FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dither.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
3  *
4  * Triangular with Noise Shaping is based on opusfile.
5  * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors
6  *
7  * This file is part of Libav.
8  *
9  * Libav is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * Libav is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with Libav; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * Dithered Audio Sample Quantization
27  *
28  * Converts from dbl, flt, or s32 to s16 using dithering.
29  */
30 
31 #include <math.h>
32 #include <stdint.h>
33 
34 #include "libavutil/common.h"
35 #include "libavutil/lfg.h"
36 #include "libavutil/mem.h"
37 #include "libavutil/samplefmt.h"
38 #include "audio_convert.h"
39 #include "dither.h"
40 #include "internal.h"
41 
42 typedef struct DitherState {
43  int mute;
44  unsigned int seed;
46  float *noise_buf;
49  float dither_a[4];
50  float dither_b[4];
51 } DitherState;
52 
53 struct DitherContext {
56  int apply_map;
58 
59  int mute_dither_threshold; // threshold for disabling dither
60  int mute_reset_threshold; // threshold for resetting noise shaping
61  const float *ns_coef_b; // noise shaping coeffs
62  const float *ns_coef_a; // noise shaping coeffs
63 
64  int channels;
65  DitherState *state; // dither states for each channel
66 
67  AudioData *flt_data; // input data in fltp
68  AudioData *s16_data; // dithered output in s16p
69  AudioConvert *ac_in; // converter for input to fltp
70  AudioConvert *ac_out; // converter for s16p to s16 (if needed)
71 
72  void (*quantize)(int16_t *dst, const float *src, float *dither, int len);
74 };
75 
76 /* mute threshold, in seconds */
77 #define MUTE_THRESHOLD_SEC 0.000333
78 
79 /* scale factor for 16-bit output.
80  The signal is attenuated slightly to avoid clipping */
81 #define S16_SCALE 32753.0f
82 
83 /* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */
84 #define LFG_SCALE (1.0f / (2.0f * INT32_MAX))
85 
86 /* noise shaping coefficients */
87 
88 static const float ns_48_coef_b[4] = {
89  2.2374f, -0.7339f, -0.1251f, -0.6033f
90 };
91 
92 static const float ns_48_coef_a[4] = {
93  0.9030f, 0.0116f, -0.5853f, -0.2571f
94 };
95 
96 static const float ns_44_coef_b[4] = {
97  2.2061f, -0.4707f, -0.2534f, -0.6213f
98 };
99 
100 static const float ns_44_coef_a[4] = {
101  1.0587f, 0.0676f, -0.6054f, -0.2738f
102 };
103 
104 static void dither_int_to_float_rectangular_c(float *dst, int *src, int len)
105 {
106  int i;
107  for (i = 0; i < len; i++)
108  dst[i] = src[i] * LFG_SCALE;
109 }
110 
111 static void dither_int_to_float_triangular_c(float *dst, int *src0, int len)
112 {
113  int i;
114  int *src1 = src0 + len;
115 
116  for (i = 0; i < len; i++) {
117  float r = src0[i] * LFG_SCALE;
118  r += src1[i] * LFG_SCALE;
119  dst[i] = r;
120  }
121 }
122 
123 static void quantize_c(int16_t *dst, const float *src, float *dither, int len)
124 {
125  int i;
126  for (i = 0; i < len; i++)
127  dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i]));
128 }
129 
130 #define SQRT_1_6 0.40824829046386301723f
131 
132 static void dither_highpass_filter(float *src, int len)
133 {
134  int i;
135 
136  /* filter is from libswresample in FFmpeg */
137  for (i = 0; i < len - 2; i++)
138  src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6;
139 }
140 
142  int min_samples)
143 {
144  int i;
145  int nb_samples = FFALIGN(min_samples, 16) + 16;
146  int buf_samples = nb_samples *
147  (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2);
148  unsigned int *noise_buf_ui;
149 
150  av_freep(&state->noise_buf);
151  state->noise_buf_size = state->noise_buf_ptr = 0;
