FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevc_mvs.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Anand Meher Kotra
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "hevc.h"
25 
26 static const uint8_t l0_l1_cand_idx[12][2] = {
27  { 0, 1, },
28  { 1, 0, },
29  { 0, 2, },
30  { 2, 0, },
31  { 1, 2, },
32  { 2, 1, },
33  { 0, 3, },
34  { 3, 0, },
35  { 1, 3, },
36  { 3, 1, },
37  { 2, 3, },
38  { 3, 2, },
39 };
40 
42  int nPbW, int nPbH)
43 {
44  HEVCLocalContext *lc = s->HEVClc;
45  int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
46  int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
47 
48  lc->na.cand_up = (lc->ctb_up_flag || y0b);
49  lc->na.cand_left = (lc->ctb_left_flag || x0b);
50  lc->na.cand_up_left = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up;
51  lc->na.cand_up_right_sap =
52  ((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ?
53  lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
54  lc->na.cand_up_right =
55  ((x0b + nPbW) == (1 << s->sps->log2_ctb_size) ?
56  lc->ctb_up_right_flag && !y0b : lc->na.cand_up )
57  && (x0 + nPbW) < lc->end_of_tiles_x;
58  lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
59 }
60 
61 /*
62  * 6.4.1 Derivation process for z-scan order block availability
63  */
64 static int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
65  int xN, int yN)
66 {
67 #define MIN_TB_ADDR_ZS(x, y) \
68  s->pps->min_tb_addr_zs[(y) * (s->sps->tb_mask+2) + (x)]
69 
70  int xCurr_ctb = xCurr >> s->sps->log2_ctb_size;
71  int yCurr_ctb = yCurr >> s->sps->log2_ctb_size;
72  int xN_ctb = xN >> s->sps->log2_ctb_size;
73  int yN_ctb = yN >> s->sps->log2_ctb_size;
74 
75  if (xN < 0 || yN < 0 ||
76  xN >= s->sps->width ||
77  yN >= s->sps->height)
78  return 0;
79 
80  if( yN_ctb < yCurr_ctb || xN_ctb < xCurr_ctb )
81  return 1;
82  else {
83  int Curr = MIN_TB_ADDR_ZS((xCurr >> s->sps->log2_min_tb_size) & s->sps->tb_mask,
84  (yCurr >> s->sps->log2_min_tb_size) & s->sps->tb_mask);
85  int N = MIN_TB_ADDR_ZS((xN >> s->sps->log2_min_tb_size) & s->sps->tb_mask,
86  (yN >> s->sps->log2_min_tb_size) & s->sps->tb_mask);
87  return N <= Curr;
88  }
89 }
90 
91 static int same_prediction_block(HEVCLocalContext *lc, int log2_cb_size,
92  int x0, int y0, int nPbW, int nPbH,
93  int xA1, int yA1, int partIdx)
94 {
95  return !(nPbW << 1 == 1 << log2_cb_size &&
96  nPbH << 1 == 1 << log2_cb_size && partIdx == 1 &&
97  lc->cu.x + nPbW > xA1 &&
98  lc->cu.y + nPbH <= yA1);
99 }
100 
101 /*
102  * 6.4.2 Derivation process for prediction block availability
103  */
104 static int check_prediction_block_available(HEVCContext *s, int log2_cb_size,
105  int x0, int y0, int nPbW, int nPbH,
106  int xA1, int yA1, int partIdx)
107 {
108  HEVCLocalContext *lc = s->HEVClc;
109 
110  if (lc->cu.x < xA1 && lc->cu.y < yA1 &&
111  (lc->cu.x + (1 << log2_cb_size)) > xA1 &&
112  (lc->cu.y + (1 << log2_cb_size)) > yA1)
113  return same_prediction_block(lc, log2_cb_size, x0, y0,
114  nPbW, nPbH, xA1, yA1, partIdx);
115  else
116  return z_scan_block_avail(s, x0, y0, xA1, yA1);
117 }
118 
119 //check if the two luma locations belong to the same mostion estimation region
120 static int isDiffMER(HEVCContext *s, int xN, int yN, int xP, int yP)
121 {
123 
124  return xN >> plevel == xP >> plevel &&
125  yN >> plevel == yP >> plevel;
126 }
127 
128 #define MATCH(x) (A.x == B.x)
129 
130 // check if the mv's and refidx are the same between A and B
