FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
imc.c
Go to the documentation of this file.
1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * IMC - Intel Music Coder
27  * A mdct based codec using a 256 points large transform
28  * divided into 32 bands with some mix of scale factors.
29  * Only mono is supported.
30  *
31  */
32 
33 
34 #include <math.h>
35 #include <stddef.h>
36 #include <stdio.h>
37 
39 #include "libavutil/libm.h"
40 #include "avcodec.h"
41 #include "get_bits.h"
42 #include "dsputil.h"
43 #include "fft.h"
44 #include "internal.h"
45 #include "sinewin.h"
46 
47 #include "imcdata.h"
48 
49 #define IMC_BLOCK_SIZE 64
50 #define IMC_FRAME_ID 0x21
51 #define BANDS 32
52 #define COEFFS 256
53 
54 typedef struct IMCChannel {
55  float old_floor[BANDS];
56  float flcoeffs1[BANDS];
57  float flcoeffs2[BANDS];
58  float flcoeffs3[BANDS];
59  float flcoeffs4[BANDS];
60  float flcoeffs5[BANDS];
61  float flcoeffs6[BANDS];
62  float CWdecoded[COEFFS];
63 
64  int bandWidthT[BANDS]; ///< codewords per band
65  int bitsBandT[BANDS]; ///< how many bits per codeword in band
66  int CWlengthT[COEFFS]; ///< how many bits in each codeword
68  int bandFlagsBuf[BANDS]; ///< flags for each band
69  int sumLenArr[BANDS]; ///< bits for all coeffs in band
70  int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
71  int skipFlagBits[BANDS]; ///< bits used to code skip flags
72  int skipFlagCount[BANDS]; ///< skipped coeffients per band
73  int skipFlags[COEFFS]; ///< skip coefficient decoding or not
74  int codewords[COEFFS]; ///< raw codewords read from bitstream
75 
77 
79 } IMCChannel;
80 
81 typedef struct {
83 
84  IMCChannel chctx[2];
85 
86  /** MDCT tables */
87  //@{
88  float mdct_sine_window[COEFFS];
89  float post_cos[COEFFS];
90  float post_sin[COEFFS];
91  float pre_coef1[COEFFS];
92  float pre_coef2[COEFFS];
93  //@}
94 
95  float sqrt_tab[30];
97 
101  float *out_samples;
102 
103  int8_t cyclTab[32], cyclTab2[32];
104  float weights1[31], weights2[31];
105 } IMCContext;
106 
107 static VLC huffman_vlc[4][4];
108 
109 #define VLC_TABLES_SIZE 9512
110 
111 static const int vlc_offsets[17] = {
112  0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
113  4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
114 };
115 
117 
118 static inline double freq2bark(double freq)
119 {
120  return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
121 }
122 
123 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
124 {
125  double freqmin[32], freqmid[32], freqmax[32];
126  double scale = sampling_rate / (256.0 * 2.0 * 2.0);
127  double nyquist_freq = sampling_rate * 0.5;
128  double freq, bark, prev_bark = 0, tf, tb;
129  int i, j;
130 
131  for (i = 0; i < 32; i++) {
132  freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
133  bark = freq2bark(freq);
134 
135  if (i > 0) {
136  tb = bark - prev_bark;
137  q->weights1[i - 1] = pow(10.0, -1.0 * tb);
138  q->weights2[i - 1] = pow(10.0, -2.7 * tb);
139  }
140  prev_bark = bark;
141 
142  freqmid[i] = freq;
143 
144  tf = freq;
145  while (tf < nyquist_freq) {
146  tf += 0.5;
147  tb = freq2bark(tf);
148  if (tb > bark + 0.5)
149  break;
150  }
151  freqmax[i] = tf;
152 
153  tf = freq;
154  while (tf > 0.0) {
155  tf -= 0.5;
156  tb = freq2bark(tf);
157  if (tb <= bark - 0.5)
158  break;
159  }
160  freqmin[i] = tf;
161  }
162 
163  for (i = 0; i < 32; i++) {
164  freq = freqmax[i];
165  for (j = 31; j > 0 && freq <= freqmid[j]; j--);
166  q->cyclTab[i] = j + 1;
167 
168  freq = freqmin[i];
169  for (j = 0; j < 32 && freq >= freqmid[j]; j++);
170  q->cyclTab2[i] = j - 1;
171  }
172 }
173 
175 {
176  int i, j, ret;
177  IMCContext *q = avctx->priv_data;
178  double r1, r2;
179 
180  if (avctx->codec_id == AV_CODEC_ID_IMC)
181  avctx->channels = 1;
182 