152 
153  state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf));
154  if (!state->noise_buf)
155  return AVERROR(ENOMEM);
156  state->noise_buf_size = FFALIGN(min_samples, 16);
157  noise_buf_ui = (unsigned int *)state->noise_buf;
158 
159  av_lfg_init(&state->lfg, state->seed);
160  for (i = 0; i < buf_samples; i++)
161  noise_buf_ui[i] = av_lfg_get(&state->lfg);
162 
163  c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples);
164 
166  dither_highpass_filter(state->noise_buf, nb_samples);
167 
168  return 0;
169 }
170 
172  int16_t *dst, const float *src,
173  int nb_samples)
174 {
175  int i, j;
176  float *dither = &state->noise_buf[state->noise_buf_ptr];
177 
178  if (state->mute > c->mute_reset_threshold)
179  memset(state->dither_a, 0, sizeof(state->dither_a));
180 
181  for (i = 0; i < nb_samples; i++) {
182  float err = 0;
183  float sample = src[i] * S16_SCALE;
184 
185  for (j = 0; j < 4; j++) {
186  err += c->ns_coef_b[j] * state->dither_b[j] -
187  c->ns_coef_a[j] * state->dither_a[j];
188  }
189  for (j = 3; j > 0; j--) {
190  state->dither_a[j] = state->dither_a[j - 1];
191  state->dither_b[j] = state->dither_b[j - 1];
192  }
193  state->dither_a[0] = err;
194  sample -= err;
195 
196  if (state->mute > c->mute_dither_threshold) {
197  dst[i] = av_clip_int16(lrintf(sample));
198  state->dither_b[0] = 0;
199  } else {
200  dst[i] = av_clip_int16(lrintf(sample + dither[i]));
201  state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f);
202  }
203 
204  state->mute++;
205  if (src[i])
206  state->mute = 0;
207  }
208 }
209 
210 static int convert_samples(DitherContext *c, int16_t **dst, float * const *src,
211  int channels, int nb_samples)
212 {
213  int ch, ret;
214  int aligned_samples = FFALIGN(nb_samples, 16);
215 
216  for (ch = 0; ch < channels; ch++) {
217  DitherState *state = &c->state[ch];
218 
219  if (state->noise_buf_size < aligned_samples) {
220  ret = generate_dither_noise(c, state, nb_samples);
221  if (ret < 0)
222  return ret;
223  } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) {
224  state->noise_buf_ptr = 0;
225  }
226 
228  quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples);
229  } else {
230  c->quantize(dst[ch], src[ch],
231  &state->noise_buf[state->noise_buf_ptr],
232  FFALIGN(nb_samples, c->samples_align));
233  }
234 
235  state->noise_buf_ptr += aligned_samples;
236  }
237 
238  return 0;
239 }
240 
242 {
243  int ret;
244  AudioData *flt_data;
245 
246  /* output directly to dst if it is planar */
247  if (dst->sample_fmt == AV_SAMPLE_FMT_S16P)
248  c->s16_data = dst;
249  else {
250  /* make sure s16_data is large enough for the output */
251  ret = ff_audio_data_realloc(c->s16_data, src->nb_samples);
252  if (ret < 0)
253  return ret;
254  }
255 
256  if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
257  /* make sure flt_data is large enough for the input */
258  ret = ff_audio_data_realloc(c->flt_data, src->nb_samples);
259  if (ret < 0)
260  return ret;
261  flt_data = c->flt_data;
262  }
263 
264  if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) {
265  /* convert input samples to fltp and scale to s16 range */
266  ret = ff_audio_convert(c->ac_in, flt_data, src);
267  if (ret < 0)
268  return ret;
269  } else if (c->apply_map) {
270  ret = ff_audio_data_copy(flt_data, src, c->ch_map_info);
271  if (ret < 0)
272  return ret;
273  } else {
274  flt_data = src;
275  }
276 
277  /* check alignment and padding constraints */
279  int ptr_align = FFMIN(flt_data->ptr_align, c->s16_data->ptr_align);
280  int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align);
281  int aligned_len = FFALIGN(src->nb_samples, c->ddsp.samples_align);