131 static int compareMVrefidx(struct MvField A, struct MvField B)
132 {
133  int a_pf = A.pred_flag;
134  int b_pf = B.pred_flag;
135  if (a_pf == b_pf) {
136  if (a_pf == PF_BI) {
137  return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y) &&
138  MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y);
139  } else if (a_pf == PF_L0) {
140  return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y);
141  } else if (a_pf == PF_L1) {
142  return MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y);
143  }
144  }
145  return 0;
146 }
147 
148 static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb)
149 {
150  int tx, scale_factor;
151 
152  td = av_clip_int8(td);
153  tb = av_clip_int8(tb);
154  tx = (0x4000 + abs(td / 2)) / td;
155  scale_factor = av_clip((tb * tx + 32) >> 6, -4096, 4095);
156  dst->x = av_clip_int16((scale_factor * src->x + 127 +
157  (scale_factor * src->x < 0)) >> 8);
158  dst->y = av_clip_int16((scale_factor * src->y + 127 +
159  (scale_factor * src->y < 0)) >> 8);
160 }
161 
162 static int check_mvset(Mv *mvLXCol, Mv *mvCol,
163  int colPic, int poc,
164  RefPicList *refPicList, int X, int refIdxLx,
165  RefPicList *refPicList_col, int listCol, int refidxCol)
166 {
167  int cur_lt = refPicList[X].isLongTerm[refIdxLx];
168  int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
169  int col_poc_diff, cur_poc_diff;
170 
171  if (cur_lt != col_lt) {
172  mvLXCol->x = 0;
173  mvLXCol->y = 0;
174  return 0;
175  }
176 
177  col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
178  cur_poc_diff = poc - refPicList[X].list[refIdxLx];
179 
180  if (cur_lt || col_poc_diff == cur_poc_diff || !col_poc_diff) {
181  mvLXCol->x = mvCol->x;
182  mvLXCol->y = mvCol->y;
183  } else {
184  mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
185  }
186  return 1;
187 }
188 
189 #define CHECK_MVSET(l) \
190  check_mvset(mvLXCol, temp_col.mv + l, \
191  colPic, s->poc, \
192  refPicList, X, refIdxLx, \
193  refPicList_col, L ## l, temp_col.ref_idx[l])
194 
195 // derive the motion vectors section 8.5.3.1.8
197  int refIdxLx, Mv *mvLXCol, int X,
198  int colPic, RefPicList *refPicList_col)
199 {
200  RefPicList *refPicList = s->ref->refPicList;
201 
202  if (temp_col.pred_flag == PF_INTRA)
203  return 0;
204 
205  if (!(temp_col.pred_flag & PF_L0))
206  return CHECK_MVSET(1);
207  else if (temp_col.pred_flag == PF_L0)
208  return CHECK_MVSET(0);
209  else if (temp_col.pred_flag == PF_BI) {
210  int check_diffpicount = 0;
211  int i = 0;
212  for (i = 0; i < refPicList[0].nb_refs; i++) {
213  if (refPicList[0].list[i] > s->poc)
214  check_diffpicount++;
215  }
216  for (i = 0; i < refPicList[1].nb_refs; i++) {
217  if (refPicList[1].list[i] > s->poc)
218  check_diffpicount++;
219  }
220  if (check_diffpicount == 0 && X == 0)
221  return CHECK_MVSET(0);
222  else if (check_diffpicount == 0 && X == 1)
223  return CHECK_MVSET(1);
224  else {
225  if (s->sh.collocated_list == L1)
226  return CHECK_MVSET(0);
227  else
228  return CHECK_MVSET(1);
229  }
230  }
231 
232  return 0;
233 }
234 
235 #define TAB_MVF(x, y) \
236  tab_mvf[(y) * min_pu_width + x]
237 
238 #define TAB_MVF_PU(v) \
239  TAB_MVF(x ## v ## _pu, y ## v ## _pu)
240 
241 #define DERIVE_TEMPORAL_COLOCATED_MVS \
242  derive_temporal_colocated_mvs(s, temp_col, \
243  refIdxLx, mvLXCol, X, colPic, \
244  ff_hevc_get_ref_list(s, ref, x, y))
245 
246 /*
247  * 8.5.3.1.7 temporal luma motion vector prediction
248  */