183  if (avctx->channels > 2) {
184  av_log_ask_for_sample(avctx, "Number of channels is not supported\n");
185  return AVERROR_PATCHWELCOME;
186  }
187 
188  for (j = 0; j < avctx->channels; j++) {
189  q->chctx[j].decoder_reset = 1;
190 
191  for (i = 0; i < BANDS; i++)
192  q->chctx[j].old_floor[i] = 1.0;
193 
194  for (i = 0; i < COEFFS / 2; i++)
195  q->chctx[j].last_fft_im[i] = 0;
196  }
197 
198  /* Build mdct window, a simple sine window normalized with sqrt(2) */
200  for (i = 0; i < COEFFS; i++)
201  q->mdct_sine_window[i] *= sqrt(2.0);
202  for (i = 0; i < COEFFS / 2; i++) {
203  q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
204  q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
205 
206  r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
207  r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
208 
209  if (i & 0x1) {
210  q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
211  q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
212  } else {
213  q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
214  q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
215  }
216  }
217 
218  /* Generate a square root table */
219 
220  for (i = 0; i < 30; i++)
221  q->sqrt_tab[i] = sqrt(i);
222 
223  /* initialize the VLC tables */
224  for (i = 0; i < 4 ; i++) {
225  for (j = 0; j < 4; j++) {
226  huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
227  huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
228  init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
229  imc_huffman_lens[i][j], 1, 1,
231  }
232  }
233 
234  if (avctx->codec_id == AV_CODEC_ID_IAC) {
235  iac_generate_tabs(q, avctx->sample_rate);
236  } else {
237  memcpy(q->cyclTab, cyclTab, sizeof(cyclTab));
238  memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
239  memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
240  memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
241  }
242 
243  if ((ret = ff_fft_init(&q->fft, 7, 1))) {
244  av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
245  return ret;
246  }
247  ff_dsputil_init(&q->dsp, avctx);
249  avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
251 
253  avctx->coded_frame = &q->frame;
254 
255  return 0;
256 }
257 
258 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
259  float *flcoeffs2, int *bandWidthT,
260  float *flcoeffs3, float *flcoeffs5)
261 {
262  float workT1[BANDS];
263  float workT2[BANDS];
264  float workT3[BANDS];
265  float snr_limit = 1.e-30;
266  float accum = 0.0;
267  int i, cnt2;
268 
269  for (i = 0; i < BANDS; i++) {
270  flcoeffs5[i] = workT2[i] = 0.0;
271  if (bandWidthT[i]) {
272  workT1[i] = flcoeffs1[i] * flcoeffs1[i];
273  flcoeffs3[i] = 2.0 * flcoeffs2[i];
274  } else {
275  workT1[i] = 0.0;
276  flcoeffs3[i] = -30000.0;
277  }
278  workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
279  if (workT3[i] <= snr_limit)
280  workT3[i] = 0.0;
281  }
282 
283  for (i = 0; i < BANDS; i++) {
284  for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
285  flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
286  workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
287  }
288 
289  for (i = 1; i < BANDS; i++) {
290  accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
291  flcoeffs5[i] += accum;
292  }
293 
294  for (i = 0; i < BANDS; i++)
295  workT2[i] = 0.0;
296 
297  for (i = 0; i < BANDS; i++) {
298  for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
299  flcoeffs5[cnt2] += workT3[i];
300  workT2[cnt2+1] += workT3[i];
301  }
302 
303  accum = 0.0;
304 
305  for (i = BANDS-2; i >= 0; i--) {
306  accum = (workT2[i+1] + accum) * q->weights2[i];
307  flcoeffs5[i] += accum;
308  // there is missing code here, but it seems to never be triggered
309  }
310 }
311 
312 
