FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * This is a decoder for Intel Indeo Video v3.
25  * It is based on vector quantization, run-length coding and motion compensation.
26  * Known container formats: .avi and .mov
27  * Known FOURCCs: 'IV31', 'IV32'
28  *
29  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30  */
31 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "dsputil.h"
36 #include "bytestream.h"
37 #include "get_bits.h"
38 #include "internal.h"
39 
40 #include "indeo3data.h"
41 
42 /* RLE opcodes. */
43 enum {
44  RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
45  RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
46  RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
47  RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
48  RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
49  RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
50  RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
51 };
52 
53 
54 /* Some constants for parsing frame bitstream flags. */
55 #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
56 #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
57 #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
58 #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
59 #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
60 #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
61 
62 
63 typedef struct Plane {
65  uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
66  uint32_t width;
67  uint32_t height;
68  uint32_t pitch;
69 } Plane;
70 
71 #define CELL_STACK_MAX 20
72 
73 typedef struct Cell {
74  int16_t xpos; ///< cell coordinates in 4x4 blocks
75  int16_t ypos;
76  int16_t width; ///< cell width in 4x4 blocks
77  int16_t height; ///< cell height in 4x4 blocks
78  uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
79  const int8_t *mv_ptr; ///< ptr to the motion vector if any
80 } Cell;
81 
82 typedef struct Indeo3DecodeContext {
86 
89  int skip_bits;
92  const int8_t *mc_vectors;
93  unsigned num_vectors; ///< number of motion vectors in mc_vectors
94 
95  int16_t width, height;
96  uint32_t frame_num; ///< current frame number (zero-based)
97  uint32_t data_size; ///< size of the frame data in bytes
98  uint16_t frame_flags; ///< frame properties
99  uint8_t cb_offset; ///< needed for selecting VQ tables
100  uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
107  const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
110 
111 
112 static uint8_t requant_tab[8][128];
113 
114 /*
115  * Build the static requantization table.
116  * This table is used to remap pixel values according to a specific
117  * quant index and thus avoid overflows while adding deltas.
118  */
119 static av_cold void build_requant_tab(void)
120 {
121  static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122  static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
123 
124  int i, j, step;
125 
126  for (i = 0; i < 8; i++) {
127  step = i + 2;
128  for (j = 0; j < 128; j++)
129  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130  }
131 
132  /* some last elements calculated above will have values >= 128 */
133  /* pixel values shall never exceed 127 so set them to non-overflowing values */
134  /* according with the quantization step of the respective section */
135  requant_tab[0][127] = 126;
136  requant_tab[1][119] = 118;
137  requant_tab[1][120] = 118;
138  requant_tab[2][126] = 124;
139  requant_tab[2][127] = 124;
140  requant_tab[6][124] = 120;
141  requant_tab[6][125] = 120;
142  requant_tab[6][126] = 120;
143  requant_tab[6][127] = 120;
144 
145  /* Patch for compatibility with the Intel's binary decoders */
146  requant_tab[1][7] = 10;
147  requant_tab[4][8] = 10;
148 }
149 
150 
152  AVCodecContext *avctx, int luma_width, int luma_height)
153 {
154  int p, chroma_width, chroma_height;
155  int luma_pitch, chroma_pitch, luma_size, chroma_size;
156 
157  if (luma_width < 16 || luma_width > 640 ||
158  luma_height < 16 || luma_height > 480 ||
159  luma_width & 3 || luma_height & 3) {
160  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
161  luma_width, luma_height);
162  return AVERROR_INVALIDDATA;
163  }
164 
165  ctx->width = luma_width ;
166  ctx->height = luma_height;
167 
168  chroma_width = FFALIGN(luma_width >> 2, 4);
169  chroma_height = FFALIGN(luma_height >> 2, 4);
170 
171  luma_pitch = FFALIGN(luma_width, 16);
172  chroma_pitch = FFALIGN(chroma_width, 16);
173 
174  /* Calculate size of the luminance plane. */
175  /* Add one line more for INTRA prediction. */
176  luma_size = luma_pitch * (luma_height + 1);
177 
178  /* Calculate size of a chrominance planes. */
179  /* Add one line more for INTRA prediction. */
180  chroma_size = chroma_pitch * (chroma_height + 1);
181 
182  /* allocate frame buffers */
183  for (p = 0; p < 3; p++) {
184  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
185  ctx->planes[p].width = !p ? luma_width : chroma_width;
186  ctx->planes[p].height = !p ? luma_height : chroma_height;
187 
188  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
189  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
190 
191  /* fill the INTRA prediction lines with the middle pixel value = 64 */
192  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
193  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
194 
195  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
196  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
197  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
198  memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
199  memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
200  }
201 
202  return 0;
203 }
204 
205 
207 {
208  int p;
209 
210  ctx->width=
211  ctx->height= 0;
212 
213  for (p = 0; p < 3; p++) {
214  av_freep(&ctx->planes[p].buffers[0]);
215  av_freep(&ctx->planes[p].buffers[1]);
216  ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
217  }
218 }
219 
220 
221 /**
222  * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
223  * the cell(x, y) in the current frame.