249 static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
250  int nPbW, int nPbH, int refIdxLx,
251  Mv *mvLXCol, int X)
252 {
253  MvField *tab_mvf;
254  MvField temp_col;
255  int x, y, x_pu, y_pu;
256  int min_pu_width = s->sps->min_pu_width;
257  int availableFlagLXCol = 0;
258  int colPic;
259 
260  HEVCFrame *ref = s->ref->collocated_ref;
261 
262  if (!ref)
263  return 0;
264 
265  tab_mvf = ref->tab_mvf;
266  colPic = ref->poc;
267 
268  //bottom right collocated motion vector
269  x = x0 + nPbW;
270  y = y0 + nPbH;
271 
272  if (s->threads_type == FF_THREAD_FRAME )
273  ff_thread_await_progress(&ref->tf, y, 0);
274  if (tab_mvf &&
275  (y0 >> s->sps->log2_ctb_size) == (y >> s->sps->log2_ctb_size) &&
276  y < s->sps->height &&
277  x < s->sps->width) {
278  x &= -16;
279  y &= -16;
280  x_pu = x >> s->sps->log2_min_pu_size;
281  y_pu = y >> s->sps->log2_min_pu_size;
282  temp_col = TAB_MVF(x_pu, y_pu);
283  availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
284  }
285 
286  // derive center collocated motion vector
287  if (tab_mvf && !availableFlagLXCol) {
288  x = x0 + (nPbW >> 1);
289  y = y0 + (nPbH >> 1);
290  x &= -16;
291  y &= -16;
292  x_pu = x >> s->sps->log2_min_pu_size;
293  y_pu = y >> s->sps->log2_min_pu_size;
294  temp_col = TAB_MVF(x_pu, y_pu);
295  availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
296  }
297  return availableFlagLXCol;
298 }
299 
300 #define AVAILABLE(cand, v) \
301  (cand && !(TAB_MVF_PU(v).pred_flag == PF_INTRA))
302 
303 #define PRED_BLOCK_AVAILABLE(v) \
304  check_prediction_block_available(s, log2_cb_size, \
305  x0, y0, nPbW, nPbH, \
306  x ## v, y ## v, part_idx)
307 
308 #define COMPARE_MV_REFIDX(a, b) \
309  compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b))
310 
311 /*
312  * 8.5.3.1.2 Derivation process for spatial merging candidates
313  */
314 static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
315  int nPbW, int nPbH,
316  int log2_cb_size,
317  int singleMCLFlag, int part_idx,
318  int merge_idx,
319  struct MvField mergecandlist[])
320 {
321  HEVCLocalContext *lc = s->HEVClc;
322  RefPicList *refPicList = s->ref->refPicList;
323  MvField *tab_mvf = s->ref->tab_mvf;
324 
325  const int min_pu_width = s->sps->min_pu_width;
326 
327  const int cand_bottom_left = lc->na.cand_bottom_left;
328  const int cand_left = lc->na.cand_left;
329  const int cand_up_left = lc->na.cand_up_left;
330  const int cand_up = lc->na.cand_up;
331  const int cand_up_right = lc->na.cand_up_right_sap;
332 
333  const int xA1 = x0 - 1;
334  const int yA1 = y0 + nPbH - 1;
335  const int xA1_pu = xA1 >> s->sps->log2_min_pu_size;
336  const int yA1_pu = yA1 >> s->sps->log2_min_pu_size;
337 
338  const int xB1 = x0 + nPbW - 1;
339  const int yB1 = y0 - 1;
340  const int xB1_pu = xB1 >> s->sps->log2_min_pu_size;
341  const int yB1_pu = yB1 >> s->sps->log2_min_pu_size;
342 
343  const int xB0 = x0 + nPbW;
344  const int yB0 = y0 - 1;
345  const int xB0_pu = xB0 >> s->sps->log2_min_pu_size;
346  const int yB0_pu = yB0 >> s->sps->log2_min_pu_size;
347 
348  const int xA0 = x0 - 1;
349  const int yA0 = y0 + nPbH;
350  const int xA0_pu = xA0 >> s->sps->log2_min_pu_size;
351  const int yA0_pu = yA0 >> s->sps->log2_min_pu_size;
352 
353  const int xB2 = x0 - 1;
354  const int yB2 = y0 - 1;
355  const int xB2_pu = xB2 >> s->sps->log2_min_pu_size;
356  const int yB2_pu = yB2 >> s->sps->log2_min_pu_size;
357 
358  const int nb_refs = (s->sh.slice_type == P_SLICE) ?