313 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
314  int *levlCoeffs)
315 {
316  int i;
317  VLC *hufftab[4];
318  int start = 0;
319  const uint8_t *cb_sel;
320  int s;
321 
322  s = stream_format_code >> 1;
323  hufftab[0] = &huffman_vlc[s][0];
324  hufftab[1] = &huffman_vlc[s][1];
325  hufftab[2] = &huffman_vlc[s][2];
326  hufftab[3] = &huffman_vlc[s][3];
327  cb_sel = imc_cb_select[s];
328 
329  if (stream_format_code & 4)
330  start = 1;
331  if (start)
332  levlCoeffs[0] = get_bits(&q->gb, 7);
333  for (i = start; i < BANDS; i++) {
334  levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
335  hufftab[cb_sel[i]]->bits, 2);
336  if (levlCoeffs[i] == 17)
337  levlCoeffs[i] += get_bits(&q->gb, 4);
338  }
339 }
340 
341 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
342  float *flcoeffs1, float *flcoeffs2)
343 {
344  int i, level;
345  float tmp, tmp2;
346  // maybe some frequency division thingy
347 
348  flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
349  flcoeffs2[0] = log2f(flcoeffs1[0]);
350  tmp = flcoeffs1[0];
351  tmp2 = flcoeffs2[0];
352 
353  for (i = 1; i < BANDS; i++) {
354  level = levlCoeffBuf[i];
355  if (level == 16) {
356  flcoeffs1[i] = 1.0;
357  flcoeffs2[i] = 0.0;
358  } else {
359  if (level < 17)
360  level -= 7;
361  else if (level <= 24)
362  level -= 32;
363  else
364  level -= 16;
365 
366  tmp *= imc_exp_tab[15 + level];
367  tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
368  flcoeffs1[i] = tmp;
369  flcoeffs2[i] = tmp2;
370  }
371  }
372 }
373 
374 
375 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
376  float *old_floor, float *flcoeffs1,
377  float *flcoeffs2)
378 {
379  int i;
380  /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
381  * and flcoeffs2 old scale factors
382  * might be incomplete due to a missing table that is in the binary code
383  */
384  for (i = 0; i < BANDS; i++) {
385  flcoeffs1[i] = 0;
386  if (levlCoeffBuf[i] < 16) {
387  flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
388  flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
389  } else {
390  flcoeffs1[i] = old_floor[i];
391  }
392  }
393 }
394 
395 /**
396  * Perform bit allocation depending on bits available
397  */
398 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
399  int stream_format_code, int freebits, int flag)
400 {
401  int i, j;
402  const float limit = -1.e20;
403  float highest = 0.0;
404  int indx;
405  int t1 = 0;
406  int t2 = 1;
407  float summa = 0.0;
408  int iacc = 0;
409  int summer = 0;
410  int rres, cwlen;
411  float lowest = 1.e10;
412  int low_indx = 0;
413  float workT[32];
414  int flg;
415  int found_indx = 0;
416 
417  for (i = 0; i < BANDS; i++)
418  highest = FFMAX(highest, chctx->flcoeffs1[i]);
419 
420  for (i = 0; i < BANDS - 1; i++)
421  chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
422  chctx->flcoeffs4[BANDS - 1] = limit;
423 
424  highest = highest * 0.25;
425 
426  for (i = 0; i < BANDS; i++) {
427  indx = -1;
428  if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
429  indx = 0;
430 
431  if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
432  indx = 1;
433 
434  if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
435  indx = 2;
436 
437  if (indx == -1)
438  return AVERROR_INVALIDDATA;
439 
440  chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
441  }
442 
443  if (stream_format_code & 0x2) {
444  chctx->flcoeffs4[0] = limit;
445  chctx->flcoeffs4[1] = limit;
446  chctx->flcoeffs4[2] = limit;
447  chctx->flcoeffs4[3] = limit;
448  }
449 
450  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
451  iacc += chctx->bandWidthT[i];
452  summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
453  }
454  chctx->bandWidthT[BANDS - 1] = 0;
455  summa = (summa * 0.5 - freebits) / iacc;
456 
457 