224  *
225  * @param ctx pointer to the decoder context
226  * @param plane pointer to the plane descriptor
227  * @param cell pointer to the cell descriptor
228  */
229 static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
230 {
231  int h, w, mv_x, mv_y, offset, offset_dst;
232  uint8_t *src, *dst;
233 
234  /* setup output and reference pointers */
235  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
236  dst = plane->pixels[ctx->buf_sel] + offset_dst;
237  if(cell->mv_ptr){
238  mv_y = cell->mv_ptr[0];
239  mv_x = cell->mv_ptr[1];
240  }else
241  mv_x= mv_y= 0;
242 
243  /* -1 because there is an extra line on top for prediction */
244  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
245  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
246  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
247  av_log(ctx->avctx, AV_LOG_ERROR,
248  "Motion vectors point out of the frame.\n");
249  return AVERROR_INVALIDDATA;
250  }
251 
252  offset = offset_dst + mv_y * plane->pitch + mv_x;
253  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
254 
255  h = cell->height << 2;
256 
257  for (w = cell->width; w > 0;) {
258  /* copy using 16xH blocks */
259  if (!((cell->xpos << 2) & 15) && w >= 4) {
260  for (; w >= 4; src += 16, dst += 16, w -= 4)
261  ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
262  }
263 
264  /* copy using 8xH blocks */
265  if (!((cell->xpos << 2) & 7) && w >= 2) {
266  ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
267  w -= 2;
268  src += 8;
269  dst += 8;
270  }
271 
272  if (w >= 1) {
273  copy_block4(dst, src, plane->pitch, plane->pitch, h);
274  w--;
275  src += 4;
276  dst += 4;
277  }
278  }
279 
280  return 0;
281 }
282 
283 
284 /* Average 4/8 pixels at once without rounding using SWAR */
285 #define AVG_32(dst, src, ref) \
286  AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
287 
288 #define AVG_64(dst, src, ref) \
289  AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
290 
291 
292 /*
293  * Replicate each even pixel as follows:
294  * ABCDEFGH -> AACCEEGG
295  */
296 static inline uint64_t replicate64(uint64_t a) {
297 #if HAVE_BIGENDIAN
298  a &= 0xFF00FF00FF00FF00ULL;
299  a |= a >> 8;
300 #else
301  a &= 0x00FF00FF00FF00FFULL;
302  a |= a << 8;
303 #endif
304  return a;
305 }
306 
307 static inline uint32_t replicate32(uint32_t a) {
308 #if HAVE_BIGENDIAN
309  a &= 0xFF00FF00UL;
310  a |= a >> 8;
311 #else
312  a &= 0x00FF00FFUL;
313  a |= a << 8;
314 #endif
315  return a;
316 }
317 
318 
319 /* Fill n lines with 64bit pixel value pix */
320 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
321  int32_t row_offset)
322 {
323  for (; n > 0; dst += row_offset, n--)
324  AV_WN64A(dst, pix);
325 }
326 
327 
328 /* Error codes for cell decoding. */
329 enum {
336 };
337 
338 
339 #define BUFFER_PRECHECK \
340 if (*data_ptr >= last_ptr) \
341  return IV3_OUT_OF_DATA; \
342 
343 #define RLE_BLOCK_COPY \
344  if (cell->mv_ptr || !skip_flag) \
345  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
346 
347 #define RLE_BLOCK_COPY_8 \
348  pix64 = AV_RN64(ref);\
349  if (is_first_row) {/* special prediction case: top line of a cell */\
350  pix64 = replicate64(pix64);\
351  fill_64(dst + row_offset, pix64, 7, row_offset);\
352  AVG_64(dst, ref, dst + row_offset);\
353  } else \
354  fill_64(dst, pix64, 8, row_offset)
355 
356 #define RLE_LINES_COPY \
357  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
358 
359 #define RLE_LINES_COPY_M10 \
360  pix64 = AV_RN64(ref);\
361  if (is_top_of_cell) {\
362  pix64 = replicate64(pix64);\
363  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
364  AVG_64(dst, ref, dst + row_offset);\
365  } else \
366  fill_64(dst, pix64, num_lines << 1, row_offset)
367 
368 #define APPLY_DELTA_4 \
369  AV_WN16A(dst + line_offset ,\
370  (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
371  AV_WN16A(dst + line_offset + 2,\
372  (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
373  if (mode >= 3) {\