359  s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]);
360  int check_MER = 1;
361  int check_MER_1 = 1;
362 
363  int zero_idx = 0;
364 
365  int nb_merge_cand = 0;
366  int nb_orig_merge_cand = 0;
367 
368  int is_available_a0;
369  int is_available_a1;
370  int is_available_b0;
371  int is_available_b1;
372  int is_available_b2;
373  int check_B0;
374  int check_A0;
375 
376  //first left spatial merge candidate
377  is_available_a1 = AVAILABLE(cand_left, A1);
378 
379  if (!singleMCLFlag && part_idx == 1 &&
380  (lc->cu.part_mode == PART_Nx2N ||
381  lc->cu.part_mode == PART_nLx2N ||
382  lc->cu.part_mode == PART_nRx2N) ||
383  isDiffMER(s, xA1, yA1, x0, y0)) {
384  is_available_a1 = 0;
385  }
386 
387  if (is_available_a1) {
388  mergecandlist[0] = TAB_MVF_PU(A1);
389  if (merge_idx == 0) return;
390  nb_merge_cand++;
391  }
392 
393  // above spatial merge candidate
394  is_available_b1 = AVAILABLE(cand_up, B1);
395 
396  if (!singleMCLFlag && part_idx == 1 &&
397  (lc->cu.part_mode == PART_2NxN ||
398  lc->cu.part_mode == PART_2NxnU ||
399  lc->cu.part_mode == PART_2NxnD) ||
400  isDiffMER(s, xB1, yB1, x0, y0)) {
401  is_available_b1 = 0;
402  }
403 
404  if (is_available_a1 && is_available_b1)
405  check_MER = !COMPARE_MV_REFIDX(B1, A1);
406 
407  if (is_available_b1 && check_MER)
408  mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B1);
409 
410  // above right spatial merge candidate
411  check_MER = 1;
412  check_B0 = PRED_BLOCK_AVAILABLE(B0);
413 
414  is_available_b0 = check_B0 && AVAILABLE(cand_up_right, B0);
415 
416  if (isDiffMER(s, xB0, yB0, x0, y0))
417  is_available_b0 = 0;
418 
419  if (is_available_b1 && is_available_b0)
420  check_MER = !COMPARE_MV_REFIDX(B0, B1);
421 
422  if (is_available_b0 && check_MER) {
423  mergecandlist[nb_merge_cand] = TAB_MVF_PU(B0);
424  if (merge_idx == nb_merge_cand) return;
425  nb_merge_cand++;
426  }
427 
428  // left bottom spatial merge candidate
429  check_MER = 1;
430  check_A0 = PRED_BLOCK_AVAILABLE(A0);
431 
432  is_available_a0 = check_A0 && AVAILABLE(cand_bottom_left, A0);
433 
434  if (isDiffMER(s, xA0, yA0, x0, y0))
435  is_available_a0 = 0;
436 
437  if (is_available_a1 && is_available_a0)
438  check_MER = !COMPARE_MV_REFIDX(A0, A1);
439 
440  if (is_available_a0 && check_MER) {
441  mergecandlist[nb_merge_cand] = TAB_MVF_PU(A0);
442  if (merge_idx == nb_merge_cand) return;
443  nb_merge_cand++;
444  }
445 
446  // above left spatial merge candidate
447  check_MER = 1;
448 
449  is_available_b2 = AVAILABLE(cand_up_left, B2);
450 
451  if (isDiffMER(s, xB2, yB2, x0, y0))
452  is_available_b2 = 0;
453 
454  if (is_available_a1 && is_available_b2)
455  check_MER = !COMPARE_MV_REFIDX(B2, A1);
456 
457  if (is_available_b1 && is_available_b2)
458  check_MER_1 = !COMPARE_MV_REFIDX(B2, B1);
459 
460  if (is_available_b2 && check_MER && check_MER_1 && nb_merge_cand != 4) {
461  mergecandlist[nb_merge_cand] = TAB_MVF_PU(B2);
462  if (merge_idx == nb_merge_cand) return;