458  for (i = 0; i < BANDS / 2; i++) {
459  rres = summer - freebits;
460  if ((rres >= -8) && (rres <= 8))
461  break;
462 
463  summer = 0;
464  iacc = 0;
465 
466  for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
467  cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
468 
469  chctx->bitsBandT[j] = cwlen;
470  summer += chctx->bandWidthT[j] * cwlen;
471 
472  if (cwlen > 0)
473  iacc += chctx->bandWidthT[j];
474  }
475 
476  flg = t2;
477  t2 = 1;
478  if (freebits < summer)
479  t2 = -1;
480  if (i == 0)
481  flg = t2;
482  if (flg != t2)
483  t1++;
484 
485  summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
486  }
487 
488  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
489  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
490  chctx->CWlengthT[j] = chctx->bitsBandT[i];
491  }
492 
493  if (freebits > summer) {
494  for (i = 0; i < BANDS; i++) {
495  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
496  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
497  }
498 
499  highest = 0.0;
500 
501  do {
502  if (highest <= -1.e20)
503  break;
504 
505  found_indx = 0;
506  highest = -1.e20;
507 
508  for (i = 0; i < BANDS; i++) {
509  if (workT[i] > highest) {
510  highest = workT[i];
511  found_indx = i;
512  }
513  }
514 
515  if (highest > -1.e20) {
516  workT[found_indx] -= 2.0;
517  if (++chctx->bitsBandT[found_indx] == 6)
518  workT[found_indx] = -1.e20;
519 
520  for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
521  chctx->CWlengthT[j]++;
522  summer++;
523  }
524  }
525  } while (freebits > summer);
526  }
527  if (freebits < summer) {
528  for (i = 0; i < BANDS; i++) {
529  workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
530  : 1.e20;
531  }
532  if (stream_format_code & 0x2) {
533  workT[0] = 1.e20;
534  workT[1] = 1.e20;
535  workT[2] = 1.e20;
536  workT[3] = 1.e20;
537  }
538  while (freebits < summer) {
539  lowest = 1.e10;
540  low_indx = 0;
541  for (i = 0; i < BANDS; i++) {
542  if (workT[i] < lowest) {
543  lowest = workT[i];
544  low_indx = i;
545  }
546  }
547  // if (lowest >= 1.e10)
548  // break;
549  workT[low_indx] = lowest + 2.0;
550 
551  if (!--chctx->bitsBandT[low_indx])
552  workT[low_indx] = 1.e20;
553 
554  for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
555  if (chctx->CWlengthT[j] > 0) {
556  chctx->CWlengthT[j]--;
557  summer--;
558  }
559  }
560  }
561  }
562  return 0;
563 }
564 
565 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
566 {
567  int i, j;
568 
569  memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
570  memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
571  for (i = 0; i < BANDS; i++) {
572  if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
573  continue;
574 
575  if (!chctx->skipFlagRaw[i]) {
576  chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
577 
578  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
579  chctx->skipFlags[j] = get_bits1(&q->gb);
580  if (chctx->skipFlags[j])
581  chctx->skipFlagCount[i]++;
582  }
583  } else {
584  for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
585  if (!get_bits1(&q->gb)) { // 0
586  chctx->skipFlagBits[i]++;
587  chctx->skipFlags[j] = 1;
588  chctx->skipFlags[j + 1] = 1;
589  chctx->skipFlagCount[i] += 2;
590  } else {
591  if (get_bits1(&q->gb)) { // 11
592  chctx->skipFlagBits[i] += 2;
593  chctx->skipFlags[j] = 0;
594  chctx->skipFlags[j + 1] = 1;
595  chctx->skipFlagCount[i]++;
596  } else {
597  chctx->skipFlagBits[i] += 3;
598  chctx->skipFlags[j + 1] = 0;
599  if (!get_bits1(&q->gb)) { // 100
600  chctx->skipFlags[j] = 1;
601  chctx->skipFlagCount[i]++;
602  } else { // 101
603  chctx->skipFlags[j] = 0;
604  }
605  }
606  }
607  }
608 
609  if (j < band_tab[i + 1]) {
610  chctx->skipFlagBits[i]++;
611  if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