374  if (is_top_of_cell && !cell->ypos) {\
375  AV_COPY32U(dst, dst + row_offset);\
376  } else {\
377  AVG_32(dst, ref, dst + row_offset);\
378  }\
379  }
380 
381 #define APPLY_DELTA_8 \
382  /* apply two 32-bit VQ deltas to next even line */\
383  if (is_top_of_cell) { \
384  AV_WN32A(dst + row_offset , \
385  (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
386  AV_WN32A(dst + row_offset + 4, \
387  (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
388  } else { \
389  AV_WN32A(dst + row_offset , \
390  (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
391  AV_WN32A(dst + row_offset + 4, \
392  (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
393  } \
394  /* odd lines are not coded but rather interpolated/replicated */\
395  /* first line of the cell on the top of image? - replicate */\
396  /* otherwise - interpolate */\
397  if (is_top_of_cell && !cell->ypos) {\
398  AV_COPY64U(dst, dst + row_offset);\
399  } else \
400  AVG_64(dst, ref, dst + row_offset);
401 
402 
403 #define APPLY_DELTA_1011_INTER \
404  if (mode == 10) { \
405  AV_WN32A(dst , \
406  (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
407  AV_WN32A(dst + 4 , \
408  (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
409  AV_WN32A(dst + row_offset , \
410  (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
411  AV_WN32A(dst + row_offset + 4, \
412  (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
413  } else { \
414  AV_WN16A(dst , \
415  (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
416  AV_WN16A(dst + 2 , \
417  (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
418  AV_WN16A(dst + row_offset , \
419  (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
420  AV_WN16A(dst + row_offset + 2, \
421  (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
422  }
423 
424 
425 static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
426  int pitch, int h_zoom, int v_zoom, int mode,
427  const vqEntry *delta[2], int swap_quads[2],
428  const uint8_t **data_ptr, const uint8_t *last_ptr)
429 {
430  int x, y, line, num_lines;
431  int rle_blocks = 0;
432  uint8_t code, *dst, *ref;
433  const vqEntry *delta_tab;
434  unsigned int dyad1, dyad2;
435  uint64_t pix64;
436  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
437  int row_offset, blk_row_offset, line_offset;
438 
439  row_offset = pitch;
440  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
441  line_offset = v_zoom ? row_offset : 0;
442 
443  if (cell->height & v_zoom || cell->width & h_zoom)
444  return IV3_BAD_DATA;
445 
446  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
447  for (x = 0; x < cell->width; x += 1 + h_zoom) {
448  ref = ref_block;
449  dst = block;
450 
451  if (rle_blocks > 0) {
452  if (mode <= 4) {
454  } else if (mode == 10 && !cell->mv_ptr) {
456  }
457  rle_blocks--;
458  } else {
459  for (line = 0; line < 4;) {
460  num_lines = 1;
461  is_top_of_cell = is_first_row && !line;
462 
463  /* select primary VQ table for odd, secondary for even lines */
464  if (mode <= 4)
465  delta_tab = delta[line & 1];
466  else
467  delta_tab = delta[1];
469  code = bytestream_get_byte(data_ptr);
470  if (code < 248) {
471  if (code < delta_tab->num_dyads) {
473  dyad1 = bytestream_get_byte(data_ptr);
474  dyad2 = code;
475  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
476  return IV3_BAD_DATA;
477  } else {
478  /* process QUADS */
479  code -= delta_tab->num_dyads;
480  dyad1 = code / delta_tab->quad_exp;
481  dyad2 = code % delta_tab->quad_exp;
482  if (swap_quads[line & 1])
483  FFSWAP(unsigned int, dyad1, dyad2);
484  }
485  if (mode <= 4) {
487  } else if (mode == 10 && !cell->mv_ptr) {
489  } else {
491  }
492  } else {
493  /* process RLE codes */
494  switch (code) {
495  case RLE_ESC_FC:
496  skip_flag = 0;
497  rle_blocks = 1;
498  code = 253;
499  /* FALLTHROUGH */
500  case RLE_ESC_FF:
501  case RLE_ESC_FE:
502  case RLE_ESC_FD:
503  num_lines = 257 - code - line;
504  if (num_lines <= 0)
505  return IV3_BAD_RLE;
