLFlag = 0;
485  int nCS = 1 << log2_cb_size;
486  LOCAL_ALIGNED(4, MvField, mergecand_list, [MRG_MAX_NUM_CANDS]);
487  int nPbW2 = nPbW;
488  int nPbH2 = nPbH;
489  HEVCLocalContext *lc = s->HEVClc;
490 
491  if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) {
492  singleMCLFlag = 1;
493  x0 = lc->cu.x;
494  y0 = lc->cu.y;
495  nPbW = nCS;
496  nPbH = nCS;
497  part_idx = 0;
498  }
499 
500  ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
501  derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
502  singleMCLFlag, part_idx,
503  merge_idx, mergecand_list);
504 
505  if (mergecand_list[merge_idx].pred_flag == PF_BI &&
506  (nPbW2 + nPbH2) == 12) {
507  mergecand_list[merge_idx].pred_flag = PF_L0;
508  }
509 
510  *mv = mergecand_list[merge_idx];
511 }
512 
514  int min_pu_width, int x, int y,
515  int elist, int ref_idx_curr, int ref_idx)
516 {
517  RefPicList *refPicList = s->ref->refPicList;
518  MvField *tab_mvf = s->ref->tab_mvf;
519  int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
520  int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx];
521 
522  if (ref_pic_elist != ref_pic_curr) {
523  int poc_diff = s->poc - ref_pic_elist;
524  if (!poc_diff)
525  poc_diff = 1;
526  mv_scale(mv, mv, poc_diff, s->poc - ref_pic_curr);
527  }
528 }
529 
530 static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
531  Mv *mv, int ref_idx_curr, int ref_idx)
532 {
533  MvField *tab_mvf = s->ref->tab_mvf;
534  int min_pu_width = s->sps->min_pu_width;
535 
536  RefPicList *refPicList = s->ref->refPicList;
537 
538  if (((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) &&
539  refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
540  *mv = TAB_MVF(x, y).mv[pred_flag_index];
541  return 1;
542  }
543  return 0;
544 }
545 
546 static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
547  Mv *mv, int ref_idx_curr, int ref_idx)
548 {
549  MvField *tab_mvf = s->ref->tab_mvf;
550  int min_pu_width = s->sps->min_pu_width;
551 
552  RefPicList *refPicList = s->ref->refPicList;
553 
554  if ((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) {
555  int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx];
556 
557  int colIsLongTerm =
558  refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];
559 
560  if (colIsLongTerm == currIsLongTerm) {
561  *mv = TAB_MVF(x, y).mv[pred_flag_index];
562  if (!currIsLongTerm)
563  dist_scale(s, mv, min_pu_width, x, y,
564  pred_flag_index, ref_idx_curr, ref_idx);
565  return 1;
566  }
567  }
568  return 0;
569 }
570 
571 #define MP_MX(v, pred, mx) \
572  mv_mp_mode_mx(s, \
573  (x ## v) >> s->sps->log2_min_pu_size, \
574  (y ## v) >> s->sps->log2_min_pu_size, \
575  pred, &mx, ref_idx_curr, ref_idx)
576 
577 #define MP_MX_LT(v, pred, mx) \
578  mv_mp_mode_mx_lt(s, \
579  (x ## v) >> s->sps->log2_min_pu_size, \
580  (y ## v) >> s->sps->log2_min_pu_size, \
581  pred, &mx, ref_idx_curr, ref_idx)
582 
583 void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
584  int nPbH, int log2_cb_size, int part_idx,
585  int merge_idx, MvField *mv,
586  int mvp_lx_flag, int LX)
587 {
588  HEVCLocalContext *lc = s->HEVClc;
589  MvField *tab_mvf = s->ref->tab_mvf;
590  int isScaledFlag_L0 = 0;
591  int availableFlagLXA0 = 1;
592  int availableFlagLXB0 = 1;
593  int numMVPCandLX = 0;
594  int min_pu_width = s->sps->min_pu_width;
595 
596  int xA0, yA0;
597  int is_available_a0;
598  int xA1, yA1;
599  int is_available_a1;
600  int xB0, yB0;
601  int is_available_b0;
602  int xB1, yB1;
603  int is_available_b1;
604  int xB2, yB2;
605  int is_available_b2;
606 
607  Mv mvpcand_list[2] = { { 0 } };
608  Mv mxA;
609  Mv mxB;
610  int ref_idx_curr;
611  int ref_idx = 0;
612  int pred_flag_index_l0;
613  int pred_flag_index_l1;
614 
615  const int cand_bottom_left = lc->na.cand_bottom_left;
616  const int cand_left = lc->na.cand_left;
617  const int cand_up_left = lc->na.cand_up_left;
618  const int cand_up = lc->na.cand_up;