612  chctx->skipFlagCount[i]++;
613  }
614  }
615  }
616 }
617 
618 /**
619  * Increase highest' band coefficient sizes as some bits won't be used
620  */
622  int summer)
623 {
624  float workT[32];
625  int corrected = 0;
626  int i, j;
627  float highest = 0;
628  int found_indx = 0;
629 
630  for (i = 0; i < BANDS; i++) {
631  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
632  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
633  }
634 
635  while (corrected < summer) {
636  if (highest <= -1.e20)
637  break;
638 
639  highest = -1.e20;
640 
641  for (i = 0; i < BANDS; i++) {
642  if (workT[i] > highest) {
643  highest = workT[i];
644  found_indx = i;
645  }
646  }
647 
648  if (highest > -1.e20) {
649  workT[found_indx] -= 2.0;
650  if (++(chctx->bitsBandT[found_indx]) == 6)
651  workT[found_indx] = -1.e20;
652 
653  for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
654  if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
655  chctx->CWlengthT[j]++;
656  corrected++;
657  }
658  }
659  }
660  }
661 }
662 
663 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
664 {
665  int i;
666  float re, im;
667  float *dst1 = q->out_samples;
668  float *dst2 = q->out_samples + (COEFFS - 1);
669 
670  /* prerotation */
671  for (i = 0; i < COEFFS / 2; i++) {
672  q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
673  (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
674  q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
675  (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
676  }
677 
678  /* FFT */
679  q->fft.fft_permute(&q->fft, q->samples);
680  q->fft.fft_calc(&q->fft, q->samples);
681 
682  /* postrotation, window and reorder */
683  for (i = 0; i < COEFFS / 2; i++) {
684  re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
685  im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
686  *dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
687  + (q->mdct_sine_window[i * 2] * re);
688  *dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
689  - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
690  dst1 += 2;
691  dst2 -= 2;
692  chctx->last_fft_im[i] = im;
693  }
694 }
695 
697  int stream_format_code)
698 {
699  int i, j;
700  int middle_value, cw_len, max_size;
701  const float *quantizer;
702 
703  for (i = 0; i < BANDS; i++) {
704  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
705  chctx->CWdecoded[j] = 0;
706  cw_len = chctx->CWlengthT[j];
707 
708  if (cw_len <= 0 || chctx->skipFlags[j])
709  continue;
710 
711  max_size = 1 << cw_len;
712  middle_value = max_size >> 1;
713 
714  if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
715  return AVERROR_INVALIDDATA;
716 
717  if (cw_len >= 4) {
718  quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
719  if (chctx->codewords[j] >= middle_value)
720  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
721  else
722  chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
723  }else{
724  quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
725  if (chctx->codewords[j] >= middle_value)
726  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
727  else
728  chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
729  }
730  }
731  }
732  return 0;
733 }
734 
735 
736 static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
737 {
738  int i, j, cw_len, cw;
739 
740  for (i = 0; i < BANDS; i++) {
741  if (!chctx->sumLenArr[i])
742  continue;
743  if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
744  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
745  cw_len = chctx->CWlengthT[j];
746  cw = 0;
747 
748  if (get_bits_count(&q->gb) + cw_len > 512) {
749  av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
750  return AVERROR_INVALIDDATA;
751  }
752 