463  nb_merge_cand++;
464  }
465 
466  // temporal motion vector candidate
468  nb_merge_cand < s->sh.max_num_merge_cand) {
469  Mv mv_l0_col, mv_l1_col;
470  int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
471  0, &mv_l0_col, 0);
472  int available_l1 = (s->sh.slice_type == B_SLICE) ?
473  temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
474  0, &mv_l1_col, 1) : 0;
475 
476  if (available_l0 || available_l1) {
477  mergecandlist[nb_merge_cand].pred_flag = available_l0 + (available_l1 << 1);
478  if (available_l0) {
479  mergecandlist[nb_merge_cand].mv[0] = mv_l0_col;
480  mergecandlist[nb_merge_cand].ref_idx[0] = 0;
481  }
482  if (available_l1) {
483  mergecandlist[nb_merge_cand].mv[1] = mv_l1_col;
484  mergecandlist[nb_merge_cand].ref_idx[1] = 0;
485  }
486  if (merge_idx == nb_merge_cand) return;
487  nb_merge_cand++;
488  }
489  }
490 
491  nb_orig_merge_cand = nb_merge_cand;
492 
493  // combined bi-predictive merge candidates (applies for B slices)
494  if (s->sh.slice_type == B_SLICE && nb_orig_merge_cand > 1 &&
495  nb_orig_merge_cand < s->sh.max_num_merge_cand) {
496  int comb_idx = 0;
497 
498  for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand &&
499  comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
500  int l0_cand_idx = l0_l1_cand_idx[comb_idx][0];
501  int l1_cand_idx = l0_l1_cand_idx[comb_idx][1];
502  MvField l0_cand = mergecandlist[l0_cand_idx];
503  MvField l1_cand = mergecandlist[l1_cand_idx];
504 
505  if ((l0_cand.pred_flag & PF_L0) && (l1_cand.pred_flag & PF_L1) &&
506  (refPicList[0].list[l0_cand.ref_idx[0]] !=
507  refPicList[1].list[l1_cand.ref_idx[1]] ||
508  l0_cand.mv[0].x != l1_cand.mv[1].x ||
509  l0_cand.mv[0].y != l1_cand.mv[1].y)) {
510  mergecandlist[nb_merge_cand].ref_idx[0] = l0_cand.ref_idx[0];
511  mergecandlist[nb_merge_cand].ref_idx[1] = l1_cand.ref_idx[1];
512  mergecandlist[nb_merge_cand].pred_flag = PF_BI;
513  mergecandlist[nb_merge_cand].mv[0].x = l0_cand.mv[0].x;
514  mergecandlist[nb_merge_cand].mv[0].y = l0_cand.mv[0].y;
515  mergecandlist[nb_merge_cand].mv[1].x = l1_cand.mv[1].x;
516  mergecandlist[nb_merge_cand].mv[1].y = l1_cand.mv[1].y;
517  if (merge_idx == nb_merge_cand) return;
518  nb_merge_cand++;
519  }
520  }
521  }
522 
523  // append Zero motion vector candidates
524  while (nb_merge_cand < s->sh.max_num_merge_cand) {
525  mergecandlist[nb_merge_cand].pred_flag = PF_L0 + ((s->sh.slice_type == B_SLICE) << 1);
526  mergecandlist[nb_merge_cand].mv[0].x = 0;
527  mergecandlist[nb_merge_cand].mv[0].y = 0;
528  mergecandlist[nb_merge_cand].mv[1].x = 0;
529  mergecandlist[nb_merge_cand].mv[1].y = 0;
530  mergecandlist[nb_merge_cand].ref_idx[0] = zero_idx < nb_refs ? zero_idx : 0;
531  mergecandlist[nb_merge_cand].ref_idx[1] = zero_idx < nb_refs ? zero_idx : 0;
532 
533  if (merge_idx == nb_merge_cand) return;
534  nb_merge_cand++;
535  zero_idx++;
536  }
537 }
538 
539 /*
540  * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
541  */