506  if (mode <= 4) {
508  } else if (mode == 10 && !cell->mv_ptr) {
510  }
511  break;
512  case RLE_ESC_FB:
514  code = bytestream_get_byte(data_ptr);
515  rle_blocks = (code & 0x1F) - 1; /* set block counter */
516  if (code >= 64 || rle_blocks < 0)
517  return IV3_BAD_COUNTER;
518  skip_flag = code & 0x20;
519  num_lines = 4 - line; /* enforce next block processing */
520  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
521  if (mode <= 4) {
523  } else if (mode == 10 && !cell->mv_ptr) {
525  }
526  }
527  break;
528  case RLE_ESC_F9:
529  skip_flag = 1;
530  rle_blocks = 1;
531  /* FALLTHROUGH */
532  case RLE_ESC_FA:
533  if (line)
534  return IV3_BAD_RLE;
535  num_lines = 4; /* enforce next block processing */
536  if (cell->mv_ptr) {
537  if (mode <= 4) {
539  } else if (mode == 10 && !cell->mv_ptr) {
541  }
542  }
543  break;
544  default:
545  return IV3_UNSUPPORTED;
546  }
547  }
548 
549  line += num_lines;
550  ref += row_offset * (num_lines << v_zoom);
551  dst += row_offset * (num_lines << v_zoom);
552  }
553  }
554 
555  /* move to next horizontal block */
556  block += 4 << h_zoom;
557  ref_block += 4 << h_zoom;
558  }
559 
560  /* move to next line of blocks */
561  ref_block += blk_row_offset;
562  block += blk_row_offset;
563  }
564  return IV3_NOERR;
565 }
566 
567 
568 /**
569  * Decode a vector-quantized cell.
570  * It consists of several routines, each of which handles one or more "modes"
571  * with which a cell can be encoded.
572  *
573  * @param ctx pointer to the decoder context
574  * @param avctx ptr to the AVCodecContext
575  * @param plane pointer to the plane descriptor
576  * @param cell pointer to the cell descriptor
577  * @param data_ptr pointer to the compressed data
578  * @param last_ptr pointer to the last byte to catch reads past end of buffer
579  * @return number of consumed bytes or negative number in case of error
580  */
582  Plane *plane, Cell *cell, const uint8_t *data_ptr,
583  const uint8_t *last_ptr)
584 {
585  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
586  int zoom_fac;
587  int offset, error = 0, swap_quads[2];
588  uint8_t code, *block, *ref_block = 0;
589  const vqEntry *delta[2];
590  const uint8_t *data_start = data_ptr;
591 
592  /* get coding mode and VQ table index from the VQ descriptor byte */
593  code = *data_ptr++;
594  mode = code >> 4;
595  vq_index = code & 0xF;
596 
597  /* setup output and reference pointers */
598  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
599  block = plane->pixels[ctx->buf_sel] + offset;
600 
601  if (cell->mv_ptr) {
602  mv_y = cell->mv_ptr[0];
603  mv_x = cell->mv_ptr[1];
604  if ( mv_x + 4*cell->xpos < 0
605  || mv_y + 4*cell->ypos < 0
606  || mv_x + 4*cell->xpos + 4*cell->width > plane->width
607  || mv_y + 4*cell->ypos + 4*cell->height > plane->height) {
608  av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*cell->xpos, mv_y + 4*cell->ypos);
609  return AVERROR_INVALIDDATA;
610  }
611  }
612 
613  if (!cell->mv_ptr) {
614  /* use previous line as reference for INTRA cells */
615  ref_block = block - plane->pitch;
616  } else if (mode >= 10) {
617  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
618  /* so we don't need to do data copying for each RLE code later */
619  int ret = copy_cell(ctx, plane, cell);
620  if (ret < 0)
621  return ret;
622  } else {
623  /* set the pointer to the reference pixels for modes 0-4 INTER */
624  mv_y = cell->mv_ptr[0];
625  mv_x = cell->mv_ptr[1];
626 
627  /* -1 because there is an extra line on top for prediction */
628  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
629  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
630  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
631  av_log(ctx->avctx, AV_LOG_ERROR,
632  "Motion vectors point out of the frame.\n");
633  return AVERROR_INVALIDDATA;
634  }
635 
636  offset += mv_y * plane->pitch + mv_x;
637  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
638  }
639 