753  if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
754  cw = get_bits(&q->gb, cw_len);
755 
756  chctx->codewords[j] = cw;
757  }
758  }
759  }
760  return 0;
761 }
762 
763 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
764 {
765  int stream_format_code;
766  int imc_hdr, i, j, ret;
767  int flag;
768  int bits, summer;
769  int counter, bitscount;
770  IMCChannel *chctx = q->chctx + ch;
771 
772 
773  /* Check the frame header */
774  imc_hdr = get_bits(&q->gb, 9);
775  if (imc_hdr & 0x18) {
776  av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
777  av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
778  return AVERROR_INVALIDDATA;
779  }
780  stream_format_code = get_bits(&q->gb, 3);
781 
782  if (stream_format_code & 1) {
783  av_log_ask_for_sample(avctx, "Stream format %X is not supported\n",
784  stream_format_code);
785  return AVERROR_PATCHWELCOME;
786  }
787 
788  if (stream_format_code & 0x04)
789  chctx->decoder_reset = 1;
790 
791  if (chctx->decoder_reset) {
792  for (i = 0; i < BANDS; i++)
793  chctx->old_floor[i] = 1.0;
794  for (i = 0; i < COEFFS; i++)
795  chctx->CWdecoded[i] = 0;
796  chctx->decoder_reset = 0;
797  }
798 
799  flag = get_bits1(&q->gb);
800  imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
801 
802  if (stream_format_code & 0x4)
804  chctx->flcoeffs1, chctx->flcoeffs2);
805  else
807  chctx->flcoeffs1, chctx->flcoeffs2);
808 
809  for(i=0; i<BANDS; i++) {
810  if(chctx->flcoeffs1[i] > INT_MAX) {
811  av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
812  return AVERROR_INVALIDDATA;
813  }
814  }
815 
816  memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
817 
818  counter = 0;
819  for (i = 0; i < BANDS; i++) {
820  if (chctx->levlCoeffBuf[i] == 16) {
821  chctx->bandWidthT[i] = 0;
822  counter++;
823  } else
824  chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
825  }
826  memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
827  for (i = 0; i < BANDS - 1; i++) {
828  if (chctx->bandWidthT[i])
829  chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
830  }
831 
832  imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5);
833 
834  bitscount = 0;
835  /* first 4 bands will be assigned 5 bits per coefficient */
836  if (stream_format_code & 0x2) {
837  bitscount += 15;
838 
839  chctx->bitsBandT[0] = 5;
840  chctx->CWlengthT[0] = 5;
841  chctx->CWlengthT[1] = 5;
842  chctx->CWlengthT[2] = 5;
843  for (i = 1; i < 4; i++) {
844  bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
845  chctx->bitsBandT[i] = bits;
846  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
847  chctx->CWlengthT[j] = bits;
848  bitscount += bits;
849  }
850  }
851  }
852  if (avctx->codec_id == AV_CODEC_ID_IAC) {
853  bitscount += !!chctx->bandWidthT[BANDS - 1];
854  if (!(stream_format_code & 0x2))
855  bitscount += 16;
856  }
857 
858  if ((ret = bit_allocation(q, chctx, stream_format_code,
859  512 - bitscount - get_bits_count(&q->gb),
860  flag)) < 0) {
861  av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
862  chctx->decoder_reset = 1;
863  return ret;
864  }
865 
866  for (i = 0; i < BANDS; i++) {
867  chctx->sumLenArr[i] = 0;
868  chctx->skipFlagRaw[i] = 0;
869  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
870  chctx->sumLenArr[i] += chctx->CWlengthT[j];
871  if (chctx->bandFlagsBuf[i])
872  if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
873  chctx->skipFlagRaw[i] = 1;
874  }
875 
876  imc_get_skip_coeff(q, chctx);
877 
878  for (i = 0; i < BANDS; i++) {
879  chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
880  /* band has flag set and at least one coded coefficient */
881  if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
882  chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
883  q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