542 void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
543  int nPbH, int log2_cb_size, int part_idx,
544  int merge_idx, MvField *mv)
545 {
546  int singleMCLFlag = 0;
547  int nCS = 1 << log2_cb_size;
548  struct MvField mergecand_list[MRG_MAX_NUM_CANDS] = { { { { 0 } } } };
549  int nPbW2 = nPbW;
550  int nPbH2 = nPbH;
551  HEVCLocalContext *lc = s->HEVClc;
552 
553  if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) {
554  singleMCLFlag = 1;
555  x0 = lc->cu.x;
556  y0 = lc->cu.y;
557  nPbW = nCS;
558  nPbH = nCS;
559  part_idx = 0;
560  }
561 
562  ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
563  derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
564  singleMCLFlag, part_idx,
565  merge_idx, mergecand_list);
566 
567  if (mergecand_list[merge_idx].pred_flag == PF_BI &&
568  (nPbW2 + nPbH2) == 12) {
569  mergecand_list[merge_idx].pred_flag = PF_L0;
570  }
571 
572  *mv = mergecand_list[merge_idx];
573 }
574 
576  int min_pu_width, int x, int y,
577  int elist, int ref_idx_curr, int ref_idx)
578 {
579  RefPicList *refPicList = s->ref->refPicList;
580  MvField *tab_mvf = s->ref->tab_mvf;
581  int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
582  int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx];
583 
584  if (ref_pic_elist != ref_pic_curr) {
585  int poc_diff = s->poc - ref_pic_elist;
586  if (!poc_diff)
587  poc_diff = 1;
588  mv_scale(mv, mv, poc_diff, s->poc - ref_pic_curr);
589  }
590 }
591 
592 static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
593  Mv *mv, int ref_idx_curr, int ref_idx)
594 {
595  MvField *tab_mvf = s->ref->tab_mvf;
596  int min_pu_width = s->sps->min_pu_width;
597 
598  RefPicList *refPicList = s->ref->refPicList;
599 
600  if (((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) &&
601  refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
602  *mv = TAB_MVF(x, y).mv[pred_flag_index];
603  return 1;
604  }
605  return 0;
606 }
607 
608 static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
609  Mv *mv, int ref_idx_curr, int ref_idx)
610 {
611  MvField *tab_mvf = s->ref->tab_mvf;
612  int min_pu_width = s->sps->min_pu_width;
613 
614  RefPicList *refPicList = s->ref->refPicList;
615 
616  if ((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) {
617  int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx];
618 
619  int colIsLongTerm =
620  refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];
621 
622  if (colIsLongTerm == currIsLongTerm) {
623  *mv = TAB_MVF(x, y).mv[pred_flag_index];
624  if (!currIsLongTerm)
625  dist_scale(s, mv, min_pu_width, x, y,
626  pred_flag_index, ref_idx_curr, ref_idx);
627  return 1;
628  }
629  }
630  return 0;
631 }
632 
633 #define MP_MX(v, pred, mx) \
634  mv_mp_mode_mx(s, x ## v ## _pu, y ## v ## _pu, pred, \
635  &mx, ref_idx_curr, ref_idx)
636 
637 #define MP_MX_LT(v, pred, mx) \
638  mv_mp_mode_mx_lt(s, x ## v ## _pu, y ## v ## _pu, pred, \
639  &mx, ref_idx_curr, ref_idx)
640 