640  /* select VQ tables as follows: */
641  /* modes 0 and 3 use only the primary table for all lines in a block */
642  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
643  if (mode == 1 || mode == 4) {
644  code = ctx->alt_quant[vq_index];
645  prim_indx = (code >> 4) + ctx->cb_offset;
646  second_indx = (code & 0xF) + ctx->cb_offset;
647  } else {
648  vq_index += ctx->cb_offset;
649  prim_indx = second_indx = vq_index;
650  }
651 
652  if (prim_indx >= 24 || second_indx >= 24) {
653  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
654  prim_indx, second_indx);
655  return AVERROR_INVALIDDATA;
656  }
657 
658  delta[0] = &vq_tab[second_indx];
659  delta[1] = &vq_tab[prim_indx];
660  swap_quads[0] = second_indx >= 16;
661  swap_quads[1] = prim_indx >= 16;
662 
663  /* requantize the prediction if VQ index of this cell differs from VQ index */
664  /* of the predicted cell in order to avoid overflows. */
665  if (vq_index >= 8 && ref_block) {
666  for (x = 0; x < cell->width << 2; x++)
667  ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
668  }
669 
670  error = IV3_NOERR;
671 
672  switch (mode) {
673  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
674  case 1:
675  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
676  case 4:
677  if (mode >= 3 && cell->mv_ptr) {
678  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
679  return AVERROR_INVALIDDATA;
680  }
681 
682  zoom_fac = mode >= 3;
683  error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
684  mode, delta, swap_quads, &data_ptr, last_ptr);
685  break;
686  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
687  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
688  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
689  error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
690  mode, delta, swap_quads, &data_ptr, last_ptr);
691  } else { /* mode 10 and 11 INTER processing */
692  if (mode == 11 && !cell->mv_ptr) {
693  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
694  return AVERROR_INVALIDDATA;
695  }
696 
697  zoom_fac = mode == 10;
698  error = decode_cell_data(cell, block, ref_block, plane->pitch,
699  zoom_fac, 1, mode, delta, swap_quads,
700  &data_ptr, last_ptr);
701  }
702  break;
703  default:
704  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
705  return AVERROR_INVALIDDATA;
706  }//switch mode
707 
708  switch (error) {
709  case IV3_BAD_RLE:
710  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
711  mode, data_ptr[-1]);
712  return AVERROR_INVALIDDATA;
713  case IV3_BAD_DATA:
714  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
715  return AVERROR_INVALIDDATA;
716  case IV3_BAD_COUNTER:
717  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
718  return AVERROR_INVALIDDATA;
719  case IV3_UNSUPPORTED:
720  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
721  return AVERROR_INVALIDDATA;
722  case IV3_OUT_OF_DATA:
723  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
724  return AVERROR_INVALIDDATA;
725  }
726 
727  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
728 }
729 
730 
731 /* Binary tree codes. */
732 enum {
733  H_SPLIT = 0,
734  V_SPLIT = 1,
737 };
738 
739 
740 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
741 
742 #define UPDATE_BITPOS(n) \
743  ctx->skip_bits += (n); \
744  ctx->need_resync = 1
745 
746 #define RESYNC_BITSTREAM \
747  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
748  skip_bits_long(&ctx->gb, ctx->skip_bits); \
749  ctx->skip_bits = 0; \
750  ctx->need_resync = 0; \
751  }
752 
753 #define CHECK_CELL \
754  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
755  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
756  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
757  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
758  return AVERROR_INVALIDDATA; \
759  }
760 
761 
763  Plane *plane, int code, Cell *ref_cell,
764  const int depth, const int strip_width)
765 {
766  Cell curr_cell;
767  int bytes_used, ret;
768 