619  const int cand_up_right = lc->na.cand_up_right_sap;
620  ref_idx_curr = LX;
621  ref_idx = mv->ref_idx[LX];
622  pred_flag_index_l0 = LX;
623  pred_flag_index_l1 = !LX;
624 
625  // left bottom spatial candidate
626  xA0 = x0 - 1;
627  yA0 = y0 + nPbH;
628 
629  is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
630  yA0 < s->sps->height &&
632 
633  //left spatial merge candidate
634  xA1 = x0 - 1;
635  yA1 = y0 + nPbH - 1;
636 
637  is_available_a1 = AVAILABLE(cand_left, A1);
638  if (is_available_a0 || is_available_a1)
639  isScaledFlag_L0 = 1;
640 
641  if (is_available_a0) {
642  if (MP_MX(A0, pred_flag_index_l0, mxA)) {
643  goto b_candidates;
644  }
645  if (MP_MX(A0, pred_flag_index_l1, mxA)) {
646  goto b_candidates;
647  }
648  }
649 
650  if (is_available_a1) {
651  if (MP_MX(A1, pred_flag_index_l0, mxA)) {
652  goto b_candidates;
653  }
654  if (MP_MX(A1, pred_flag_index_l1, mxA)) {
655  goto b_candidates;
656  }
657  }
658 
659  if (is_available_a0) {
660  if (MP_MX_LT(A0, pred_flag_index_l0, mxA)) {
661  goto b_candidates;
662  }
663  if (MP_MX_LT(A0, pred_flag_index_l1, mxA)) {
664  goto b_candidates;
665  }
666  }
667 
668  if (is_available_a1) {
669  if (MP_MX_LT(A1, pred_flag_index_l0, mxA)) {
670  goto b_candidates;
671  }
672  if (MP_MX_LT(A1, pred_flag_index_l1, mxA)) {
673  goto b_candidates;
674  }
675  }
676  availableFlagLXA0 = 0;
677 
678 b_candidates:
679  // B candidates
680  // above right spatial merge candidate
681  xB0 = x0 + nPbW;
682  yB0 = y0 - 1;
683 
684  is_available_b0 = AVAILABLE(cand_up_right, B0) &&
685  xB0 < s->sps->width &&
687 
688  // above spatial merge candidate
689  xB1 = x0 + nPbW - 1;
690  yB1 = y0 - 1;
691  is_available_b1 = AVAILABLE(cand_up, B1);
692 
693  // above left spatial merge candidate
694  xB2 = x0 - 1;
695  yB2 = y0 - 1;
696  is_available_b2 = AVAILABLE(cand_up_left, B2);
697 
698  // above right spatial merge candidate
699  if (is_available_b0) {
700  if (MP_MX(B0, pred_flag_index_l0, mxB)) {
701  goto scalef;
702  }
703  if (MP_MX(B0, pred_flag_index_l1, mxB)) {
704  goto scalef;
705  }
706  }
707 
708  // above spatial merge candidate
709  if (is_available_b1) {
710  if (MP_MX(B1, pred_flag_index_l0, mxB)) {
711  goto scalef;
712  }
713  if (MP_MX(B1, pred_flag_index_l1, mxB)) {
714  goto scalef;
715  }
716  }
717 
718  // above left spatial merge candidate
719  if (is_available_b2) {
720  if (MP_MX(B2, pred_flag_index_l0, mxB)) {
721  goto scalef;
722  }
723  if (MP_MX(B2, pred_flag_index_l1, mxB)) {
724  goto scalef;
725  }
726  }
727  availableFlagLXB0 = 0;
728 
729 scalef:
730  if (!isScaledFlag_L0) {
731  if (availableFlagLXB0) {
732  availableFlagLXA0 = 1;
733  mxA = mxB;
734  }
735  availableFlagLXB0 = 0;
736 
737  // XB0 and L1
738  if (is_available_b0) {
739  availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
740  if (!availableFlagLXB0)
741  availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
742  }
743 
744  if (is_available_b1 && !availableFlagLXB0) {
745  availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
746  if (!availableFlagLXB0)
747  availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
748  }
749 
750  if (is_available_b2 && !availableFlagLXB0) {
751  availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
752  if (!availableFlagLXB0)
753  availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
754  }
755  }
756 
757  if (availableFlagLXA0)
758  mvpcand_list[numMVPCandLX++] = mxA;
759 
760  if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y))
761  mvpcand_list[numMVPCandLX++] = mxB;
762 
763  //temporal motion vector prediction candidate
764  if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag &&
765  mvp_lx_flag == numMVPCandLX) {
766  Mv mv_col;
767  int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW,
768  nPbH, ref_idx,
769  &mv_col, LX);
770  if (available_col)
771  mvpcand_list[numMVPCandLX++] = mv_col;
772  }
773 
774  mv->mv[LX] = mvpcand_list[mvp_lx_flag];
775 }