641 void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
642  int nPbH, int log2_cb_size, int part_idx,
643  int merge_idx, MvField *mv,
644  int mvp_lx_flag, int LX)
645 {
646  HEVCLocalContext *lc = s->HEVClc;
647  MvField *tab_mvf = s->ref->tab_mvf;
648  int isScaledFlag_L0 = 0;
649  int availableFlagLXA0 = 0;
650  int availableFlagLXB0 = 0;
651  int numMVPCandLX = 0;
652  int min_pu_width = s->sps->min_pu_width;
653 
654  int xA0, yA0;
655  int xA0_pu, yA0_pu;
656  int is_available_a0;
657 
658  int xA1, yA1;
659  int xA1_pu, yA1_pu;
660  int is_available_a1;
661 
662  int xB0, yB0;
663  int xB0_pu, yB0_pu;
664  int is_available_b0;
665 
666  int xB1, yB1;
667  int xB1_pu = 0, yB1_pu = 0;
668  int is_available_b1 = 0;
669 
670  int xB2, yB2;
671  int xB2_pu = 0, yB2_pu = 0;
672  int is_available_b2 = 0;
673  Mv mvpcand_list[2] = { { 0 } };
674  Mv mxA;
675  Mv mxB;
676  int ref_idx_curr = 0;
677  int ref_idx = 0;
678  int pred_flag_index_l0;
679  int pred_flag_index_l1;
680  int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
681  int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
682 
683  int cand_up = (lc->ctb_up_flag || y0b);
684  int cand_left = (lc->ctb_left_flag || x0b);
685  int cand_up_left =
686  (!x0b && !y0b) ? lc->ctb_up_left_flag : cand_left && cand_up;
687  int cand_up_right =
688  (x0b + nPbW == (1 << s->sps->log2_ctb_size) ||
689  x0 + nPbW >= lc->end_of_tiles_x) ? lc->ctb_up_right_flag && !y0b
690  : cand_up;
691  int cand_bottom_left = (y0 + nPbH >= lc->end_of_tiles_y) ? 0 : cand_left;
692 
693  ref_idx_curr = LX;
694  ref_idx = mv->ref_idx[LX];
695  pred_flag_index_l0 = LX;
696  pred_flag_index_l1 = !LX;
697 
698  // left bottom spatial candidate
699  xA0 = x0 - 1;
700  yA0 = y0 + nPbH;
701  xA0_pu = xA0 >> s->sps->log2_min_pu_size;
702  yA0_pu = yA0 >> s->sps->log2_min_pu_size;
703 
704  is_available_a0 = PRED_BLOCK_AVAILABLE(A0) && AVAILABLE(cand_bottom_left, A0);
705 
706  //left spatial merge candidate
707  xA1 = x0 - 1;
708  yA1 = y0 + nPbH - 1;
709  xA1_pu = xA1 >> s->sps->log2_min_pu_size;
710  yA1_pu = yA1 >> s->sps->log2_min_pu_size;
711 
712  is_available_a1 = AVAILABLE(cand_left, A1);
713  if (is_available_a0 || is_available_a1)
714  isScaledFlag_L0 = 1;
715 
716  if (is_available_a0) {
717  availableFlagLXA0 = MP_MX(A0, pred_flag_index_l0, mxA);
718  if (!availableFlagLXA0)
719  availableFlagLXA0 = MP_MX(A0, pred_flag_index_l1, mxA);
720  }
721 
722  if (is_available_a1 && !availableFlagLXA0) {
723  availableFlagLXA0 = MP_MX(A1, pred_flag_index_l0, mxA);
724  if (!availableFlagLXA0)
725  availableFlagLXA0 = MP_MX(A1, pred_flag_index_l1, mxA);
726  }
727 
728  if (is_available_a0 && !availableFlagLXA0) {
729  availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l0, mxA);
730  if (!availableFlagLXA0)
731  availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l1, mxA);
732  }
733 
734  if (is_available_a1 && !availableFlagLXA0) {
735  availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l0, mxA);