769  if (depth <= 0) {
770  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
771  return AVERROR_INVALIDDATA; // unwind recursion
772  }
773 
774  curr_cell = *ref_cell; // clone parent cell
775  if (code == H_SPLIT) {
776  SPLIT_CELL(ref_cell->height, curr_cell.height);
777  ref_cell->ypos += curr_cell.height;
778  ref_cell->height -= curr_cell.height;
779  if (ref_cell->height <= 0 || curr_cell.height <= 0)
780  return AVERROR_INVALIDDATA;
781  } else if (code == V_SPLIT) {
782  if (curr_cell.width > strip_width) {
783  /* split strip */
784  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
785  } else
786  SPLIT_CELL(ref_cell->width, curr_cell.width);
787  ref_cell->xpos += curr_cell.width;
788  ref_cell->width -= curr_cell.width;
789  if (ref_cell->width <= 0 || curr_cell.width <= 0)
790  return AVERROR_INVALIDDATA;
791  }
792 
793  while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
795  switch (code = get_bits(&ctx->gb, 2)) {
796  case H_SPLIT:
797  case V_SPLIT:
798  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
799  return AVERROR_INVALIDDATA;
800  break;
801  case INTRA_NULL:
802  if (!curr_cell.tree) { /* MC tree INTRA code */
803  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
804  curr_cell.tree = 1; /* enter the VQ tree */
805  } else { /* VQ tree NULL code */
807  code = get_bits(&ctx->gb, 2);
808  if (code >= 2) {
809  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
810  return AVERROR_INVALIDDATA;
811  }
812  if (code == 1)
813  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
814 
815  CHECK_CELL
816  if (!curr_cell.mv_ptr)
817  return AVERROR_INVALIDDATA;
818  ret = copy_cell(ctx, plane, &curr_cell);
819  return ret;
820  }
821  break;
822  case INTER_DATA:
823  if (!curr_cell.tree) { /* MC tree INTER code */
824  unsigned mv_idx;
825  /* get motion vector index and setup the pointer to the mv set */
826  if (!ctx->need_resync)
827  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
828  if (ctx->next_cell_data >= ctx->last_byte) {
829  av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
830  return AVERROR_INVALIDDATA;
831  }
832  mv_idx = *(ctx->next_cell_data++);
833  if (mv_idx >= ctx->num_vectors) {
834  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
835  return AVERROR_INVALIDDATA;
836  }
837  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
838  curr_cell.tree = 1; /* enter the VQ tree */
839  UPDATE_BITPOS(8);
840  } else { /* VQ tree DATA code */
841  if (!ctx->need_resync)
842  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
843 
844  CHECK_CELL
845  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
846  ctx->next_cell_data, ctx->last_byte);
847  if (bytes_used < 0)
848  return AVERROR_INVALIDDATA;
849 
850  UPDATE_BITPOS(bytes_used << 3);
851  ctx->next_cell_data += bytes_used;
852  return 0;
853  }
854  break;
855  }
856  }//while
857 
858  return AVERROR_INVALIDDATA;
859 }
860 
861 
863  Plane *plane, const uint8_t *data, int32_t data_size,
864  int32_t strip_width)
865 {
866  Cell curr_cell;
867  unsigned num_vectors;
868 
869  /* each plane data starts with mc_vector_count field, */
870  /* an optional array of motion vectors followed by the vq data */
871  num_vectors = bytestream_get_le32(&data); data_size -= 4;
872  if (num_vectors > 256) {
873  av_log(ctx->avctx, AV_LOG_ERROR,
874  "Read invalid number of motion vectors %d\n", num_vectors);
875  return AVERROR_INVALIDDATA;
876  }
877  if (num_vectors * 2 > data_size)
878  return AVERROR_INVALIDDATA;
879 
880  ctx->num_vectors = num_vectors;
881  ctx->mc_vectors = num_vectors ? data : 0;
882 
883  /* init the bitreader */
884  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
885  ctx->skip_bits = 0;
886  ctx->need_resync = 0;
887 
888  ctx->last_byte = data + data_size;
889 
890  /* initialize the 1st cell and set its dimensions to whole plane */
891  curr_cell.xpos = curr_cell.ypos = 0;
892  curr_cell.width = plane->width >> 2;
893  curr_cell.height = plane->height >> 2;