282 
283  if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) {
284  c->quantize = c->ddsp.quantize;
286  } else {
287  c->quantize = quantize_c;
288  c->samples_align = 1;
289  }
290  }
291 
292  ret = convert_samples(c, (int16_t **)c->s16_data->data,
293  (float * const *)flt_data->data, src->channels,
294  src->nb_samples);
295  if (ret < 0)
296  return ret;
297 
298  c->s16_data->nb_samples = src->nb_samples;
299 
300  /* interleave output to dst if needed */
301  if (dst->sample_fmt == AV_SAMPLE_FMT_S16) {
302  ret = ff_audio_convert(c->ac_out, dst, c->s16_data);
303  if (ret < 0)
304  return ret;
305  } else
306  c->s16_data = NULL;
307 
308  return 0;
309 }
310 
312 {
313  DitherContext *c = *cp;
314  int ch;
315 
316  if (!c)
317  return;
322  for (ch = 0; ch < c->channels; ch++)
323  av_free(c->state[ch].noise_buf);
324  av_free(c->state);
325  av_freep(cp);
326 }
327 
328 static void dither_init(DitherDSPContext *ddsp,
329  enum AVResampleDitherMethod method)
330 {
331  ddsp->quantize = quantize_c;
332  ddsp->ptr_align = 1;
333  ddsp->samples_align = 1;
334 
335  if (method == AV_RESAMPLE_DITHER_RECTANGULAR)
337  else
339 
340  if (ARCH_X86)
341  ff_dither_init_x86(ddsp, method);
342 }
343 
345  enum AVSampleFormat out_fmt,
346  enum AVSampleFormat in_fmt,
347  int channels, int sample_rate, int apply_map)
348 {
349  AVLFG seed_gen;
350  DitherContext *c;
351  int ch;
352 
354  av_get_bytes_per_sample(in_fmt) <= 2) {
355  av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n",
357  return NULL;
358  }
359 
360  c = av_mallocz(sizeof(*c));
361  if (!c)
362  return NULL;
363 
364  c->apply_map = apply_map;
365  if (apply_map)
366  c->ch_map_info = &avr->ch_map_info;
367 
369  sample_rate != 48000 && sample_rate != 44100) {
370  av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz "
371  "for triangular_ns dither. using triangular_hp instead.\n");
373  }
374  c->method = avr->dither_method;
375  dither_init(&c->ddsp, c->method);
376 
378  if (sample_rate == 48000) {
379  c->ns_coef_b = ns_48_coef_b;
380  c->ns_coef_a = ns_48_coef_a;
381  } else {
382  c->ns_coef_b = ns_44_coef_b;
383  c->ns_coef_a = ns_44_coef_a;
384  }
385  }
386 
387  /* Either s16 or s16p output format is allowed, but s16p is used
388  internally, so we need to use a temp buffer and interleave if the output
389  format is s16 */
390  if (out_fmt != AV_SAMPLE_FMT_S16P) {
391  c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P,
392  "dither s16 buffer");
393  if (!c->s16_data)
394  goto fail;
395 
397  channels, sample_rate, 0);
398  if (!c->ac_out)
399  goto fail;
400  }
401 
402  if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) {
403  c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP,
404  "dither flt buffer");
405  if (!c->flt_data)
406  goto fail;
407  }
408  if (in_fmt != AV_SAMPLE_FMT_FLTP) {
410  channels, sample_rate, c->apply_map);
411  if (!c->ac_in)
412  goto fail;
413  }
414 
415  c->state = av_mallocz(channels * sizeof(*c->state));
416  if (!c->state)
417  goto fail;
418  c->channels = channels;
419 
420  /* calculate thresholds for turning off dithering during periods of
421  silence to avoid replacing digital silence with quiet dither noise */
422  c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC);
424 
425  /* initialize dither states */
426  av_lfg_init(&seed_gen, 0xC0FFEE);
427  for (ch = 0; ch < channels; ch++) {
428  DitherState *state = &c->state[ch];
429  state->mute = c->mute_reset_threshold + 1;
430  state->seed = av_lfg_get(&seed_gen);
431  generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2));
432  }
433 
434  return c;
435 
436 fail:
437  ff_dither_free(&c);
438  return NULL;
439 }