736  if (!availableFlagLXA0)
737  availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l1, mxA);
738  }
739 
740  if(availableFlagLXA0 && !mvp_lx_flag) {
741  mv->mv[LX] = mxA;
742  return;
743  }
744 
745  // B candidates
746  // above right spatial merge candidate
747  xB0 = x0 + nPbW;
748  yB0 = y0 - 1;
749  xB0_pu = xB0 >> s->sps->log2_min_pu_size;
750  yB0_pu = yB0 >> s->sps->log2_min_pu_size;
751 
752  is_available_b0 = PRED_BLOCK_AVAILABLE(B0) && AVAILABLE(cand_up_right, B0);
753 
754  if (is_available_b0) {
755  availableFlagLXB0 = MP_MX(B0, pred_flag_index_l0, mxB);
756  if (!availableFlagLXB0)
757  availableFlagLXB0 = MP_MX(B0, pred_flag_index_l1, mxB);
758  }
759 
760  if (!availableFlagLXB0) {
761  // above spatial merge candidate
762  xB1 = x0 + nPbW - 1;
763  yB1 = y0 - 1;
764  xB1_pu = xB1 >> s->sps->log2_min_pu_size;
765  yB1_pu = yB1 >> s->sps->log2_min_pu_size;
766 
767  is_available_b1 = AVAILABLE(cand_up, B1);
768 
769  if (is_available_b1) {
770  availableFlagLXB0 = MP_MX(B1, pred_flag_index_l0, mxB);
771  if (!availableFlagLXB0)
772  availableFlagLXB0 = MP_MX(B1, pred_flag_index_l1, mxB);
773  }
774  }
775 
776  if (!availableFlagLXB0) {
777  // above left spatial merge candidate
778  xB2 = x0 - 1;
779  yB2 = y0 - 1;
780  xB2_pu = xB2 >> s->sps->log2_min_pu_size;
781  yB2_pu = yB2 >> s->sps->log2_min_pu_size;
782  is_available_b2 = AVAILABLE(cand_up_left, B2);
783 
784  if (is_available_b2) {
785  availableFlagLXB0 = MP_MX(B2, pred_flag_index_l0, mxB);
786  if (!availableFlagLXB0)
787  availableFlagLXB0 = MP_MX(B2, pred_flag_index_l1, mxB);
788  }
789  }
790 
791  if (isScaledFlag_L0 == 0) {
792  if (availableFlagLXB0) {
793  availableFlagLXA0 = 1;
794  mxA = mxB;
795  }
796  availableFlagLXB0 = 0;
797 
798  // XB0 and L1
799  if (is_available_b0) {
800  availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
801  if (!availableFlagLXB0)
802  availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
803  }
804 
805  if (is_available_b1 && !availableFlagLXB0) {
806  availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
807  if (!availableFlagLXB0)
808  availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
809  }
810 
811  if (is_available_b2 && !availableFlagLXB0) {
812  availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
813  if (!availableFlagLXB0)
814  availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
815  }
816  }
817 
818  if (availableFlagLXA0)
819  mvpcand_list[numMVPCandLX++] = mxA;
820 
821  if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y))
822  mvpcand_list[numMVPCandLX++] = mxB;
823 
824  //temporal motion vector prediction candidate
825  if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag) {
826  Mv mv_col;
827  int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW,
828  nPbH, ref_idx,
829  &mv_col, LX);
830  if (available_col)
831  mvpcand_list[numMVPCandLX++] = mv_col;
832  }
833 
834  mv->mv[LX] = mvpcand_list[mvp_lx_flag];
835 }