894  curr_cell.tree = 0; // we are in the MC tree now
895  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
896 
897  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
898 }
899 
900 
901 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
902 
904  const uint8_t *buf, int buf_size)
905 {
906  GetByteContext gb;
907  const uint8_t *bs_hdr;
908  uint32_t frame_num, word2, check_sum, data_size;
909  uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
910  uint16_t height, width;
911  int i, j;
912 
913  bytestream2_init(&gb, buf, buf_size);
914 
915  /* parse and check the OS header */
916  frame_num = bytestream2_get_le32(&gb);
917  word2 = bytestream2_get_le32(&gb);
918  check_sum = bytestream2_get_le32(&gb);
919  data_size = bytestream2_get_le32(&gb);
920 
921  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
922  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
923  return AVERROR_INVALIDDATA;
924  }
925 
926  /* parse the bitstream header */
927  bs_hdr = gb.buffer;
928 
929  if (bytestream2_get_le16(&gb) != 32) {
930  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
931  return AVERROR_INVALIDDATA;
932  }
933 
934  ctx->frame_num = frame_num;
935  ctx->frame_flags = bytestream2_get_le16(&gb);
936  ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
937  ctx->cb_offset = bytestream2_get_byte(&gb);
938 
939  if (ctx->data_size == 16)
940  return 4;
941  ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
942 
943  bytestream2_skip(&gb, 3); // skip reserved byte and checksum
944 
945  /* check frame dimensions */
946  height = bytestream2_get_le16(&gb);
947  width = bytestream2_get_le16(&gb);
948  if (av_image_check_size(width, height, 0, avctx))
949  return AVERROR_INVALIDDATA;
950 
951  if (width != ctx->width || height != ctx->height) {
952  int res;
953 
954  av_dlog(avctx, "Frame dimensions changed!\n");
955 
956  if (width < 16 || width > 640 ||
957  height < 16 || height > 480 ||
958  width & 3 || height & 3) {
959  av_log(avctx, AV_LOG_ERROR,
960  "Invalid picture dimensions: %d x %d!\n", width, height);
961  return AVERROR_INVALIDDATA;
962  }
963  free_frame_buffers(ctx);
964  if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
965  return res;
966  avcodec_set_dimensions(avctx, width, height);
967  }
968 
969  y_offset = bytestream2_get_le32(&gb);
970  v_offset = bytestream2_get_le32(&gb);
971  u_offset = bytestream2_get_le32(&gb);
972  bytestream2_skip(&gb, 4);
973 
974  /* unfortunately there is no common order of planes in the buffer */
975  /* so we use that sorting algo for determining planes data sizes */
976  starts[0] = y_offset;
977  starts[1] = v_offset;
978  starts[2] = u_offset;
979 
980  for (j = 0; j < 3; j++) {
981  ends[j] = ctx->data_size;
982  for (i = 2; i >= 0; i--)
983  if (starts[i] < ends[j] && starts[i] > starts[j])
984  ends[j] = starts[i];
985  }
986 
987  ctx->y_data_size = ends[0] - starts[0];
988  ctx->v_data_size = ends[1] - starts[1];
989  ctx->u_data_size = ends[2] - starts[2];
990  if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
991  FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
992  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
993  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
994  return AVERROR_INVALIDDATA;
995  }
996 
997  ctx->y_data_ptr = bs_hdr + y_offset;
998  ctx->v_data_ptr = bs_hdr + v_offset;
999  ctx->u_data_ptr = bs_hdr + u_offset;
1000  ctx->alt_quant = gb.buffer;
1001 
1002  if (ctx->data_size == 16) {
1003  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
1004  return 16;
1005  }
1006 
1007  if (ctx->frame_flags & BS_8BIT_PEL) {
1008  av_log_ask_for_sample(avctx, "8-bit pixel format\n");
1009  return AVERROR_PATCHWELCOME;
1010  }
1011 
1012  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1013  av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
1014  return AVERROR_PATCHWELCOME;
1015  }
1016 
1017  return 0;
1018 }
1019 
1020 
1021 /**
1022  * Convert and output the current plane.