884  }
885  }
886 
887  /* calculate bits left, bits needed and adjust bit allocation */
888  bits = summer = 0;
889 
890  for (i = 0; i < BANDS; i++) {
891  if (chctx->bandFlagsBuf[i]) {
892  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
893  if (chctx->skipFlags[j]) {
894  summer += chctx->CWlengthT[j];
895  chctx->CWlengthT[j] = 0;
896  }
897  }
898  bits += chctx->skipFlagBits[i];
899  summer -= chctx->skipFlagBits[i];
900  }
901  }
902  imc_adjust_bit_allocation(q, chctx, summer);
903 
904  for (i = 0; i < BANDS; i++) {
905  chctx->sumLenArr[i] = 0;
906 
907  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
908  if (!chctx->skipFlags[j])
909  chctx->sumLenArr[i] += chctx->CWlengthT[j];
910  }
911 
912  memset(chctx->codewords, 0, sizeof(chctx->codewords));
913 
914  if (imc_get_coeffs(q, chctx) < 0) {
915  av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
916  chctx->decoder_reset = 1;
917  return AVERROR_INVALIDDATA;
918  }
919 
920  if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
921  av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
922  chctx->decoder_reset = 1;
923  return AVERROR_INVALIDDATA;
924  }
925 
926  memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
927 
928  imc_imdct256(q, chctx, avctx->channels);
929 
930  return 0;
931 }
932 
933 static int imc_decode_frame(AVCodecContext *avctx, void *data,
934  int *got_frame_ptr, AVPacket *avpkt)
935 {
936  const uint8_t *buf = avpkt->data;
937  int buf_size = avpkt->size;
938  int ret, i;
939 
940  IMCContext *q = avctx->priv_data;
941 
942  LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
943 
944  if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
945  av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
946  return AVERROR_INVALIDDATA;
947  }
948 
949  /* get output buffer */
950  q->frame.nb_samples = COEFFS;
951  if ((ret = ff_get_buffer(avctx, &q->frame)) < 0) {
952  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
953  return ret;
954  }
955 
956  for (i = 0; i < avctx->channels; i++) {
957  q->out_samples = (float *)q->frame.extended_data[i];
958 
959  q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
960 
961  init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
962 
963  buf += IMC_BLOCK_SIZE;
964 
965  if ((ret = imc_decode_block(avctx, q, i)) < 0)
966  return ret;
967  }
968 
969  if (avctx->channels == 2) {
970  q->dsp.butterflies_float((float *)q->frame.extended_data[0],
971  (float *)q->frame.extended_data[1], COEFFS);
972  }
973 
974  *got_frame_ptr = 1;
975  *(AVFrame *)data = q->frame;
976 
977  return IMC_BLOCK_SIZE * avctx->channels;
978 }
979 
980 
982 {
983  IMCContext *q = avctx->priv_data;
984 
985  ff_fft_end(&q->fft);
986 
987  return 0;
988 }
989 
990 static av_cold void flush(AVCodecContext *avctx)
991 {
992  IMCContext *q = avctx->priv_data;
993 
994  q->chctx[0].decoder_reset =
995  q->chctx[1].decoder_reset = 1;
996 }
997 
998 #if CONFIG_IMC_DECODER
999 AVCodec ff_imc_decoder = {
1000  .name = "imc",
1001  .type = AVMEDIA_TYPE_AUDIO,
1002  .id = AV_CODEC_ID_IMC,
1003  .priv_data_size = sizeof(IMCContext),
1004  .init = imc_decode_init,
1007  .flush = flush,
1008  .capabilities = CODEC_CAP_DR1,
1009  .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1010  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1012 };
1013 #endif
1014 #if CONFIG_IAC_DECODER
1015 AVCodec ff_iac_decoder = {
1016  .name = "iac",
1017  .type = AVMEDIA_TYPE_AUDIO,
1018  .id = AV_CODEC_ID_IAC,
1019  .priv_data_size = sizeof(IMCContext),
1020  .init = imc_decode_init,
1023  .flush = flush,
1024  .capabilities = CODEC_CAP_DR1,
1025  .long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1026  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1028 };
1029 #endif