1023  * All pixel values will be upsampled by shifting right by one bit.
1024  *
1025  * @param[in] plane pointer to the descriptor of the plane being processed
1026  * @param[in] buf_sel indicates which frame buffer the input data stored in
1027  * @param[out] dst pointer to the buffer receiving converted pixels
1028  * @param[in] dst_pitch pitch for moving to the next y line
1029  * @param[in] dst_height output plane height
1030  */
1031 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1032  int dst_pitch, int dst_height)
1033 {
1034  int x,y;
1035  const uint8_t *src = plane->pixels[buf_sel];
1036  uint32_t pitch = plane->pitch;
1037 
1038  dst_height = FFMIN(dst_height, plane->height);
1039  for (y = 0; y < dst_height; y++) {
1040  /* convert four pixels at once using SWAR */
1041  for (x = 0; x < plane->width >> 2; x++) {
1042  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1043  src += 4;
1044  dst += 4;
1045  }
1046 
1047  for (x <<= 2; x < plane->width; x++)
1048  *dst++ = *src++ << 1;
1049 
1050  src += pitch - plane->width;
1051  dst += dst_pitch - plane->width;
1052  }
1053 }
1054 
1055 
1057 {
1058  Indeo3DecodeContext *ctx = avctx->priv_data;
1059 
1060  ctx->avctx = avctx;
1061  avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1063 
1065 
1066  ff_dsputil_init(&ctx->dsp, avctx);
1067 
1068  return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1069 }
1070 
1071 
1072 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1073  AVPacket *avpkt)
1074 {
1075  Indeo3DecodeContext *ctx = avctx->priv_data;
1076  const uint8_t *buf = avpkt->data;
1077  int buf_size = avpkt->size;
1078  int res;
1079 
1080  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1081  if (res < 0)
1082  return res;
1083 
1084  /* skip sync(null) frames */
1085  if (res) {
1086  // we have processed 16 bytes but no data was decoded
1087  *got_frame = 0;
1088  return buf_size;
1089  }
1090 
1091  /* skip droppable INTER frames if requested */
1092  if (ctx->frame_flags & BS_NONREF &&
1093  (avctx->skip_frame >= AVDISCARD_NONREF))
1094  return 0;
1095 
1096  /* skip INTER frames if requested */
1097  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1098  return 0;
1099 
1100  /* use BS_BUFFER flag for buffer switching */
1101  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1102 
1103  if (ctx->frame.data[0])
1104  avctx->release_buffer(avctx, &ctx->frame);
1105 
1106  ctx->frame.reference = 0;
1107  if ((res = ff_get_buffer(avctx, &ctx->frame)) < 0) {
1108  av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1109  return res;
1110  }
1111 
1112  /* decode luma plane */
1113  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1114  return res;
1115 
1116  /* decode chroma planes */
1117  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1118  return res;
1119 
1120  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1121  return res;
1122 
1123  output_plane(&ctx->planes[0], ctx->buf_sel,
1124  ctx->frame.data[0], ctx->frame.linesize[0],
1125  avctx->height);
1126  output_plane(&ctx->planes[1], ctx->buf_sel,
1127  ctx->frame.data[1], ctx->frame.linesize[1],
1128  (avctx->height + 3) >> 2);
1129  output_plane(&ctx->planes[2], ctx->buf_sel,
1130  ctx->frame.data[2], ctx->frame.linesize[2],
1131  (avctx->height + 3) >> 2);
1132 
1133  *got_frame = 1;
1134  *(AVFrame*)data = ctx->frame;
1135 
1136  return buf_size;
1137 }
1138 
1139 
1141 {
1142  Indeo3DecodeContext *ctx = avctx->priv_data;
1143 
1144  free_frame_buffers(avctx->priv_data);
1145 
1146  if (ctx->frame.data[0])
1147  avctx->release_buffer(avctx, &ctx->frame);
1148 
1149  return 0;
1150 }
1151 
1153  .name = "indeo3",
1154  .type = AVMEDIA_TYPE_VIDEO,
1155  .id = AV_CODEC_ID_INDEO3,
1156  .priv_data_size = sizeof(Indeo3DecodeContext),
1157  .init = decode_init,
1158  .close = decode_close,
1159  .decode = decode_frame,
1160  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1161  .capabilities = CODEC_CAP_DR1,
1162 };